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Solvation and ionization energies of ions and neutral atomic solutes near planar and spherical (cluster) surfaces 
were calculated using continuum dielectric theory. For highly polarized solvents, the magnitude of the solvation 
energy at  the surface is similar to that in the bulk, while the reorganization energy and the photodetachment 
energy of an electron from a negative ion are found to be slightly larger for solutes located a t  the surface. The 
cluster size dependence of the solvation and ionization energies is found to be determined only by the properties 
of the solvent, in good agreement with experimental data, and to be insensitive to the location of the solute in 
the cluster. Implications for the size dependence of the photodetachment energies from negative ions in water 
and ammonia clusters are discussed. In particular it is suggested that the observed photodetachment energies 
from small (NH&- clusters are compatible with the dielectric predictions for electron solvation in solid ammonia. 

I. Introduction 

Solvation near a dielectric boundary is of considerable 
theoretical and experimental interest. A solvated ion polarizes 
the medium about it and stabilizes itself.' If the ion is near the 
surface there is less solvent to polarize and the solvation energy, 
is smaller. In accordance with this picture it is observed 
experimentally that the ion concentration is lower near the free 
surface of an electrolyte solution than in the bulk.2 To calculate 
this excess the loss of solvation energy near a surface was first 
estimated in the dielectric model by Wagner,' later by Onsager 
and Samaras? and by Conway.2 

Related problems are the transfer of ions through a free surface 
or the surface between two immiscible liquids with different 
dielectric constants and electron transfer near or through such 
interfaces.5~6 The free energies associated with these processes 
have been studied for specific geometries using both dielectric 
models and molecular dynamics simulations. These simulations 
show that the dielectric picture is qualitatively correct with 
deviations of varying importance from the results of the simu- 
lations, depending on the specific system being considered. 

Clusters are another system ip which the surface plays a 
prominent role. Studies of solvation of ions in dielectric clusters 
were pioneered by Kebarle.7 However, the methods used in these 
experiments were limited to relatively small clusters, generally 
with less than 10 solvent molecules. 

Solvation energetics can also be studied by photodetachment 
of an electron from solvated negative ions or photoionization of 
solvated neutral atoms. In the first case the work to remove an 
electron can be considered as the sum of the electron affinity plus 
additional work against the polarized solvent. In the second case 
the work is equal to the ionization potential less the energy gained 
from the fast component of the solvent polarization during the 
photoionization process. Experiments of both types have been 
performedon clusters. The solutes have been solvated electrons,* 
halide ions? and neutral alkali atoms.10.11 The solvents have 
mainly been ammonia and water. Most of these experiments 
have been confined to clusters with several tens of solvent 
molecules, but negatively charged clusters of up to 1 100 ammonia 
molecules have been studied. 

These cluster processes have also been studied theoretically, 
using continuum dielectric models,l2-14 molecular dynamics 
simulations,1sJ6 and quantum chemistry calculations.17 The latter 
have been confined to small clusters and will not be considered 
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here. The dielectric models have constrained the solute to be at 
thecenter of a spherical cluster1*J3 or spread symmetrically about 
the surface (a cdafiguration suggested for Polvated electrons).14 
Recent moleculat. dynamics simulations15J6 have brought into 
focus the issueof surface vs interior solvation in clusters. These 
simulations, as well as consideratisn of the balance between the 
solute-solvent interactions and the solvent redrganization energy, 
suggest that in some systems solvation takes place on the surface 
in small clusters, and that at some intermediate (system 
dependent) cluster size there is a transition from the surface to 
the interior state. 

In this paper we apply continuum dielectric theory to solvation 
and ionization processes near an interface between two dielectric 
media. Dielectric theory has been commonly used for the 
description of solvation and ionization processes in solution.l* 
This theory ignores the discrete molecular nature of the solvent, 
a questionable approximation for molecular scale solutes, where 
much of the solvation energy is associated with solvent molecules 
in the immediate vicinity of the solute. This weakness is 
compounded near liquid-gas and liquid-liquid interfaces, because 
the continuum theory assumes sharp interfaces while the actual 
interface width (i.e., the region where the dielectric properties 
change) is several molecular diameters. In spite of this, dielectric 
theory has been very useful in developing the qualitative 
understanding of solvation phenomena in bulk and in clusters. It 
has also been surprisingly successful in describing some quan- 
titative aspects of solvation processes, see+e.g., ref 18. Continuum 
dielectric theory thus appears to be useful both as a way to develop 
qualitative understanding and as a basis for comparison with 
microscopic theories and computer simulations. 

In the context of clusters it may be expected that the validity 
of dielectric theory will increase with cluster size. In particular 
we expect that this theory will account correctly for the cluster 
size depenence of the energetics, e.g., the solvation and ionization 
energies. The reason for this is that when comparing solvation 
energies in two clusters of different sizes it is necessary to consider 
contributions from both short-range and lotrg-range interactions. 
The bulk of the energy difference is expected to arise from long- 
range interactions which are described adequately by this model. 
The structure near the solute is expected to be approximately 
independent of thecluster size. Indeed, this has been demonstrated 
recently in calculations of cluster energetics in the mean spherical 
approximation (MSA) which showed an asymptotic size depen- 
dence equal to that predicted by thedielectric theory.19 Therefore 
in our application to clusters we emphasize the cluster size 
dependence, particularly in the limit of large clusters. 
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We begin this paper by briefly reviewing the dielectric theory 
of solvation. Then we discuss its application to solvation near a 
dielectric interface. Following this we consider its predictions 
for several problems of theoretical and experimental interest: 
the free energy of ion solvation and the photodetachment of an 
electron from a negative ion at  a dielectric interface, and the 
solvation and ionization energies of an ion or an atom at the 
center and at the surface of a spherical cluster. We conclude this 
paper by discussing the results and, where relevant, by confronting 
them with experimental data. 

11. Dielectric Tbeory of Solvation 
The dielectric theory of solvation1 is a classical description of 

the solvation process. The solvent is described as a dielectric 
continuum. The solute ions can be modeled in various ways: (i) 
a charge distribution p(r) in a cavity surrounded by the dielectric, 
(ii) a charged conducting sphere, or (iii) a charge distribution 
p(r) embedded in the dielectric. In a bulk medium the three 
models are equivalent, but this is not necessarily so in a finite 
system. For definiteness we model the ion as a charged conducting 
sphere. The dielectric interface is taken to be a sharp boundary 
between two dielectric media with static dielectric constants € 1  

and €2. 
Consider first solvation in the bulk of a dielectric medium 

characterized by a dielectric constant e. The solvation energy is 
the energy released by the polarization of the qedium when the 
charged solute is transferred into it from the vacuum. The free 
energy of solvation, AG,, is the difference of the free energies of 
two equilibrium stat@, one with the charge outside the dielectric 
and the other with the charge distribution fully solvated. This 
difference is found to bel3 

1 
A G ~  = 5Jd3rp(r)  4(r) - 3 d 3 r  p(r) 4 , ~  (1) 

where the potentials and charges are related by the Poisson 
equations: 

v24 = -4sp(r)/e (2a) 

~ ' 4 ,  = -+(r) (2b) 

The integrals in eq 1 extend over the whole space. 4(r) is the 
potential of p(r) in the presence of the dielectric medium. It is 
obtained from eq 2a supplemented by the usual electrostatic 
boundary conditions. &(r) is the potential of the same charge 
distribution in vacuum. When the solute is inside an infinite 
dielectric medium, only the boundary conditions at infinity, 4 = 
0 and V4 = 0, are required. When the solute is an electron, an 
extra term must be ad& to eqs 1 and 3 to account for the kinetic 
energy of localization, K.20 

(3) 

where *(I) and p(r) are related by 

and e is the unit charge. 
The Born picture1 describes the equilibrium solvation of charged 

species. Platzman and Franck21 (and later M a r c u ~ ? ~ . ~ ~  Jortner,20 
and others) extended it to describe vertical processes such as 
electronic excitations and ionization, in which the nuclei do not 
move during the transition, in the spirit of the Franck-Condon 
principle. In this picture the excitation is described as a sudden 
change in the charge distribution 

where the subscripts g and x denote the ground and excited states, 
respectively. On the time scaleof this transition only theelectronic 
degrees of freedom of the solvent respond. This partial solvent 
response is described by considering the polarization, P(r), to be 
the sum of two contributions: 

P and pd are the electronic and dipolar components of the total 
polarization. The dipolar part depends on the nuclear coordinates. 
Only P ( r )  is assumed to be in equilibrium with the instantaneous 
charge distribution. It should be noted that this scheme can be 
applied to any process which involves a sudden change in the 
charge distribution, and is not specific to optical excitations. 

Before the optical transition, the total polarization is in 
equilibrium with the electric field of the ground-state charge 
distribution: 

€ -  1 - -E '8' 4s 8 

€,- 1 
p"B = 7% 

48 is the solution of eq 2a with p replaced by pe(r). e, is the 
optical dielectric constant which describes the electronic com- 
ponent of the polarization. Equations 6 and 7 imply that 

c - e, t = 7% 
After the transition theelectroniccomponent of the polarization, 

PC, is in equilibrium with the new electric field, while the dipolar 
component, pd, remains initially unchanged. The potential in 
this final state can be found by solving the Poisson equation:13J2 

"(4, - 48) = -4*(pX - p8)/em ( 9 )  

In this model the transition energy, W,,, is obtained to be13.20.21 

which is the change in the solvent polarization energyZ2 plus the 
net work, AK, to change the charge distribution in vacuum. &, 
and 4xo are defined as 4, of eq 2b with p replaced by pe and px, 
respectively. In classical systems AK is the difference in the 
electrostatic energies needed to assemble the charge distributions 
pe and px. In general, however, this is a quantum mechanical 
quantity, givenz1 by the work necessary to perform the analogous 
transition in vacuum (e+, for the ionization of a singly charged 
negative ion in solution PK is taken to be the electron affinity of 
the corresponding neutral in vacuum). For a solvated electron 
AK is taken as the kinetic energy of localization.z0 

To finish this brief review we consider some results for two 
types of ionization processes with which we shall be concerned: 
ionization of a neutral species and electron detachment from a 
singly-charged negative species. 

1. Ionization of a Neutral Species. In this process pg(r) is 
zero, while px(r) corresponds to the positive ion. Since only the 
electronic component of the solvent polarization responds on the 
time scale of this transition, the process is equivalent to solvation 
in a medium with only electronic polarization. Therefore the 
free energy of solvation in this process, AG:, is given by eqs 1 and 
2 with e replaced by the optical dielectric constant, The 
ionization energy is then the sum of the ionization potential in 



Solvation and Ionization near a Dielectric Surface 

vacuum, AK, and the vertical solvation energy: 

Wg+x = AG: + AK (11) 

2. Electron Photodetachment from a Singly Chars& Negative 
Species. In this process the ground-state charge distribution, Pg, 
is that of the negatively charged ion, andpx is zero. The ionization 
energy is20921 

Wkx = -AGs + AK + x (12) 

AKfor this process is the electron affinity. The ionization energy 
is seen to be equal to the electron affinity minus the solvation 
energy plus the reorganization energy, x .  The reorganization 
energy is the extra work performed because the dipolar component 
of the solvent polarization does not change during the ionization 
process. Within the present model it is23 

III. Solvation near a Dielectric Surface 
In this section we apply the dielectric theory reviewed above 

to solvation processes near dielectric boundaries and use it to 
discuss some problems of theoretical and experimental interest. 
The interface is modeled as a sharp boundary between two 
dielectric media characterized by the static dielectric constants 
c1 and 62. In this case the Poisson equations (2 and 9) for the 
potential have to be written separately in the two media, i.e., VZ$, 
= -4rp(r)/ci; i = 1,2, and the usual boundary conditions apply 
at the interface: 

41 = $2 (14) 

where x is the coordinate normal to the surface. 
We now apply the theory of section I1 and the boundary 

conditions (14 and 15) to several situations: 
A. Solvation of an Ion at a Planar Dielectric Interface. When 

an ion is located in a dielectric medium or near a dielectric interface 
it polarizes the medium. The change in free energy associated 
with this process is given, in the dielectric model, by eq 1. 

We model the ion as a conducting sphere of radius a and total 
charge q and the interface as a sharp boundary separating the 
two solvents, modeled by dielectric continua. Thus '(r) = €2 for 
x < 0, and c(r) = el for x > 0. The free energy of solvation can 
be obtained from eq 1, in the present configuration it is determined 
by the distance, d, between the sphere center and the surface (see 
Figure 1). 

For a conducting sphere all the charge is at the surface where 
the potential is constant. Therefore the solvation energy, eq 1, 
is 

$ is the potential of the ion in the medium, and $o is the potential 
in the vacuum, i.e., $,(a) = q/a. 

Consider now #(a).  If 14 >> u it is approximated by the image 
potential24 

(#)(a) =*-A- "-" ( d > a )  (17a) 
e1u 2eId t2 + tl  
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Figure 1. Schematic representation of ion solvation near a dielectric 
interface. 

Ford  = 0 the ion is equally immersed in both dielectrics. Note 
that the possibility that the interfacial structure is affected by the 
presence of the ion is disregarded. For this case the potential at 
the ion is shown in Appendix A to be 

(#)(a) = 9 2 -  
a €2 + q 

We now consider two specific cases: (i) the ion is in the bulk 
(d = --OD) of medium 1 (ii) the ion is at the surface (d = 0). In 
the first case $(a) = q/(ela) and the solvation energy, eq 16, 
becomes the well-known Born energy:' 

In the second case, when the ion is at the surface, the potential 
is given by eq 18, and the solvation energy is 

From the ratio: 

AG,(d = 0) (€1 + €2 - 2) €1 
(21) - - 

AG,(d = -m) '1 + '2 (€1 - 1) 

we see that for all values of c1 > €2 the solvation energy at the 
surface is less than that in the bulk of solvent 1, as would be 
expected. The relative fraction tends to 1 as el - 03,  

It is interesting to note that the exact value of #(a) for the case 
d = 0 is the same as would be obtained from the simple 
interpolation scheme introduced in ref 25 to bridge between the 
results (17) on both sides of the interface. This interpolation 
procedure is reviewed in Appendix B. Using this interpolation, 
we show in Figure 2 the relative energy of solvation of a univalent 
ion of radius 2 A (e.g., B r )  as a function of the distance from 
the interface for water (e = 80) and for a solvent with e = 3. 

B. Electron Detachment from a Negative Ion Near a Planar 
Dielectric Surface. Consider a negative ion at the interface 
between solvents 1 and 2. The photodetachment energy is 
given in eqs 12 and 13 in terms of the ionization potential of the 
negative ion in the vacuum (Le., the electron affinity), AK, and 
of the solvation energies, AG, and AG. AG, was obtained above, 
and as shown in section 11, AG is obtained from similar 
expressions by replacing E with e-. Thus all the necessary 
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Figure 2. Solvation energy of an ion of radius 2 A as a function of its 
distance, d, from a planar surface. The solid line is for a dielectric with 
c = 80, and the dotted line is for the case c = 3. 

d b A I  
Figure 3. Photodetachment energy of an excess electron from a univalent 
anion of radius 2 A (solid line) and solvent reorganization energy for this 
ion (dotted line) as a function of the distance, d, of the ion from a planar 
surface, separting water (e = 80, e- = 1.8) and vacuum. The result 
shown for the photodetachment energy does not contain the AK 
contribution. 

quantities are known, and the results are 

A Wg-,(d 0) = AK - 2AG, + AG,' = 

A W,,,(d = -a) = AK - 2AG, + AG; = 
2 

AK+ &( 1 + 1-2) (22b) 
€1,- '1 

For the specific case of the electrolyte vacuum interface (€1 = e, 
e2 = l ) ,  eq 22a becomes 

A WB',(d = 0) = AK - 2AG, + AG: = 

) (23) 
AK+i( l+---  2 

e,+1 t + l  

Result 22b was obtained by Jortner for the vertical detachment 
energy of a solvated electron20 (in which case AK is the kinetic 
energy of localization). Near the interface, an expression for 
AW,, for 14 >> a, based on the image approximation, was 
obtained by Marcus.26 Again, using the procedure of Appendix 
B to interpolate between the Marcus results on the two sides of 
the interface yields at d = 0 a result identical to (22a), supporting 
the validity of this procedure. Figure 3 shows the results of this 
interpolation for the photodetachment energy and the reorga- 
nization energy, eq 13, as a function of distance from a planar 
water (e = 80, e, = 1.8) vacuum interface. 

From eq 23 it can be seen that for the case t = e, (e.g., rare 
gas solvents) the photodetachment energy a t  the surface is smaller 
than that in the bulk. On the other hand, for the case e >> e, > 
1, typical of polar molecules such as water and ammonia, the 
photodetachment energy predicted by the dielectric theory is 
greater a t  the surface than in the bulk, as can be seen in Figure 
3. This behavior can be traced to that of the solvation and 
reorganization energies. For t >> 1 almost all of the solvation 
energy is attained at the surface (see Figure 2 and eq 21). If e 
>> e, as well, then the reorganization energy attains a maximum 
value there, which is slightly greater than that in the bulk (see 
Figure 3). Whether this behavior persists in realistic systems 
with diffuse interfacial boundaries or is an artifact of our idealized 
model is an open question. 

C. Solvation of an Ion in a Spherical Cluster. The calculation 
of the solvation energy of an ion in a spherical cluster of radius 
R, like that for a planar interface, reduces to the problem of 
finding the potential a t  the ion surface, t$(a), as a function of the 
distance, Ri, between the ion and cluster centers. The distance 
from the ion center to the cluster surface is d = Ri - R. 
Approximate expressions for $(a) are available for 14 >> a:27 

n(t-  1) R ~ ~ + ~  
( d >  a )  (24b) 4 4(a) = -- a q & t n + n + l R y 2  

In Appendix B we present an approximate solution for the case 
d = 0, based upon an interpolation procedure similar to that used 
in the planar case above. The result is: 

The solvation energies a t  the cluster center and at the surface are 
obtained from eqs 24a and 25, respectively, to be 

AG,(R,=R) = 

(27) 
e - 1  AG,(R,=O) = e - 1 + 3- - 2a 2(  e ) 2 R t  

Equation 27 is identical to results obtained earlier.12.25 Note 
that in the limit t >> 1, the second term in eq 26 can be disregarded. 
The two solvation energies become equal in this time limit, but 
for smallvalues o f t  they have slightly different size dependences. 
In particular for largeR the solvation energy at the surface depends 
on thecluster sizeas (In R ) / R ,  whilein theinterior thisdependence 
is proportional to 1 /R. As discussed above, we expect the dielectric 
model to predict the size dependences correctly. 

D. Photodetachment from a Negative Ion ina Spherical Cluster. 
The photodetachment energy of an electron from a negative ion 
in a spherical dielectric cluster may be obtained by following the 
arguments of section 1II.B and replacing the results for the 
solvation energy near a planar surface by eqs 26 and 27 for a 
cluster. This leads to 

2 AW,,,(R,=R) = A$-, 

(i - ln(g))( * - u) ] (28) 
R ( e ,  + 1)2 ( E  + 1)2 
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TABLE 1: Values of a (Eq 32) Obtained from the Dielectric 
AW,,,(Ri=O) = - &( 1 + - ') (29)  Theory for Various Processes 

6 ,  E 

where APPx denotes the corresponding energy in the limit R - 
given by eq 22.28 Equation 29 is identical to the earlier results 

of Barnett et al.12J3 
E. Ionization of an Atom Solvated in a Spherical Cluster. The 

ionization energy of an atom was shown in section I1 to be AW,, 
= AK+ AG:, where for this process AKis the ionization potential 
of the atom in vacuum. AG; has the form of the solvation energy 
AG8 (eqs 26 and 27) with e replaced by e,. This leads to the 
following expression for the ionization potential of an atom of 
radius a a t  the cluster surface: 

2 E , - l  1 
AW,,,(R,=R) = A K - 5  --(- - L) + 2 c , + l a  R 

E - 1  2 
LL-- L(L - In(;)) (30)  
( E ,  + 1)*  2R 2 

while for an atom at the cluster center, we get 

2 e , - 1  
AW,,,(R,=O) = AK + 1 1 - 1 + e - ( 3 1 )  2a '( E ,  ) 2R e ,  

IV. Discussion and Summary 
In this work we have examined the solvation and ionization 

energies of atoms and ions at planar dielectric interfaces and at 
the center and surface of spherical dielectric clusters. Results 
for these quantities were obtained using models based on a 
continuum dielectric theory with sharp interfaces. The solute 
was modeled as a conducting sphere of radius a, and the interfacial 
structure was assumed to be unaffected by its presence. For 
definiteness we summarize our main results for the dielectric- 
vacuum interface. For a planar surface we found that: 

(a) The solvation energy monotonously increases in magnitude 
as the ion approaches the dielectric interface from the vacuum, 
crosses it, and moves into the bulk dielectric (see Figure 2). For 
solvents with high dielectric constant the bulk of the solvation 
energy is attained a t  the surface (see eq 21), e.g., for water the 
solvation energy at the surface is approximately 98% of the 
corresponding value in the bulk. 

(b) The reorganization energy increases to a maximum a t  the 
surface (see Figure 3). This increase is significant only for highly 
polar solvents, for which it attains a maximum increase of 17% 
when e, = 2.4. For water the increase above the bulk value is 
approximately 10%. This peculiar behavior results from the 
different dependences of the vertical and adiabatic solvation 
energies on the distance d of the ion from the surface. More 
specifically, the reorganization energy is given by the difference 
between these two energies, as seen in eq 13. This equation 
represents the reduction of the reorganization energy, relative to 
the value (minus the adiabatic solvation energy) it would have 
attained for the same e if e, equalled 1 (Le., no electronic 
polarization), through the relaxation of the electronic component 
of the solvent polarization. Near the surface the relaxation of 
the electronic component is significantly reduced while the overall 
solvation energy remains almost equal to its bulk value. This 
causes the reorganization energy to reach a maximum value at 
the surface. 

(c) As a result of the behavior of the reorganization energy, 
the photodetachment energy of a singly charged negative ion will 
also attain a maximum at the dielectric/vacuum surface if e >> 
1 (see Figure 3). 

It should be kept in mind that these results were obtained in 
a highly idealized model, and while they can serve as a basis for 
discussion of more realistic situations, it is not known whether 
these predictions will be retained by more realistic models. For 
example the prediction of a modest increase (approximately 10% 

a (in eV A) 

ion 
process location 

water solid ammonia liquid ammonia 
(e- = 1.8; (6- = 2.1; (e, = 1.8; 

e =  80) P = 3.4) P = 20) 
solvation center 

ionization of center 

ionization bf center 

surface 

negative ion surface 

neutral atom surface 

7.1 5.1 6.8 
7.0 5.3 6.9 

-1 1 .o -6.4 -10.5 
-11.1 -6.7 -10.8 

3.2 3.8 3.2 
3.2 3.8 3.2 

for water) in the reorganization energy does not seem to be 
observed in the results of recent ~imulations.2~ 

For spherical clusters we have derived, within the same model, 
the cluster size dependenceof the solvation and ionization energies 
of a solvated ion in the cluster and a t  the surface. We have 
argued that in spite of its simplicity our model should account 
correctly for the cluster size dependence of these properties. All 
the quantities studied were found to depend on the cluster size 
in the form of the cluster size equation:30 

E ( R ) = E b + E  R 

For solutes located a t  the surface a depends on ln(R), but the 
experimental size range is generally so small that this term can 
be taken as constant. The intercept at R = m is the energy of 
the equivalent process in the bulk or near a planar surface, and 
a characterizes the asymptotic size dependence of the quantity 
under study in the limit of large clusters. 

The behavior represented by eq 32 has been found empirically 
for many cluster systems and has also been predicted by many 
theories of cluster energetics.30 Note that for surface solvation 
the intercept, Eb, represents the relevant energy for a solute 
restricted to be at the planar surface of an infinite solvent. 

The asymptotic dependence on cluster size, a, depends on two 
factors: (i) the cluster geometry, which we have taken to be 
spherical and (ii) the dielectric properties of the solvent, which 
we assume to be those of the bulk. Note that in this theory a is 
independent of the nature of the solute. The discrete nature of 
the solvent, the microscopic structure of the solute cavity, and 
details of the short range solute-solvent interactions all affect the 
value of Eb, which cannot be determined from dielectric theory 
alone. However, the value of a should be predicted by this theory 
for both surface and interior solvation. 

It is interesting to see how well the experimental observations 
in clusters of water and ammonia are accounted for by the 
predictionsof the simpledielectriccontinuum theory. The results 
of the dielectric theory are presented in Table 1 for solutes a t  the 
center and at the surface of the cluster. In those cases where the 
term ln(a/R) appears in the expression for a we set it equal to 
-1, which is approximately its value in the range of the 
experimental data. For comparison with cluster experiments we 
have used bulkvalues of the dielectric constant: for water clusters 
we took the values of the dielectric constants to be e, = 1.8 and 
e = 80, which represent the data for a wide range of temperatures. 
For ammonia E changes from 25 at the freezing point (-77.7 "C) 
to approximately 18 in the liquid state at room temperature. For 
solid ammonia, below the freezing point, e = 3.4.)' The magnitude 
of the optical dielectric constant is approximately 1.8 for liquid 
ammonia, and we estimate it as 2.1 for solid ammonia.32 Therefore 
we present two sets of results for ammonia calculated from the 
dielectric constants corresponding to the liquid phase, e = 20 and 
e, = 1.8, and to the solid phase, e = 3.4 and e, = 2.1. 

From Table 1 it can be seen that the location of the solute has 
a small effect on the value of a in eq 32. This effect increases 
for smaller e, but even for e 3.4 it is less than 5%. Therefore we 



3464 The Journal of Physical Chemistry, Vol. 98, No. 13, I994 

TABLE 2 a and Eb Fitted from Experimental Data 

Makov and Nitzan 

energy of I- in the bulk has been measured to be 7.2 eV33* and 
no. of solvent 

cluster molecules ~ b ( e V )  a (eV A) ref 
IW20)n 24-609 7.95 -10.5 9 
(H20)n- 6-698 3.30 -11.1 8 
(NHdn- 41-1 100 1.25 -5.1 8 
Na(NHdn 4-20 1.7 4.0 10b 
Cs(NHdn 2-3 1 1.4 4.8 1 1  
Na(HzO)n 4-20 3.17 0.0 1 Oa 
Cs(H20)n 4-2 1 3.12 0.0 1 1  

conclude that, according to this model, the location of the solute 
(or indeed a transition from solvation at surface states to interior 
states, as in ref 15) cannot be elucidated from the value of a only. 

Two types of experiments in clusters can be compared with our 
results: (i) Photodetachment of an electron from negatively 
charged clusters, which was discussed in section 1II.D. (ii) 
Photoionization of neutral solutes, discussed in section 1II.E. The 
experimental data were fitted to the cluster size eq 32 and the 
results are summarized in Table 2. It should be noted that this 
comparison between the experimental data for the solvated 
electron and the dielectric theory involves the assumption that 
the quantum kinetic energy of localization (AK in our notation) 
does not depend on cluster size for large enough clusters. This 
assumption is compatible with our previous assertion that the 
short-range structure about the solute is relatively size-indepen- 
dent, as well as with the simulation and semiclassical results of 
ref 13. 

Comparing the experimental results with the predictions of 
the dielectric theory we see that the size dependence is indeed 
almost completely determined by the solvent (e.g., compare 
I-(H20), with (H20),,-). We also see that the sign of the size 
dependence is correctly predicted by the theory. An attempt to 
account quantitatively for the observed values of CY yields mixed 
results: For negative solutes in water clusters, (H20),,- and 
I-(H20),, the experimental data fit the predictions of the theory 
for both surface and interior solvation. The results of photo- 
ionization experiments on water clusters containing neutral alkali 
atoms, for which no size dependence is observed for clusters with 
more than 4 solvent molecules (Le., CY = 0), are especially 
inexplicable. Two possible reasons for this are: (i) the charge 
configuration is different from those considered in this work (e.g., 
the atom is solvated as an alkali ion-electron pair1&) and (ii) this 
behavior is characteristic only of a small size range and does not 
reflect the asymptotic size dependence. 

For both electrons and alkali atoms solvated in ammonia 
clusters, the values of CY derived from the experimental data are 
closer to those predicted by the dielectric theory for solid ammonia 
than to those of liquid ammonia. In the (NH3),,- clusters, the 
experimental value of CY differs from that predicted for solid 
ammonia by only ca. 15% and from the liquid value by ca 50%. 
Jortner30 has suggested that the experimental data for the larger 
ammonia clusters lie on a different straight line than the data for 
the smaller clusters, with a slope and intercept, Eb = 1.63 eV and 
a - 11.5 eV A, corresponding to those predicted for liquid 
ammonia. This change in slope with cluster size reflects a change 
in the state of solvation, which could possibly be explained by a 
solid-liquid transition in the ammonia clusters as they become 
larger. The smaller clusters may be in a “solid” phase with low 
e, and the larger clusters are in a “liquid state” with high e. In 
theNa(NH3),clusters thereisagoodfit between theexperimental 
and theoretical (solid ammonia) values of a, while for Cs(NH,),, 
there is a discrepancy of ca. 20%. 

The values of the intercepts obtained from the fitting of the 
experimental data to eq 32 should be equal to the ionization 
energy in the bulk in the same configuration. However, if the 
solute resides at the surface, then there is no equivalent observable 
situation in the bulk (where all states are interior states) and E b  
may be different from the observed bulk value. The ionization 

7.8 e733b (these values do not include corrections for dispersion 
by the solvent) and is in reasonable agreement with the value of 
6 given in Table 2. 

For the ammoniated electron the bulk vertical detachment 
energy (VDE) was a t  first estimated to be 1.8 eV,34a but the data 
were later reinterpreted to yield an estimate of 1.4 eV.34b Both 
these bulk values are higher than the extrapolated Eb values. 
Several interpretations for this discrepancy may be offered: 

(i) The electron is solvated in a surface state, in which Eb 
might be smaller than that in the bulk. The value of a has been 
shown above to be insensitive to the electron location. 

(ii) The ammonia clusters may be solid. The value of P for 
solid ammonia is expected to be lower than that for liquid 
ammonia, because of the smaller dielectric constant. 

(iii) As argued by Jortner.30 there may be a change of the slope 
in the AWvs 1 /R behavior. The larger clusters lie on a straight 
line with Eb = 1.6 eV3O which corresponds to liquid ammonia. 
The smaller clusters may be solvated in a different state, e.g., 
solid ammonia. 

To conclude, we have developed thedielectric theory of solvation 
near surfaces and obtained detailed results for some systems of 
theoretical and experimental interest. Comparison with exper- 
imental data shows that thedielectric theory describes reasonably 
some, but not all, of the observed trends. 
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Appendix A Potential at the Surface of an Ion Located at a 
Planar Dielectric Interface 

Consider an ion, modeled as a conducting sphere of radius a 
and charge q, located a t  the interface of two dielectric media with 
dielectric constants e1 and €2 (This corresponds to Figure 1 with 
d = 0). The potential at the surface can be obtained from the 
solution of the Laplace equation with appropriate boundary 
conditions. The general solution of the Laplace equation in this 
geometry for r > a, taking into account the azimuthal symmetry, 
is 

where r is the distance measured from the ion center, and Pn are 
the Legendre polynomials. 91 is the potential in medium 1, for 
which cos 0 > 0, and 42 for medium 2 with cos 4 < 0. 

The boundary conditions for this problem are 

where i = 1 or 2. The second boundary condition reflects the 
constant potential, 40, a t  a metal surface. From the first boundary 
condition we obtain immediately cln = 0 and c h  = 0 for all n. 

and 42, are related a t  the cos 0 = 0 
surface by the continuity conditions of eqs 14 and 15. Making 
use of the properties of the Legendre polynomials at cos 0 = 0, 
we get 

The two solutions, 
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and from (Al) h = a/2, SO the potential of the ion at the surface 
is 

p,(o) = 0 for odd n; pi(())  = 0 for even n (A3) 

and using the continuity equations we obtain the relations between 
bl, and b2n: 

(A4) 

We now apply Gauss's theorem, which relates the flux of the 
displacement field, D, through a closed surface A with the charge, 
Q, enclosed by it 

b,,  = b,, for even n; elbln = e,b,, for odd n 

SdA-D = 4 r Q  (A5) 

to a mathematical spherical surface of radius p about the center 
of the ion with p > a. Note that we employ Gauss's theorem 
through the interface between two media.3s The displacement 
normal to this surface is 

Explicitly this can be written as 
m 

4 r Q  = 2 r p 2 x ( n  + l)(elbl, + 
n-0 

(-1)"e,b,,)p-("+2)~01d cos 6 P,(cos 6 )  (A7) 

The identity theorem for power series determines that only the 
n = 0 term on the rhs is nonzero. From A4 b10 = b20 and we 
obtain 

4nQ = 2rbIo(el + e 2 ) 1 d  COS 6 P,(COS 6)  (A8) 

&,(cos 0) = 1, and the integral is unity. blo is obtained from 
(A8), and using the boundary condition (A2b) at cos B = 0, we 
obtain $0: 

Appendix B The Surface Interpolation Procedure 
Here we review the interpolation procedure introduced in ref 

25 for the solvation energy of an ion near a dielectric interface. 
We consider first a spherical interface and obtain the planar 
limit as R - m, where R is the sphere radius. 

Consider a spherical ion of charge q and radius a, located at 
a distance Ri from the center of a dielectric sphere of dielectric 
constant e, where Ri - R > a. The potential at the ion is 
approximately given by the image potential, eq 24b. This 
approximation becomes exact in the limit Ri - R >> a. When the 
ion is close to the surface the image potential diverges. In ref 25 
an ansatz for the image potential near a dielectric interface was 
proposed. In this ansatz the classical expression for the image 
potential is used up to a distance h from the surface, while in the 
range +h to -h about the surface the potential is taken to be 
constant. To be consistent with the Born solvation energy, h is 
determined to be 

where a is the ion radius. 
The potential at thesurface is, in this approximation, the image 

potential at a distance h from the surface. In the planar case (R - a) the image potential isZ4 

- 4 2  
$ - a e + l  

This result of the approximate solution is equal to the exact result 
(Appendix A), which indicates that this approximation is 
reasonable. 

Near a spherical dielectric cluster the image potential at h isZ7 

Using eq A1 for h and the equality 

(B5) 
1 ( e - 1 )  t - 1  e -  1 =-- 

€1 + 1 + 1 e + 1 (e + 1)2(1+ (e + 1)--1) 

and introducing the expansion 

- (B6) 1 -  1 l +  1 
I + (e + 1)-1 1 P ( e  + 1) 13(e + 1)2 

---- 

we can obtain, after some effort, the potential at the ion: 

F(e,R) + O( ') (B7) 
R2 

F(e,R) is a series originating in the expansion of eq A6 

If we approximate the numerator of each of the remaining terms 
by 1, then their sum is l /[( t  + 1),(e + 2)]. However, for all 
values of e the series F makes a small contribution only to the 
potential. Therefore in this paper, for reasons of simplicity, we 
have chosen to disregard it. 
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