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Recent experimental studies of solvation dynamics in electrolyte solutions indicate the existence 
of a slow dynamical component associated with the salt ions. This contribution cannot be 
accounted for by the Debye-Falkenhagen theory of ionic atmosphere response. Molecular 
dynamics simulations of solvation dynamics in a simple model (Stockmayer solvent containing 
spherical ions) of electrolyte solution are presented. The simulations confirm the interpretation 
that the slow dynamical component is primarily an outcome of ion exchange between the first 
solvation shell about the solute and the solution bulk. The simulations also indicate the highly 
correlated motion between the salt ions and the solvent molecules. 

I. INTRODUCTION 

Recent experimental, numerical, and theoretical stud- 
ies of solvation dynamics following solute charge redistri- 
bution in pure polar solvents’-3 have led to several studies 
of similar processes in electrolyte solutions.ti These works 
have revealed the existence of a new relaxation mode as- 
sociated with the rearrangement of the ionic atmosphere 
around the newly formed charge distribution. This paper 
describes the results of numerical simulation studies of sol- 
vation dynamics in such systems. 

Numerical simulations of solvation dynamics in sev- 
eral models of simple polar solvents3 have yielded a uni- 
form picture: solvent relaxation following a sudden cre- 
ation (or change) of a charge distribution is essentially 
bimodal: The solvation function 

E(t) --Et 03 1 

s(t) =E(O) -E( co ) ’ 

in which E(t) is the solvation energy at time t (assumed to 
be proportional to the experimentally observed shift in the 
fluorescence spectrum) can be fit to a superposition of a 
Gaussian and an exponential function, 

s(t) =,Q+dz+AyT~. (2) 

The Gaussian component corresponds to an ultrafast un- 
derdamped solvent relaxation which accounts for 60%- 
80% of the solvation energy. The residual, exponential 
component is related to the “conventional” diffusive relax- 
ation which had been assumed to dominate solvation dy- 
namics in earlier studies. The predominant role played by 
the inertial Gaussian component has been recently demon- 
strated experimentally7 and analyzed theoretically.* 

Recent experimental studies by Huppert and co- 
workers4 and by Chapman and Maroncell? have revealed 
several phenomena associated with salt effects on solvation 
and solvation dynamics. These experiments involve a chro- 
mophore “probe” dissolved in one of several dielectric sol- 
vents representing a range of dielectric permeabilities (E,, 
the solvent static dielectric coefficient ranging from 6 for 
ethyl acetate to 111 for formamide). Several added salts 
were studied with concentrations in the range 10-3-3.0iU. 
The main findings of these studies are: 

( 1) The addition of salt causes a red shift in the 
steady-state absorption and emission spectra of the probe 
solute, above the shift induced by the pure solvent. This ion 
induced frequency shift is of the order of several hundred 
cm-’ for a 1M salt concentration. The magnitude of these 
shifts decreases when the solvent polarity increases. For 
formamide (Ed= 111) and water (E,= 80) these shifts are 
almost unobservable. 

(2) The magnitudes of the observed shifts, as functions 
of the type of salt added, are primarily functions of the 
cation type, and correlate approximately linearly with the 
cation’s charge-to-radius ratio. 

(3) The relaxation which follows the probe’s optical 
excitation (associated with a sudden rearrangement of its 
charge distribution) can be separated into its solvent and 
electrolyte components. The solvent response is faster by 
one to three orders of magnitude than the ionic relaxation, 
and could not usually be resolved in ithe given experimental 
setups. The additional relaxation associated with the added 
electrolyte occurs on a time scale of up to several nanosec- 
onds. The added salt affect the spectral width far less than 
the spectral peak position. 

(4) The ionic relaxation is generally nonexponential, 
the average relaxation time depends linearly, at constant 
temperature and for electrolyte concentration <lM, on 
q/c where c is the electrolyte concentration and r] is the 
solvent bulk viscosity (at the given electrolyte concentra- 
tion). The temperature dependence of the dynamics indi- 
cate activation energies substantially larger than those in- 
ferred from the solvent viscosity. 

(5) The ionic relaxation time depends approximately 
linearly on the solvent polarity expressed by its static di- 
electric response E,. A better correlation is found with E$, 
the normalized E,(30) polarity scale introduced by Rei- 
chardt.’ The relaxation time also depends on the nature of 
the salt, in particular of the cation involved: It increases 
with the charge-to-radius ratio of the cation. 

(6) The kinetics of the solvation process in ionic solu- 
tions is not homogeneous, and depend on the excitation 
frequency employed. 

It is important to emphasize5 that even though this 
summary of results seems to imply that the solvent and 
electrolyte contributions to the spectral shift and to the 
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relaxation times are separable and additive, no true sepa- 
rability exists. In particular, ion motions by necessity imply 
additional solvent rearrangement. However, the time scale 
separation imply that the fast solvent adiabatically follows 
the ions’ motion. This issue is examined in the simulation 
results described below. In addition, in the few cases where 
the fast solvent dynamics could be resolved (e.g., in pro- 
panel’) it was observed to scale with the viscosity which in 
turn depends on the salt concentration.” 

On the theoretical side, it is natural to consider first the 
energetics of solvation in ionic solutions as implied by the 
Debye-Hiickel (DH) theory,” and the corresponding dy- 
namics of the ion atmosphere relaxation that was studied 
by Debye and Falkenhagen (DF) l2 under the same equi- 
librium assumptions as the DH theory, and with the addi- 
tional assumption that relaxation takes place by diffusive 
motion. Van der Zwan and Hynes6 have recently studied 
the influence of ion atmosphere dynamics on a model di- 
polar isomerization reaction in an electrolyte solution. 
They have shown, within the framework of the DH and 
DF theories (extended to the case of a central dipole in- 
stead of a central ion), that the ion atmosphere friction can 
sometimes have a substantial effect in reducing the reaction 
rate below the equilibrium solvation transition state theory. 
Here we limit ourselves to the contribution of the ionic 
atmosphere to the solvation energy and to the relaxation 
dynamics of this atmosphere. The former is given, for a 
central ion of charge Q and radius a, by 

e” w,=-- Ka 
( 2a .5,( 1 +Ka) 

+l-‘, 1 I) ES 
where 

K= 
47TZj+j 1’2 

1 I &&ET 
(4) 

is the Debye length. The sum in Eq. (4) goes over all ion 
types in the solution, with charges qj and concentrations 
cj . In Eq. (3) the term in the inner square brackets ac- 
counts for the solvent contribution to the solvation energy. 
The other term, approximately equal (for KU< 1) to 

A different result was obtained by Van der Zwan and 
Hynes6 when a point dipole located in a spherical cavity of 
radius a was considered instead of the ion. They found for 
the ionic atmosphere relaxation time around the dipole 
710: 

W,(ion) =@K/(~E,), (5) 

is the electrolyte contribution. Note that the theory is valid 
only if Ka(l and Qgj/(EJ&gT) (1, where r,=[3/ 
(4~C)l “3 is the average distance between ions (c= “,cj). 
It is immediately realized that for c>O.lM these conditions 
are not satisfied at room temperature for most solvent con- 
sidered, and that expression (5) strongly underestimates 
the observed results. Indeed, detailed analysis by Chapman 
and Maroncelli,’ using the expressions equivalent to (3) 
derived by van der Zwan and Hynes6 for an ionic atmo- 
sphere surrounding a dipolar solute (point dipole), shows 
that this extended DH theory strongly underestimates (by 
more than an order of magnitude) the ionic contribution to 
the observed solvation energy even at concentrations where 
the theory is presumably valid. 

a 
?D=m * (9b) 

Since a2D is of order - 1 ps, we find that for c=O. 1M 
where ~a-0.1 both rr and rlD strongly underestimate the 
observed relaxation times, while at higher electrolyte con- 
centrations [e.g., c= 1M and (KU) - l] the discrepancy is 
even larger. Obviously, at such high concentrations the DF 
theory and its extensions break down, but we could still 
envision a situation where even if the ionic atmosphere 
does not have the characteristics of the DH distribution, 
the dynamics are still controlled by ion diffusion. As 
pointed out by Chapman and Maroncelli,’ the rate of such 
a diffusion controlled process (for c = lM, D = 10e5 cm2/s, 
and a= 1 A) is also an order of magnitude faster than the 
observed rates, excluding this mechanism as the rate de- 
termining process. We note in passing that these estimates 
of rr and TID depend on the system’s static dielectric con- 
stant (which affects K) . The latter is in turn affected by the 
electrolyte, both because of its effect on the solvent rear- 
rangement as well as because of the additional screening 
provided by ion pairs. 

Turning now to dynamics, the Debye and Falkenhagen 
(DF) theory for the relaxation of the ionic atmosphere 
around a central ion,12 yields the following expression for 
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the time-dependent charge density in the ionic atmosphere, 
following the onset of a point charge Q at the origin 

’ {Erfc[u/(2 @ii?) + &%&]tir p(r,t)=-QKr 

+Erfc[Kr/(2 @&) - @&]eBK7, (64 

where D is the ions’ diffusion constant (assumed for sim- 
plicity to be the same for all ions) and where 

2 * 
Erfc(x) = 

TJ 
exp( -?)dy= 1 -Erf(x). (7) 

n- x 

When the central ion has a finite radius a, it can be shown 
(see the Appendix) that the DF solution leads to the fol- 
lowing expression for the solvation function [Eq. (l)]: 

S(t) =& {l -Erf( @&) --Ka 

Xexp{[ 1/(Ku)2- 11 Dfc%)Erfc( @?i/m)]. (6b) 

Both Eqs. (6a) and (6b) decay asymptotically, for 
Ddt, 1, as exponential functions of time, with the char- 
acteristic time 

TDF’&. (8) 

Alternatively, the average relaxation time of the ionic at- 
mosphere can be calculated (see the Appendix), leading, 
for small Ka, to 

s 

co 
71= S(t)&=: TDF. (94 

0 
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The discrepancy between the predictions of DH and 
DF based theories and between experimental observations 
has lead to different interpretations with regard to its ori- 
gin. Huppert and co-workers4 have suggested that the or- 
igin of this discrepancy is ion association that takes place in 
the relatively low permeativity solvents (as is shown by 
conductivity measurements) and interpreted the slow dy- 
namics in terms of rotational diffusion of such ion pairs. 
Chapman and Maroncelli’ have offered another interpre- 
tation of the solvation energy and the slow dynamics, in 
terms of specific ion-probe interaction and association in 
the first solvation layer of the probe molecule. The latter 
mechanism is suggested by the observed correlation be- 
tween both the energetics and the dynamics of the ionic 
part of the solvation process and between the ions charge- 
to-size ratio (the dominant effect of cations is explained in 
this context by their smaller size), as well as by the ob- 
served temperature dependence of the dynamics, which 
show that the solvation is activated beyond the activation 
associated with the diffusion process. These observations 
provide strong support for the Chapman-Maroncelli inter- 
pretation,5 even though their simple model is deficient as 
has been recently shown by Bart and Huppert.4(c) A de- 
tailed understanding of these phenomena is of utmost im- 
portance as both equilibrium solvation and solvation dy- 
namics play major roles in determining the course and 
rates of chemical processes involving charge rearrange- 
ments in polar solvents. 

In the present work we study charge solvation in elec- 
trolyte solutions using molecular dynamics simulations. 
We focus on generic aspects of this process and can there- 
fore limit ourselves to a simple model system. We note that 
the experimental time scale of a few nanoseconds lies in the 
limits of what is feasible with “normal” computational re- 
sources. Still, we have found that in the system studied 
(Stockmayer solvent with relative large static dielectric 
constant containing dissolved structureless, i.e., spherical, 
ions) much of the interesting dynamics occurs on shorter 
time scales. In addition, these simulations enable us to fo- 
cus on several important questions which could not be 
addressed by the experimental systems used so far, such as 
the effect of the electrolyte on the solvent relaxation. In 
this regard we note the surprising lack of salt effect on 
electron solvation dynamics on the sub-ps time scale, up to 
11M electrolyte concentrations, observed by Gauduel 
et al. I3 This is in contrast to other electronic processes in 
solution which are affected by added salt. For example, 
Thompson and Simon14 have observed a linear dependence 
of intersystem crossing rate in 3-amino-9-fluorenone on the 
square root of the ionic strength in acetonitrile/salt solu- 
tions. Finally we note that the simulations make it possible 
for us to observe the DF dynamics, namely to examine the 
buildup in time of the DH diffuse solvation layer. This is 
possible even though the DH solvation energy.is negligibly 
small in the highly polar solvent that we use, because we 
can follow the buildup of the direct (unscreened) 
electrolyte-solute interaction. 

The rest of this paper is constructed as follows: Section 
II describes our model and briefly reviews technical details 

of the simulation. Section III describes the simulations re- 
sults with regards to the electrolyte effect on the solvent 
equilibrium and dynamical behavior, as well as with regard 
to the electrolyte dynamics itself. Section IV concludes. 

II. THE SIMULATED SYSTEM 

We consider a system of 700 solvent and ion particles. 
The solvent is a Stockmayer liquid: Lennard-Jones (LJ) 
particles with point dipoles at their centers. Intersolvent 
(two-body) interactions are thus parametrized by the 
Lennard-Jones parameters cLJ and aU { V,(r) = ~E~[c~J/ 
r)12 - (~&r)~]) and by the magnitude of the molecular 
dipole ,u. The solvent is also characterized by its molecular 
mass m, its moment of inertia I, and its density ps. We 
have used the parameters of Neumann et uL,‘~ given in 
reduced units by: T*= k,T/.c,= 1.15; ,u* = pcL/ Js 
= 43; pf = pdLJ = 0.822; and P=I/mofu=0.025. The 
choice for p: implies that the simulation cell edge length is 
L*= L/a=9.48. In what follows we shall often refer to the 
“CH,Cl parameter set” as a particular example. This cor- 
responds to a set of parameters chosen to mimic the prop- 
erties of liquid CH3C13(g): aU=4.2 A, cLI= 195 K, and 
m = 50 amu. This implies T =224 K; gs= 18.4M=O.92 
g/cm3; p= 2.45 D; and I=22.05 amu A2 in the present 
simulation. This choice of parameters corresponds to a liq- 
uid with a high dielectric constant, ~,=66. The ions are 
represented by LJ particles with point charges in their cen- 
ters. There are equal numbers of cations and anions of the 
same absolute charge, and the overall system is neutral. 
Their absolute charge in reduced units is q* 
= q/ ,,/G = 6.29 ( =0.44e in the “CH,Cl” parameter 
set). The choice of a solvent characterized by a large static 
dielectric coefficient was motivated by our wish to avoid 
appreciable ion pairing in our system. This was indeed 
observed to be the case for our choices of parameters, while 
using considerably higher ion charges or smaller dielectric 
constant results in aggregation of the electrolyte.i6 The LJ 
parameters for the ion-ion and ion-solvent interactions 
were all chosen the same as those characterizing the sol- 
vent. Solvation dynamics in this system is studied by 
switching on, in the equilibrium solvent at time zero, an 
impurity ion. As in our previous simulations3(h) the charge 
of this ion was taken @= 18.78 (Q= 1.32e). Finally, the 
long-range electrostatic forces were handled by using reac- 
tion field boundary conditions with the dielectric constant 
of the continuum surrounding the “system sphere” of ra- 
dius R$ = Rc/aLJ = L*/2 taken as that of the pure solvent, 
&,=66. 

The simulations were performed at three different salt 
concentrations, cz keeping the total number of ions and 
dipoles in the simulation cell to be 700. The numbers of salt 
molecules (i.e., ions of each type) in the three concentra- 
tions are 10, 35, and 100, corresponding in the CH3Cl 
parameter set to the concentrations 0.26, 0.92, and 2.63M, 
respectively. Because of the finite size of the simulation 
system it is virtually impossible to get meaningful simula- 
tions at considerably lower salt concentrations. For the 
same reason the results for cI=0.26M are less accurate and 
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less reliable than those of the higher concentrations. 
In what follows we refer to the system characterized by 

the parameters given above and with c1=0.92iU as the 
“standard system.” Other choices of parameters and con- 
centrations will be specified when needed. 

TABLE I. The dielectric constant and Debye relaxation time at different 
salt concentrations. The pure solvent properties were taken from Ref. 15. 
r$ and ~c(ps) represent the relaxation time in dimensionless units (de- 
fined in the text) and in ps, respectively. 

OM 0.26M 0.92M 2.63M 
Typical MD trajectories were obtained with the veloc- 

ity Verlet algorithm, using a time step 6r” 
St/ ,,/m = 1.52 X 10m3 ( =3.5 fs in the CH3Cl 

Erameter set). Equilibrium trajectories where used to ob- 
tain dielectric properties and linear response coefficients. 
Nonequilibrium simulations were performed to study sol- 
vation dynamics. The latter were carried out in the follow- 
ing way: First an equilibrium trajectory with an additional 
neutral impurity atom was generated. Twenty five config- 
urations were recorded at constant time intervals of 
At*= 15. Each configuration is the starting point for two 
nonequilibrium trajectories: one with the impurity charge 
positive and one with this charge negative. This results in 
50 nonequilibrium trajectories at each salt concentration. 
In what follows the results of these simulations are de- 
scribed. 

F$ 
ro(ps) 

61 63 34 16 
0.95 1.05 0.54 0.46 
2.2 2.5 1.3 1.07 

d(t) = 
(M(O) *M(t)) 

O@) * 
(11) 

At the two lower salt concentrations this function was 
found to relax exponentially, 4(t) =exp( - t/T4). At cI 
=2.63M some deviations from exponential behavior are 
observed, but we have nevertheless fitted the relaxation to 
the same exponential form. The Debye relaxation time as- 
sociated with the solvent is obtained from 74 using the 
relation2’ 

2ER + Es 
7-D= zER+ 1 r4. (12) 

III. RESULTS AND DISCUSSION 

A. Equilibrium simulations 

This set of simulations is performed in order to obtain 
equilibrium and linear response properties of the electro- 
lyte solution. These include the dielectric constant and di- 
electric relaxation time, ionic mobility, and diffusion coef- 
ficients. The static dielectric constant associated with the 
solvent response E, is calculated using the fluctuation for- 
mula appropriate for the reaction field boundary condi- 
tions:17 

(&,-1)(2ER+l) 
2ER + Es 

=A; (M-M(&)), (10) 

where Rc= L/2 is the cut-off distance of the electrostatic 
potentials, L is the simulation box edge length, ER is the 
static dielectric constant of the continuum outside Rc 
which gives rise to the reaction field, M is the total instan- 
taneous dipole in the simulation box, and M(Rc) is the 
total instantaneous dipole in the central sphere of radius 
R, surrounding each solvent molecule (averaged over 
these molecules). Note that Eq. ( 10) should ideally yield 
the same result for as for any cR. Pure solvent calculations 
were carried out for this system by Neumann et al. ,I5 lead- 
ing to a,(cl=O) =66. The calculation of as for the electro- 
lyte solution is made under the assumption that Eq. ( 10) 
(with M replaced by M- (M) ) remains valid also in the 
presence of an external field, which in the present case 
originates from the ions.‘* Note that E, is the dielectric 
response of the solvent only. One can also discuss the total 
dielectric response of the electrolyte solution, including the 
contribution of the ions,” however this quantity is not 
relevant in a description which treats the ions explicitly. 

The results of these calculations are summarized in Table 
I. It is seen that the static dielectric response associated 
with the solvent decreases with increasing salt concentra- 
tion. The magnitude of this effect is larger than would be 
implied by the decrease in the solvent concentration in 
these constant volume simulations. A similar trend was 
observed in the simulations by Caillol et &.,I9 in a model 
where the solvent is characterized by dipolar, quadropolar, 
and polarizability interactions and in experimental studies 
of electrolyte solution properties.21 Also, the Debye relax- 
ation becomes faster for larger salt concentrations (note 
that the difference between the values given for rD for the 
pure solvent system and for c1=0.26M is within the nu- 
merical error of the simulation). Experimental results2’ 
show a decrease of rD with salt concentration for associat- 
ing liquids such as methanol and N-methyl formamide, 
however, the opposite effect is observed for nonassociating 
solvents such as acetonitrile. 

The dc (w = 0) diffusion properties of the ions are pre- 
sented in Table II. Obviously the behaviors of the positive 
and negative ions in the present model are identical. This 
makes it easier to accumulate enough data for sufficient 
statistics. The tracer diffusion constant D, is obtained by 
integrating the velocity autocorrelation function 

TABLE II. The diffusion coefficient and the conductivity of the electro- 
lyte solutions. The columns denoted by * are the values expressed in 
reduced units and those marked cgs correspond to the cgs values obtained 
for out standard “methyl chloride” system. 

0.26M 0.92M 2.63M 

* c&Y * W * w 

In addition, the dynamical response of the solvent is 
obtained from the correlation function 

4 0.072 5.4x10-' 0.063 4.8x10-’ 0.063 4.76x10-’ 
DC 0.068 5.1x10-’ 0.062 4.7x10-s 0.063 4.76x10-’ 
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FIG. 1. The tracer (full line) and chemical (dotted line) diffusion coef- 
ficients, Eqs. ( 13)-( 15), plotted as functions of o for the standard system 
q=0.92M. 

D,(o) =f 
s 

m dte’“‘(v(0) *v(t)). (13) 
0 

The chemical diffusion constant DC is related to the con- 
ductivity o via the Nernst-Einstein relation 

kBTa 

D’=~x 

and (T is obtained from 

dteiW’(J(0) l J(t)), 

(14) 

(15) 

where V is the volume of the simulation cell and where J is 
the current defined in terms of the charges qi and velocities 
Vi of the ions, 

N 

J(l)= C qivi(t)* 
i= I 

(16) 

D, and DC are seen to be very close in all three ionic con- 
centrations studied. This suggests that ion-ion interactions 
do not play a major role in our system where the solvent is 
highly polar. A similar observation for ionic diffusion in a 
solvent characterized by a relatively large dielectric coeffi- 
cient was made by Caillol et al. I9 Note that considerable 
differences do exist between the frequency dependent dif- 
fusion coefficients D,(w) and D,(w) at finite frequencies, 
as can be seen from Fig. 1 in which both quantities are 
plotted as functions of w for the standard system. 

The decrease of D at higher cl, seen in Table II, is 
probably associated with the increase in solvent viscosity 
with increasing salt concentration. This dependence is sur- 
prisingly small in our system. 

The structure of the solvent and the ionic atmosphere 
about the charged probe is shown in Fig. 2(a), which dis- 
plays, for the standard system, the pair correlation func- 
tions gS( r), &N(r), and g&r) for the distributions of sol- 
vent, negative ions, and positive ions, respectively, about 
the probe. For definiteness we designate, here and below, 
ions of opposite sign to the charged solute as “negative” 
and those of sign similar to the solute as “positive.” For the 

8 ; 1 ,~~;~~<,~*r --..- , , , 
0 2 4 1 3 

F 

FIG. 2. The pair correlation functions gr(r) (full line), g&r) (dotted 
line), and g,&r) (dashed line) for the distribution of solvent molecules, 
negative ions, and positive ions, respectively, about the (positive) solute 
ion. (a) Parameters of the standard system (see the text); (b) same as 
(a), only that the Lennard-Jones diameter of the electrolyte ions were cut 
in half. (c) Same parameters as in (a) only the solute is neutral. 

parameters chosen there are, at equilibrium, about 1.5 neg- 
ative ions and 7.5 solvent molecules in the first solvation 
layer surrounding the probe. This should be contrasted 
with the solvation structure shown in Fig. 2(b), where we 
use the same parameters as in Fig. 2(a) except that the LJ 
diameters characterizing the electrolyte ions were cut in 
half. The correlation functions now show a strong aggre- 
gation of negative and positive ions about the probe, result- 
ing in solvation dominated by the ionic atmosphere. On the 
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TABLE III. The Debye-Falkenhagen relaxation times, Eqs. (8) and (9), 
and the Debye screening length, Eq. (4), at diierent salt concentration. 
The values of .sS at each concentration are taken from Table I. Columns 
are marked as in Table II. 

0.26M 0.9w 2.63M 

* W * W * w 

EC-’ 2.49 10.5 A 0.976 4.10 A 0.397 1.66 A 
71 43 103 ps 7.5 18 ps 1.3 3.0 ps 
710 8.6 20 ps 3.9 9.0 ps 1.6 3.7 ps 

other extreme end, Fig. 2 (c) shows the solvation structure 
around a neutral probe, with the same parameters as in 
Fig. 2(a). 

The dynamics of the process that leads to these struc- 
tures is discussed below. The salt concentrations used here 
are too high for the DH and DF theories to be valid. 
Nevertheless, we have used the data in Tables I and II to 
calculate the Debye screening length K and the DF relax- 
ation times rI [Eq. (9a)] and rlD [Eq. (9b)]. Note that in 
the calculation of K we have used the dielectric response es 
associated with the solvent in the presence of the electro- 
lyte, as given in Table I. The results of these calculations 
are given in Table III. 

B. Nonequilibrium simulations 

In what follows we refer by “solute” or “probe” to the 
switched-on charge distribution. The “solvent” is the 
Stockmayer liquid, in which the “salt” or “electrolyte” is 
dissolved, giving rise to a distribution of positive and neg- 
ative “ions.” The solvation dynamics which follows the 
sudden creation or annihilation of charge on the solute is 
affected by both solvent and electrolyte motions. For a 
simple dipolar solvent, whose relaxation is dominated by 
rotational motion, the time scales of these contributions to 
the solvation process are quite different. However the sim- 
ulations show that they are not independent of each other. 
On the contrary, at long times they are highly correlated. 
Indeed the bare solute-solvent and solute-ion interaction 
has to correlate strongly in order to give rise to the net 
dielectric screening of the solute-ion interactions. In par- 
ticular, the DH ionic contribution to the solvation energy 
h. (5)] contains the screening effect of the solvent. Its 
reduction by the factor cS must involve, simultaneously 
with the ionic atmosphere relaxation, a solvent motion and 
a corresponding change in the solvent-solute interaction. 
This is not taken into account in Eq. (3)) where the term 
in square brackets, which correspond to the solvent, is not 
affected by the presence of the ions. 

Consider first the solvent relaxation. As discussed in 
the Introduction, it can be divided into the inertial regime 
which is characterized by a Gaussian relaxation, and a 
diffusional regime where, for the pure solvent, the relax- 
ation can be fitted to an exponential, see Eq. (2) and Refs. 
3(g) and 3 (i). Figure 3 shows the solvent contribution to 
the electrostatic part of the solvation energy [&V,(t) 
where a,(t) is the solvent electrostatic potential at the 
solute’s position] for the standard system. Shown are the 

(a) 

‘.“.~,,~“LL~,~*~.Y-~-~~~~.*~~.Z,~”nrrh.~,., 
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r 

-180 I , I 1 
0 0.5 G 15 2 

FIG. 3. (a) The solvent contribution to the solvation energy at early 
time. Full line-total solvation energy. Dashed line-contribution of sol- 
vent molecules in the first solvation layer. Dotted line-contribution of 
the second solvation layer. Dashed-dotted line contribution of the rest of 
the solvent in the simulation cell. (b) An expanded short-time section of 
the same results. 

total solvent contribution and the contributions associated 
with the three solvation layers defined by the ion-solvent 
pair distribution function in the final equilibrium state 
[Fig. 2 ( a)].22 

It is seen that the solvent relaxation can be roughly 
divided into three regimes: The inertial Gaussian regime is 
very similar to the equivalent regime in the pure solvent 
case. 3W*3(i) The subsequent diffusional relaxation now 
merges into a regime that was absent in the pure solvent. In 
this latter regime the solvent-solute interaction decreases 
as ions move in, forcing solvent molecules out of the im- 
mediate vicinity of the solute. 

Consider now the dynamics associated with the ionic 
atmosphere. The (bare) electrolyte contribution to the sol- 
vation energy [&Pr( t) where Q1(t) is the electrostatic 
potential due to the ions at the solute’s position] is shown 
as a function of time, for the standard system, in Fig. 4. It 
is seen that the overall ionic response is mostly exponential, 
with a small initial Gaussian component. It is of interest to 
compare the different behaviors of positive and negative 
salt ions during the formation of the ionic atmosphere. 
Figure 5 shows these relaxation processes following the 
onset of the solute charge in the standard system. The 
results for the other salt concentrations are qualitatively 
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FIG. 4. (a) The ionic contribution to the solvation energy at early times. 
(b) An expanded short-time section of (a). 

similar. Since the mobilities of the two ion types are the 
same, the two time evolutions would be identical in the 
DH-DF limit. The large differences between the relaxation 
processes seen in Fig. 5 is a clear demonstration of the 
breakdown of these linear theories.23 Following the switch- 
ing on of the solute charge, positive ions move quickly (on 
a time scale < 1 in reduced units, -2 ps in the CH,Cl 

251 4 I 1 I 1 I I I I I 

0 2 4 6 8 10 12 14 l6 18 
r 

FIG. 5. Positive ion (full line) and negative ion (dotted line) contribu- 
tions to the solvation energy of the (positive) probe solute, following the 
onset of the solute charge in the standard system. For clarity, the negative 
ion line is shifted to the same energy origin as the positive ion line. 

k c li 18 
r( 

FIG. 6. The early time evolution of the total solvation energy (full line), 
the solvent contribution (dotted line), and ionic contribution (dashed 
line) following the onset, at t=O, of the solute charge in the standard 
system. 

parameter set) out of the first solvation layer. Once out, 
their residual interaction with the solute is small and 
changes slowly. Negative ions on the other hand start more 
slowly as they move in from the second solvation layer, but 
they continue to come in at longer time and eventually 
contribute more to the ionic part of the solvation energy. A 
similar observation was recently made by Knadler and 
Dietrichz4 in lattice simulation of ionic relaxation about a 
charged probe. 

The early time evolution of the total solvation energy 
for the standard system is displayed together with its sol- 
vent and salt components in Fig. 6. The total solvation 
energy, represented by the full line in Fig. 6, is seen to relax 
quickly for this system, and reaches its final equilibrium 
value at t* r 4. A slower time scale is seen in the individual 
solvent and ions components. The solvent contribution to 
the solvation energy [dotted line, identical to the full line of 
Fig. 3(a)] decreases (becomes less negative) on this slow 
time scale as the solvent responds to the slow creation of 
the ionic atmosphere about the charged solute. The ab- 
sence of a net effect on the total solvation energy on this 
longer time scale amounts to an almost complete screening 
of the ion-solute interaction by the solvent. This is partic- 
ularly noteworthy, because the interaction of the charged 
solute with an ion at contact is, for the present choice of 
parameters, almost four times stronger than the contact 
interaction of the same solute with a fully oriented solvent 
dipole (by “contact” we mean that the distance between 
centers is equal to the arithmetic average of the corre- 
sponding LJ diameters). However, this screening cannot 
be accounted for fully by macroscopic electrostatics be- 
cause as seen above (Fig. 2), between one and two ions 
reside in the first solvation shell of the solute in equilib- 
rium. The observation that the time scales associated with 
the individual, solvent, and ions’, contributions to the total 
solvation energy are different from the time scale associ- 
ated with their sum is discussed again below. 

The full time scale displayed in Fig. 6 ( 18 reduced 
units=42 ps in the CH3CI parameter set) is short relative 
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FIG. 7. (a) The time evolution of the total solvation energy at the three 
salt concentrations: Full line: c, =0.26M. Dotted line: c,=O.92h4. Dashed 
line: c,=2.63M. (b) An expanded short-time section of (a). 

to those observed experimentally. Indeed, the solvation 
structure about the probe has not yet reached equilibrium 
as is evidenced by the fact that the individual solvent and 
ions’ components of the solvation energy are far from their 
average equilibrium values (see discussion of Fig. 11 be- 
low). The average number of negative ions in the first 
solvation shell around the positive solute at the end of the 
50 runs whose combined output is displayed in Fig. 6 is 
-0.8 while in equilibrium this number is - 1.5. It is re- 
markable that the residual slow time evolution is taking 
place while the total solvation energy remains almost con- 
stant (for the present system), practically at its final equi- 
librium value. 

This almost complete screening of the ions’ potential 
by the solvent which is seen to take place in our standard 
system results in the absence of salt effect on the total 
solvation energy and on its time evolution in this system, as 
seen in Fig. 7. Figure 7 (a) shows the total solvation energy 
as a function of time for the three salt concentrations. An 
expanded section of the corresponding initial decay is 
shown in Fig. 7(b). Both the inertial Gaussian relaxation 
observed on the fast time scale and the consecutive expo- 
nential relaxation with superimposed inertial oscillations 
are seen to be practically independent of the salt concen- 
tration in the range studied. The Gaussian time inferred 
from Fig. 8(b) is, within numerical noise, the same as in 
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FIG. 8. (a) The correlation function C(t) (dotted line), Cr(t) (dashed 
line), and C,(t) (full line) obtained from a single long (820 reduced time 
units) equilibrium trajectory for the standard system containing a 
charged solute. (b) An expanded short-time section of (a). 

the pure solvent. This is also true for the overall solvation 
energy. The latter observation is reminiscent of the absence 
of salt effect on the solvation red shift in highly polar sol- 
vents such as water and formamide.4” Obviously, for other 
choices of parameters, e.g., ions charges and sizes, the in- 
dividual solvent and ions’ contributions to the solvation 
energy will not fully compensate each other, leading to an 
overall salt effect on the solvation energetics and dynamics, 
as seen below. 

The dependence of several quantities which character- 
ize the time evolution of the solvation on the salt concen- 

TABLE IV. The results of a fit of the initial part of the total solvation 
energy, from the nonequilibrium simulations, to a Gaussian with a time 
constant $’ and of the initial solvent contribution to a Gaussian with a 
time constant es. Also presented is a fit of the ionic contribution to the 
function given in Eq. ( 17). 

0.26M 0.92M 2.63M 

c 0.066 0.066 0.064 6 0.066 0.066 0.062 G 0.08 1 0.088 0.082 Af 4.63 17 51 
6 4.21 2.31 
A,: 31 42 
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tration is shown in Table IV. Given are the Gaussian times 
rs associated with the total solvation energy, and the 
Gaussian times rgl and rss associated with the separate 
electrolyte and solvent contributions, respectively, to this 
quantity. Also given for the two higher salt concentration 
quantities A,, , are AC1 and rcI obtained by fitting the short- 
time evolutior? of the electrolyte contribution to the sol- 
vation energy (Fig. 4), to the function 

Fv,l(t) = - (Agl+Ael) +Ag~-‘t’~g~)2+Ae~-t’~~~. 
(17) 

The following points should be noticed: 
(a) The Gaussian time constant rg, which accounts 

for much of the total solvation energy, is equal, within the 
computational noise, to the solvent Gaussian time rgs, and 
shows practically no or very little dependence on the salt 
concentration in the range studied. Within the computa- 
tional error this time is identical to that obtained for the 
pure solvent. Also, the inertial time 7gr associated with the 
(unscreened) electrolyte contribution depends only 
weakly, if at all, on the salt concentration, and is remark- 
ably similar to rgs. 

(b) The exponential time reI depends strongly on the 
electrolyte concentration and decreases when the electro- 
lyte concentration increases. 

(c) The times reI which, except for the small Gaussian 
component, correspond to the early time evolution of the 
ionic atmosphere about the solute, are of the same order of 
magnitude as those estimated from the average time rI, 
Eq. (9a), associated with the linear DF theory. This ob- 
servation is based on the two higher salt concentrations for 
which r,, could be determined from the simulations.25 
Note that our nonequilibrium simulation were not long 
enough to distinguish the corresponding time (r,=43 in 
reduced units) in the low concentration case. It should be 
kept in mind that the DH and the DF theories are invalid 
at the concentrations considered in the present simulations, 
however, it appears that this intermediate dynamics probes 
a similar process, namely ions diffusion toward and away 
from the solute center. Also, we should emphasize that in 
view of our limited statistical averaging, the quantitative 
aspects of the observations described above should be re- 
garded only as rough estimates. 

(d) As discussed above, the time.evolution of the elec- 
trolyte motion near the solute has a considerably slower 
regime which cannot be probed by our relatively short 
nonequilibrium simulations. We have inferred the exist- 
ence of this slower time scale from the fact that the sepa- 
rate ionic and solvent contributions to the solvation energy 
did not reach their equilibrium values on the time scale of 
our nonequilibrium simulations. 

(e) There have recently been several studies* of the 
nature of the inertial part of the relaxation, characterized 
by the Gaussian time evolution seen in Figs. 3 (b) and 
7(b). Within linear response theory the short-time evolu- 
tion of the solvation function .9(t) may be shown26 to be 
given by S(t) N e-(r’T&2 where 
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@Q2> 
“,=q&gy (18) 

where a(t) is the potential induced by the solution (sol- 
vent and ions) at the position of the solute at time t, and 
where S@ represents the fluctuation of this quantity from 
its equilibrium value. If we assume that the motions that 
contribute primarily are the rotational motions of the sol- 
vent dipoles and the translational motions of the ions, the 
denominator in Eq. ( 18) takes the form8(c) 

2kBT kBT 
(a@‘> =y-- p2 C <r;“> +m 4’ C (rtr4), (19) 

i i 

where the sum overj goes over solvent molecules of dipole 
moment p and moment of inertia 1, while the other sum 
goes over ions of charge q and mass m. The denominator of 
Eq. ( 18) is obtained, within linear response theory, from 
the relation (a@‘) = -kBT(d(@)/dQ) where (a) is the 
electrostatic potential at the solute, given in the DH theory 
by 

@9=-f [$e+( l-i)] (20) 

If c,) 1 this gives (@> z -(Q/a), so (SQ2) =k,T/a. This 
leads to 

-2 rg =Gp2 C (r;*)+&-q2 C (r,T4). 
i i 

Note that even though r;2 appears to consist of separate 
contributions associated with the solvent and the electro- 
lyte, we cannot write equations similar to Eq. (2 1) for the 
individual times rgs and rgI. It appears that, both from 
experimental and theoretical points of view, only rg is a 
meaningful quantity even though rgs and rgr could be es- 
timated from the simulation results. 

Using the parameters given in Sec. II, Eq. (2 1) yields 
rg* = 0.0492, 0.0495, 0.0505, and 0.0531 for the systems 
with salt concentrations 0, 0.26, 0.92, and 2.63M, respec- 
tively. These times are all within less than 10% of each 
other and are about 10% shorter than the estimates based 
on linear response simulations [e.g., Fig. 8 (b) below]. Note 
however that while Eq. (2 1) can rationalize the observed 
insensitivity of rg to salt concentration, it underestimates 
by about 20% the observed Gaussian times obtained from 
the nonequilibrium simulations (Table IV). 

More insight into the nature of the relaxation dynam- 
ics may be obtained by considering the dynamics of equi- 
librium fluctuations. Recall that for solvation dynamics 
in pure dielectric solvents equilibrium correlation 
functions give a good approximation to the nonequilib- 
rium solvation [e.g., S(t) SC(t) E (saqo)s@(t))/ 
W2)1. 3(a),3(d),3(e)73(g),3(i) It makes relatively little differ- 
ence whether C(t) is calculated in the initial uncharged 
solute or the final charged equilibrium state. Here we ex- 
pect considerably larger differences because the solvation 
structure about the solute is very different in the two states. 

Figure 8 shows the time evolution of the correlation 
function C(t) obtained from an equilibrium trajectory for 
the standard system containing a charged solute. Also 
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FIG. 9. The course grained correlation function Es(t) (see the text) for 
the standard system. 

shown are the correlation functions associated with the 
solvent and ions separately [i.e., Cs(t) = (6QS(0)SQs( t))/ 
(&I$) for the solvent and Cr(t) ~((s~,(O)s~,(t))/(S~q) 
for the ions, where SaS( t) and Sal(t) are the fluctuations 
of the potentials due to the solvent and to the ions, respec- 
tively, at the solute center, from their average values]. 
These functions are computed from a single long ( 1.9 1 ns) 
equilibrium trajectory. The function C(C) shows the famil- 
iar bimodal relaxation dominated by a fast initial Gaussian 
evolution followed by a residual relaxation that for the 
present choice of parameters can be hardly observed above 
the thermal noise. The Gaussian time calculated for this 
evolution is ~g* - 0.056, about midway between that re- 
ported above (0.066, cf. Table IV) for the nonequilibrium 
evolution and that (0.05 1) computed from Eq. (21) . Note 
that the statistical error estimated for the simulated times 
is about 10%. 

The individual contributions Cs(t) and Cr(t) evolve 
quite differently: The amplitudes of their Gaussian compo- 
nents are much smaller than that of C(t) and their time 
evolutions are dominated by a long component that can be 
fitted to an exponential, which for the present system is 
characterized by a relaxation time of the order - 50 (re- 
duced units). The following points should be emphasized: 

(a) The fact that the solvent and the salt components 
of the relaxation seen in Fig. 8 show the same long-time 
behavior is associated with the fact that this motion is 
dominated by the salt, with the solvent dipoles following 
essentially adiabatically, so as to screen the ion-solute in- 
teractions. This screening is evident in the fact that the 
total correlation function C(t) has reached its final value 
while the individual components Cs(t) and Cl(t) are still 
evolving. 

(b) The time evolution of the solvent correlation func- 
tion C,(t), as observed in Fig. 8, appears very different 
from its behavior in the pure solvent case. This difference 
results from the fact that only at early times (P < 1 say) 
this relaxation reflects the actual solvent response, while at 
later times the solvent motion follows that of the ions as 
discussed above. To emphasize this point we have plotted 
in Fig. 9, for the same system, the correlation function 

to0 lie i 

t? 
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FIG. 10. Same as Fig. 8, for parameters similar to those characterizing 
the standard system except that the LJ diameter of the salt ions are 
smaller by a factor of 2. 

c,(t)=(s~~(O)s~:,(t))/(s~~) where 6s(f)=+s(f) 
-6,,(f) and where G,(f) is a coarse grained average, over 
a time interval At*= 1 about f, of QS( t). The slow adia- 
batic fogowing evolution of the solvent is thus subtracted 
out in C,(t). Figure 9 shows that this function is indeed 
very similar to the solvation function in the pure solvent 
case. 

(c) The observation that the total correlation function 
C(t) reaches it final (zero) value on a relatively short time 
scale is obviously model dependent, and is related to the 
fact that, for the parameters that characterize our standard 
model, the solvent screens the electrostatic potential of the 
ions at the solute position very effectively. This corre- 
sponds to the experimental situations where, due to effi- 
cient screening by a highly polar solvent, the solvation 
energy (i.e., the experimentally observed red shift) does 
not depend on the salt concentration. This is true for our 
computer solvent as seen in Fig. 7. When this is not so, the 
contributions from the ions and from the solvent will not 
cancel, and a slow evolution of the net solvation will be 
observed. This is seen in Fig. 10 where the same correlation 
functions as in Fig. 8 are shown, for a system identical to 
our standard model except that the LJ diameters charac- 
terizing the salt ions where cut in half. In this case the 
correlation function C(t) is seen to have, in addition to the 
initial Gaussian decay, a long-time component, with the 
characteristic time - 100-200 reduced time units (230- 
460 ps in the CHsCl parameter set). This time is much 
longer than the times obtained from the linear DF theory, 
rnr and rr (Table III), which demonstrates the existence 
of such slower time scales in these solvation processes. 
However, the absolute time scale associated with the relax- 
ation cannot be determined, because, as in the previous 
case [Fig. 8(a)] slow fluctuations which did not .average 
out with our statistics are seen in C(t) at longer times. In 
addition we note that, in contrast to the previous case, 
strong clustering of counterions about the central ion is 
observed in this case [see Fig. 2(b)]. 

The practically complete screening characterizing the 
long-time behavior of the system displayed in Fig. 8 is 

J. Chem. Phys., Vol. 100, No. 5, 1 March 1994 

Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



-26; ‘, / , I 1 I I I I 
0 laJmc3w 400 Eoo em 700 sot 

P 

FIG. 11. The time-dependent electrostatic potential at the solute in the 
equilibrium standard system. Shown are the total potential Q(t) (full 
lower line) and its components Q,(t) (dotted line), originated from the 
solvent and Q,( 2) (upper full line), originated from the salt ions. 

shown from another point of view in Fig. 11. Here the 
electrostatic potential a(f) at the solute, and its compo- 
nents as(f) and @I(f) are shown as functions of time for 
the equilibrium standard system with a charged solute. The 
large, slow “screening fluctuations” in as(f) and a1(t) are 
strongly correlated, and almost cancel in the total potential 
Q(t). 

Yet another view of the same dynamics is provided by 
Fig. 12. The full line in this figure is identical to the full 
(electrolyte) line in Fig. 8. The dashed and dotted curves 
are the correlation functions of the fluctuations from aver- 
age of the number of (negative) ions in the first solvafion 
shell, and the sum of these numbers in theJirst and second 
soIvafion shells, respectively, about the charged solute. It is 
seen that the linear relaxation of the solvation potential is 
strongly associated with, and occurs on the same time scale 
as the exchange of salt ions between the two solvation 
shells nearest to the solute, as previously suggested by 
Chapman and Maroncelli.’ 

(a) Activation energies for rearrangement of the local 
configuration about the solute molecule are larger in the 
charged solute case than for the neutral solute situation. To 
see this consider the activation energy for exchanging be- 
tween a solvent molecule and a salt ion near the solute. 
This process involves a transition state where both parti- 
cles are at an intermediate distance from the solute. The 
energy of this transition state increases with the solute 
charge relative to the more stable initial and final configu- 

. rations. For this reason relaxation processes near the 
charged solute are expected to be slower than near the 
neutral one, as we indeed observe. -0.4 ] , I I I I I I 
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FIG. 12. Full line: the correlation function C,(t) of the electrostatic 
interaction Q,(t) between the salt ions and the solute in the standard 
system (identical to the full line in Fig. 8). Dashed line: the correlation 
function of the number of negative (opposite) ions in the first solvation 
layer of the solute. Dotted line: the correlation function of the number of 
negative ions in the first and second solvation layers about the solute, 
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FIG. 13. The correlation function of the overall electrostatic fluctuations 
C(f) (dotted line) as well as those from the solvent molecules Cs(t) 
(dashed line) and from the salt ions C,(t) (full line) with a 
neurral solute. 

Finally, consider the equilibrium fluctuations about a 
neutral solute. As stated above, in the case of pure solvent, 
we and others have found that, for solute charge of the 
order considered here, the correlation function C(f) is not 
very different for the cases of charged and neutral solute. 
This explains the relative success of linear response theo- 
ries of solvation in pure polar solvents,’ and of numerical 
procedures based on such theories.3’a)‘3’d)‘3(e)~3(g)~3(i) In 
contrast, Fig. 13 shows that C(t), as well CS( t) and C,(t) 
are markedly different in the neutral and in the charged 
solute (Fig. 8) cases. The most evident differences are (a) 
the faster time scale associated with the ionic motion (and 
the associated solvent motion) in the neutral solute case, 
and (b) the incomplete screening of the ions’ potential at 
the neutral solute, which in turn gives rise to a very pro- 
nounced and relatively slow component in the relaxation of 
the total solvation energy inferred from this calculation. 
These observations can be rationalized by the following 
arguments: 

(b) Fluctuation of the total electrostatic potential at 
the solute are associated with larger fluctuations in the 
energy in the case of a charged solute than in the case of a 
neutral one. Therefore, a larger solute charge implies 
smaller fluctuations of this potential. Keeping in mind that 
S<P=6@s+&D1, the fact that 1 SQ 1 is smaller for higher 
solute charge implies stronger correlations between the 
components 69, and &PI in this case. This in turn implies 
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that the screening effect of the solvent is less pronounced in 
the uncharged solute case, leading to the residual slow 
component observed in (@(t)@(O)) in this case. 

IV. CONCLUSIONS 

The numerical simulations described above confirm 
the interpretation of the slow time scale observed in the 
relaxation following a sudden change in solute charge dis- 
tribution in electrolyte solution, as a process dominated by 
ion-solvent exchange in the first solvation layer about the 
solute. The dominance of first layer effects, as well as the 
high electrolyte concentrations in the system considered, 
make the linear Debye-Hiickel (DH) and Debye- 
Falkenhagen (DF) theories invalid for these processes. 
While specific ion-probe interactions are important in the 
quantitative aspects of the observed solvation energy and 
dynamics, some general observations can be made for our 
generic model: (a) The short-time inertial dynamics of the 
solvent is only weakly sensitive to the added salt, up to 
several molar concentration. (b) Following the initial fast 
relaxation of the solvent, a slower evolution determined by 
ion motion and solvent adiabatic following takes place. On 
this time scale the solvent-solute interaction energy goes 
down as the counterions move in, replacing solvent mole- 
cules. (c) The relaxation of the ionic atmosphere is dom- 
inated on the short time scale by a DF-like process (ion 
diffusion in the solute field) and on longer time scale by the 
(probably activated) process of counterions transition into 
the first solvation layer of the solute. (d) The time evolu- 
tion of the densities and hence of the corresponding con- 
tributions to the solvation energy of positive and negative 
ions is different, in marked deviation from the predictions 
of the DH and DF theories. (e) The magnitude of the 
solvation energy and its time evolution is not sensitive to 
the salt concentration in the highly polar solvent (E,= 66) 
considered here. (f) The individual (ions and solvent) 
contributions to the total solvation energy are dominated 
by a slow component (hundreds of picoseconds) associ- 
ated with solute solvent exchange in the first solvation 
layer about the solute. The appearance of this component 
in the overall solvation energy depends on the specific ion- 
solute and solvent-solute interactions. (g ) The equilibrium 
fluctuations in the individual ion-solute and solvent-solute 
interactions are much larger than the fluctuations in the 
overall solvation energy. These fluctuations are strongly 
correlated. The correlations increase and the fluctuations 
in the total electrostatic potential at the solute decrease 
with increasing solute charge. Also, the characteristic 
times of these fluctuations become longer with increasing 
solute charge, due to the larger activation barrier for the 
ion-solvent exchange process. (h) The latter observation 
implies that linear response to a charged solute is markedly 
different from linear response about a neutral solute, in 
contrast to the observation made in most simulations of 
pure dielectric solvents. 

Finally these observations imply that the effect of 
added salt on the dynamics of chemical reactions involving 
charge rearrangement in dielectric solvents may be quite 

3866 E. Neria and A. Nitzan: Solvation dynamics in electrolytes 

different from that predicted in earlier theories,6 which re- 
lied on generalizations of the Debye-Falkenhagen theory. 
This issue deserves further work. 
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APPENDIX: THE IONIC ATMOSPHERE SOLVATION 
FUNCTION 

This Appendix describes a derivation of the solvation 
function S(t) defined in Eq. ( 1 ), of a spherical ionic solute 
of radius a, immersed in an electrolyte solution. Only the 
ionic atmosphere response is considered, assuming the sol- 
vent response to be much faster. The derivation use the 
dynamic equation for the charge density p (r,t) developed 
by Debye and Falkenhagen. l2 These equations are valid for 
very low salt concentrations. 

Under linear response assumptions the solvation en- 
ergy E(t) is given by 

E(f)=iQ#( Irj =a,t). (Al) 
t#~( 1 r 1 =a,t) is th e e ectrostatic 1 potential at the solute sur- 
face at time t (the origin is chosen at the solute center). 
Therefore, in order to determine the solvation energy, the 
Poisson equation for the electrostatic potential has to be 
solved: 

V24(r,t) = -c p(r,t). t.42) 

Since the system is spherical symmetric the solution can be 
given in terms of the distance from the origin r. The solu- 
tion to the Poisson equation is divided into two regions, 
&(r,t> for r < a and &,,,(r,t) for r>a. The boundary con- 
ditions are determined from the continuity of the electro- 
static potential and of the electric field at r=a, 

The potential inside the solute cavity is immediately ob- 
tained in the form 

(A4) 

While the boundary condition (A3a) does not give new 
information on &( r,t), the boundary condition (A3b), 
using Eq. (A4), gives 

(A51 

In order to solve the Poisson equation, Eq. (A2), the 
time-dependent charge density p(r,t) has to be known. In 
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order to determine p(r,t) the DF theory is employed. De- 
bye and Falkenhagen derived the following diffusion equa- 
tion for p(r,t) in the limit of very low salt concentration: 

&ti 
v2p(r,t) +G V2+(r,t) . 1 

Since the ions cannot penetrate the solute cavity, there is 
no ionic flux at r=c~ tangent to the surface of the sphere. 
This is expressed by the following boundary condition: 

ap(r=Q,r) +g a4(r=a,r) 
ar 45- ar 

=o. (A71 

It is useful to make a Laplace transformation of the DF 
equation, Eq. (A6), using the initial condition p( r,O) =0 
(the solute charge is switched on at f= 0), and of the Pois- 
son equation, Eq. (A2) : 

V2F(v) =K2(p)F(r,p), Ma) 

-4Tr _ 
V2&r,p) =E, p(v), (A8b) 

where $r,p) and &r,p) are the Laplace transforms of 
p(r,t) and #(r,t), respectively. K(p) is defined by the re- 
lation 

K’(p) =t?( 1 tp/D~?. (A91 

The solution to the coupled equations (A8), taking into 
account the boundary conditions (A5) and (A7), is 

&&,p) = ’ 
Q&mPHr-a) 

E~DK~(P) +d2(p) [ 1 +K(p)a]p ’ (A10) 

The potential at r=a after inverse Laplace transformation 
of Eq. (AIO): 

4(W) =$ 1 _ ;4 {I --KC-I Erf( jb% - (Kaj2 

XeXp{[ 1/(Ka)2-1]Dt?r}Erfc( m/K@} 

(All) 

and the solvation function S(t): 

S(t) =& {1-Erf( @&)-KC.2 

Xexp{ [ I/(K~)~- 11 &t}Erfc( @%~a)}. 

(A121 

The solvation time rI is readily obtained from the Laplace 
transform of the solvation function 

?-I= 
s 

m S(r)dr=ii(O) =z TDF, 
0 

where rnr is given in Eq. (8). For KCZ ( 1, 

T~I=+DF. (A14) 

The asymptotic behavior of S(r), at t)rnF, is given by 

S(~)-(~/~DF)-“~~-(~‘*DF). (A19 

(A13) 
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