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NUMERICAL EVALUATION OF GOLDEN RULE RATES FOR CONDENSED PHASE PROCESSES
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a mixed quantum-classical description of the system,
since a full quantum description is expected to remain

beyond computer capabilities in the foreseeable future,
A particularly challenging problem arises in processes
v involving two or more electronic states, €.8. processes

- Dvolving non-adiabatic transitions in solutions,5-18
% The difficulty

Rl

¢ Pechukas theory? for non-adiabatic processes in

Mixed qQuantum-classical Systems.10  (g) Tully's
t Molecylar dynamics  with electronic  transitions
" algorithm 511 () Simulations of nop-

izbatic transition rates based on the golden rule (GR)
Fits generalizations, 12-19
3 In recent publications!3 we have proposed a

Cmiclagsicyl method for calculating therma] non

Tel Aviv, 69978, Israel

adiabatic  transition nes involving g quantum
subsystem interacting with an otherwise essentially
classical solvent. Although the solvent interacts
differently with the solute in different quantum states,
only classical information on its motion is required.
The method is baseqd on the correlation time
répresentation of the golden rule formuia for the

transition rate between two electronic states, {1} and

[2),

kisa = [t By M

where AE:EZ-E] is the difference between the energy
origin of surfaces 1 and 2 and where

CO=ZER TRl = 1Ry,

and

In equations (2) ang (3) ’1) are the nuclear states
associated  with the nitial  electronic surface,
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B=(k,T)™" and Z =Ee"3‘€‘ where the sum s

over &l vibronic fevels belonging to Il) H; and H, are
the nuclear Hamiltonjang associated with the electronie

states [1) and [2) respectively, each measured from it
own electronic origin, and V g the operator
responsible for the transition between the two

electronic states, v, =<1’V’ 2) is an operator in the

Space of the nuclear degrees of freedom. In our
previous  worki3ab . have evaluated C{t) by

canonic  (classical or  quantum; ;g Wigner)
distribution. An initig] Wwavepacket which is taken to be
a product of one dimensiona] wavepackets

1/4
G(x,t = 0) =(E)

n
xexpl$a(x = x, )} +p-(x - ) @

is  propagated using  the frozen Gaussians
approximation (FGA),20 ag outlined in Appendix A,

the classical trajectory with injtia] positions x, and
momenta p,. C(t) is then essentially the overiap

Propagating G(x,t=0) on ¢ach potential surface, The

L. Nuclear operators V,, and V,, in (3) are replaced by

their classica] analogs, evaluated ar he centers of the
initial wavepacket G(x,t=0) and the wavepacket

functiong My be disregarded. In this case the only

volution of importance s associated with the
uﬂderlying classical evolution of the packet center. A
Awback of this approach is the appearance of the
the gaussian wavepackets, 12, g
Uhdetermined parimeters of this procedure, These
dths were chosen to minimize the resulting error in
when compared to the exacy result for the
Ayticaily solyble model of displaced harmonic
Millators. 15 the high temperature Jimjt the resulting
M s proportional 0 the thermal de Broglie

. I
Warshel, 17 Mukamel!3 3p4 Hynes!? 44 Co-workers

have rewritten Egs. (2) and (3), with Vi, taken
constant for simplicity, in the form12

2 (5)

2 t
V. .
() =J$L exp_ L fanyy; ()
0

where U=H,-H, is the difference between (he nuclear
potential surfaces in the final and initjal electronic
states,

Uy(r) = Bty =itit ©)

and where the subscript (-) on the €Xponential function
denoted negative time ordering (later times on the

right), ( )r denotes thermal average associated with

nuciear equilibrium in (he initial electronjc state. A
semiclassical approximation can be made ar this point
by replacing Ui) by s classical analog,

U (t)= Uc(x[(t)). where x'(1) stands for the
Position associated with classical trajectorjes evaluated

initial conditions for these trajectories. obviously the
time ordering in Eq. (5) is irrelevant in this
approximation,

A direct use of Eq. (5) may be difficult i
actual - applications because the exponent in the
€quation is g rapidly oscillating function of absolute
magnitude equal to I, and the decay of C(1) in time is
obtained from destructive interference of such terms, A
usetul approximation!2.17-19 j obtained by performing
a cumuiant expansion up to second order, vielding

2
C(t) =L‘§’
1

xexp{-i/hMm(r)-I/thm(:)} )

with M(M(t) and M) given by

[ — AR, ot wp 3 e ——
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.
MO = Jar(uee)) (8a)
0

and

[ 4
M) =fdr' fdr"[(U(f")U(i’ )=
0 0

UENUEn @y
The time ordering implied in Eq. (5) is carried over to

Eq. (8b), however if U (1) is replaceq by U*(x*(t)) as
before, this orderin g becomes irrelevant,
A consistency check on this approximation

may be obtained by noting that an alternative form of
Eq. (5} is given by

2 ¢
Y .
C(t) = J};\‘il exp, 4L [y, (v) ©)
0

‘ and where the subscript
(+) denotes positive time ordering, In the semiclassical

approximation Ua(®) is replaced by Uc(xz( t)) where

the trajectories are now evaluated on (he final potentiaj

Cumulant approximations Eq. (9) leads (o €quations
identical 1o Egs. (7)-(8) with U (t) replaced by U, ().
Note however that the average gver injtiql condition |y

In the present Paper we describe two modified

: Yersions of our golden rule (GR) simulation procedure,

€se new formulations become exact in the high

7. lmperature fimi and one of them jg Potentiaily
“3pplicable gl at low temperatures. Both eliminate the
‘n

for approximate prescriptions for the initial

Wfdths of the Gaussian Wwavepackets. In the FGA these
s Vidths gre kept constant, by thawed’ Gaussians with
‘Ei'ame Varying widgps2! can be used with almost the

wume COmputational  effgy, We  examine (he

" OMMance of these methodg by comparing them o

Previous procedure, 13b as well as 1o calculationg based
on the classicaj analog  of (5) and on the
approximations (7)-(8).

IL Calculation with thermaj Wavepackets

The carrelation function C(1), Eq. (2), can be
written as a trace ip the position Space representation

1 'y L, AR, - et
CO=—z [ (x5 nom, )

1

= 'Z—l}z-z—fd?(’ e_BV' (x')(\{}x' P%]llpx) (10

where

Yo =exp[- p(H, - MeO)x)y  ay

To continge with our method as outlined aboye we

Fe (0= exp[~L1B(#,(x) - v (x N(x-x)

3 44
m
(] e @

where x is the position in
configuration Space and

2mk,T 14 kg T ,
gxf(XJ=[ ':ﬁf] exp{—ﬁ,f-(x"x)z} (13)

Also in thig limit

the (d dimensional)

d4/3
Z, = [;%] o) (14)
where
QI - fdx e-ﬁ"’;{x] (15)
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Egs (12)-(14) are obtained by using, for B0,

exp[—B(T+ v, )] = exp(~BT)exp(-pV,) + O(ﬁz). Egs.
(10), (12)-(14) Jead to

Ct)=

1 BV (x)
thz f ax' e

% (gx' ,vi2ezH2!/hVZIe-iH,I/hlgx') (16)

Thus, in this limit, the numerical evaluation of C{t)
proceeds as described in Sect, I (and in Refs. 13),
except that the functions (13) are zero momentum
wavepackets. The centers of these initial wavepackets
are sampled from a Boltzmann distribution in
configuration space, as shown in Eq. (16), not in phase
space, implying considerable saving in computing
effort. The width of the Gaussian is essentially the
thermal de Broglie wavelength, as anticipated in our
earier procedure, 13

Another way to express W . by a Gaussian is
provided by the local harmonic approximation (LHA).
For simplicity we limit our discussion to the one
dimensional case. The multidimensional problem ig
considered in Appendix B.

The LHA is obtained by expanding the
potential V(x) up to quadratic terms about the point of
interest (x' in Eq. (11)),

M@ - V@) =@ )x-x)
+3h)x-x2) )

where =0V, /9x and k = 0’V, /ax? | Using this
approximation in Eq. (11) leads to

‘Px' (I)

=exp[- K B(H, (x) - Vi (x )] 8x-x)
2
= exp{%—}@m(x- X 3. Y-t/ 2) (18)

where Gy, is the harmonic oscillator Green's function
given by

Orar (XurXpi) =| 5—Tm s exp{ im0
har\AgrAp, Zn:'hsin(mt) P 2)‘zsin(0)l)

(2 +x2)cos(ar) - 2xaxb]} (19)

with h, k and @ = Jk/m evaluated at the point x'.
The appearance of the position dependent frequency @
(x') underlines the local nature of this approximation.
Eq. (18) may be rewritten in the form of a Gaussian
wavepacket centered about a shifted position x__:

me 1/4 ﬁnz
(@)= ( 2nhsinh (Bfim)) P {"47

2
ma{mn
-——| ~| tanh{4Bhw (20
2h (k) 4 (231 )}gx-

with g, given by

_( mw ccath(ﬁim)))”4
g.r_ (I) - ( TCﬁ

X exp{%ﬁgcoth(%ﬁﬁm)(x - xm)z} 1)

and with
X, (xX)=x —%[I —sec h(%ﬁhm)] (22)
It should be kept in mind that in equations (18)-(22) @

=w(x), B=n(x"} and k=k(x"). Inserting Egs. (20)-(22)
in Eq. (10) leads to

1
C(r)—zgfdx'P(x’)

N <3x_ lVl ’.’e;HZIMVZIQH‘HI:M'gxm ) 23)

where
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mcr)(.r) 172
= {ZTChsinh(ma(x)}

2
Xexp{%%(—g—)—ﬁﬂ(x)

mo(x) | 1ix)
k(x)

2
~ —-—-] tanh(l/2ma(x)) (23b)

and

Z, = [ax P(x) (23¢)
This result provides 5 New prescription for evaluating
C(t) within the LHA: A configuration x' js sampled
from the (unnormalized) probability function P(x")
which jis g modification of the usual canonic
distribution. This can be done using a Monte Carlo
sampling procedure. The point x’ is then shifted to x,,

according to Eq. {22) and a Gaussian wavepacket g,

of the form (21) s located, centereqd a¢ this point. This
Gaussian s Propagated with the FGA s before,

leading to the expectation value in (23); the integral
over x' is the average obtained from this sampling
procedure. The following points should be noted:

(2). The Gaussian width is now 3 function of
X, given by

172
-1z _ h
207 = mco(x)coth(% B)‘za)(xD_

In the high temperature limir,

(24)

hm(x)<<kBT. this

i 8iven above, Eq. (13). In fact, it is straightforward to

that in this limit Egs. (13), (15)-(16) are

(b) As before, and in contrast to our original
Procedure, the sampling is performed in configuration
phase space, implying considerable

(€) If the inijtias Surface

is harmonic,

i =imw’x?, Eq. (23 is exact (within the GR

formalism). In this case the correlation function has
the simpler form

1 1 I
C(z):zl-;lz-jdrp(x)

x (gx_ IVlzem,rmVZle_;H,:mI gx.> (253)

with x| =x' /cosh(1 /2Bhw),

172
ma)
P = {Znhsinh (szco)}

mw
h

X exp{ tanth (%ﬁbco)xz} (25b)

and

12
ma
2mhsinh (B}im)}

Z, =J‘¢rP(x)={

x yid/]
mw tanh(Bhew / 2) (25¢)

The distribution P(x) is essentially the thermaj Wigner
function?3 of the harmonic oscillator integrated over
the moementum.

(d). The weight functions P(x), Eqgs. (23b) and
(25b) depend on the local frequency w(x), therefore the

execution of this procedure for @ general many body
potential surface requires additional considerations (see
Appendix B), In the high
calculation of C(t), Egq. (16), involves the

Boltzmann weight e'ﬁv("), and simple Monte Carlo
procedures can be ysed.

tlemperature  limit the

simple

(e). The harmonic approximation which [eads

to equations (23) is valid only if k(x"$0. Furthermore,
If k(x'}<0 an expansion about x' leads to imaginary @
{(x) and, while giving a formally valid procedure, may
cause large errors associated with the fact that

becomes 3 highly oscillating  functign of the
temperature as T—0, Large errors are aiso expected in
the contributions from positions x' for which k(x")! is
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small so that X (X)-x"T is large (see Eq.(22)). In this

case the thermal Propagation, Eg. (18), which

propagation. This can be seen by considering the Jow
temperature limit of Eq.(23b), P(x) = exXp(-BW(x))
where

) mo(x Y. If X) is
wuuhurgﬁ;-jélﬁﬁﬂ MU
harmonic, the first two terms in W(x) vanish ang B
W(x) becomes the familiar ground state distribytion of
the quantum harmonic oscillator. In other cases these
two terms may dominate the distribution in the T—=0

limit. In particular note that
W(x;T=0)= Vi) (x)/2k(x) has minima g

points that satisfy 1)(x) # 0. kK'(x)=0 and kK"(x)>0, so

such points will dominate the distribution e BW() 45 T
-0, a property not shared by the exact thermal
distribution,

These difficulties may be overcome in the low
T limit by (1) using e than P(x) as the
weight function in the sampling used to evaluate the
integral (23a); 2) discarding points x’ for which k(x"<
0 from the integrals (23a) and (23c); (3) incIuding
points x' with k(x >0 only provided that k(x") is not too
small, so that such pomts are not oo close to the
singularity of W(x). The last restriction is somewhat
vigue and its quantitative definition ( ha(x)>p-!
Seems a reasonable choice} will pe considered

elsewhere. Note that using g™ weight function
focus the integration near the local minima in the

2 regions of imaginary, zero or inconveniently small
fI'Equency. Obviously the Suggested procedure keeps
. the most important x’ regions in the low T limit,

(). In the applications presented below we pge
the FGA for the Propagation of the Gaussian
Wavepackets. This is often justified, in particular for

the next section we compare the
Performance of the methods discussed above when

1 Model Caiculations

llla. Transition between harmonic and linear potentigy
surfaces, A simple exactly soluble mode] that was
considered in our earljer work3® consists of two

diabatic surfaces: The initial electronic state !l) is
associated with g harmonic patentiaf and is coupled g

another state [2) characterized by a linear potential

(Fig. 1). The coupling Vi, is assumed constant, The
potential surfaces are given, in dimensionless units, by

y=Lly (26a)
2
=0X+E, (26b)

These surfaces cross at energy V. = ot /o +2F, .

Note that Propagation with ‘thaweq' Gaussians2! (but
not with frozen Gaussians) is €xact on these surfaces.
Consider first fransitions out of j single

quantum level |7} of the harmonic surface. The Gr

rate is given by Eq. (1), where C(t)=ﬁ"2(ianli)
F,, is given by Eq. (3). This implies a microcanonica]
sampling instead of the canonical sampling performed

in Eq. (2). The state 4) is then ¢xpanded in Gaussians,

f‘}:ZC-*gt (see  Ref, 13b),  so  (hat
k

C(I) = ﬁ‘zz Z C,-;Cu'(gk IFZI ,3y>’ ".lnd [he
L S &

matrix element (g, [Fn]gt.) is calculated using the

procedure described in Sect. II. We refer to this as a
coherent expansion of C(t), while keeping only
diagonal terms Jeads o an incoherent approximation,

C(t)zn-zZ,CikV(gt[F‘.‘llgk)' analogous 10 the
k

thermal rate (16) or (23a). The coherent procedure
based on Eq. (1) and the FGA® yield results in very
close agreement with the exact rate, ang reproduce
very well the oscillatory behavior of the rate as a
function of V. (ie. of Ey) or of the initig] quantum
level. When incoherent microcanonical sampling is
used these oscillations areé not reproduced, and an
averaged behavior is abserved, which suggest (as was
confirmed) that incoherent sampling should work wel]
for thermal rates at high enough lemperatures.



functions of t,
converge,

Fig. 1: The
(26).

patential surfaces in the model defined by Eq.

method g
. rformance of this approach,
OF the methods described in Secy I the high  P® pp
T approximation jg €ssentially equivalent to the

procedure ysed jp Ref 13b, while the LHA can

Table T, Therma] transition rates for the model of one dimensional coy i i
surfaces (Eq. 26). a=6 and V =35, Shown are the €xact golden rule re

sult together with results based o
procedure of Ref 13, op the LHA (Eq. 23), on the HTL (Egs 13-16),

on the classica] analog of Eq, (5)
Boltzmann sampling (column LB), Wigner sampling (column LW) and on the ¢
(columns ]

and C2). Columns ¢} and C2 give results bas_ed on the s
the classica] dynamics performed on surfaces 1 and 2 respectively,

the
with
umulant €Xpansion, Egs (7)-(8)
econd order cumulgnt approximation wigh

!

e th

E T Faaor o 12 THA
2 0. 741105 793 105 7937193

.

: € minimal
£:1ger then the rate itself at this

vTable I, Same as Taple 1. CXCept V =15. Note that in columns L
s determine g sinc value of the correlatio
temperature.

B and Lw a T=0.5

n function obtained is on the order of 10

HTL LB LW Cl c2
_ - 4.24 104 - -
. .5 1.04 103 395 jp« 139103 6,60 102 4.83 104 1.8 103 419105 156103
L L02 102 9381 103 LI12102 149 102 9.00 103 1,10 192 329107 45104
.2, 3.64102 379 102 369 102 3.82102 374 102 3.65102 297 p2 2.85 102
23, 525102 5.3 102 527102 5.31102% 524102 524 102 570 102 5.67 10-2
- 3. 645102 448 102 645 102 6.47 102 6,08 102 6.44 102 62 1022 8.60 102
10, 645 102 647 102 6.46 102 6.55 10-2 6.49 102 649 102 9.62102 991 102
212, 630 10972 6.26 102 6.6 192 6.38 102 6.30 102 6.30 102 935 152 9,77 10-2
g'ls. 387102 594102 504 102 612102 599 02 399102 881102 g4 102
[

the rate could not be
which is much

) o,

! ExactOR Ref. 12 LHA LB LW Cl C2
8.48 10-2 69104 691014 - - - -
4.24 1013 4151012 3,96 1013 6.7210°  _ - 28108 _ 56108
9.64 108 ;4 1% 143107 4o 107 825108 249 197 309108 53 19
8.98 10~ 710105 968105 | 1g 104 875105 10] 104 152107 230108
8.63 104 8.23 104 88510+ 9.39 104 85810 g.o4 104 1.84 105 8.89 10-7
4.88 103 4.87 103  4.91 1093 496 103 4.87103 491 103 873104 537104
LS3102  [ss 102 154102 1353192 153102 153102 13542 1.06 10-2
1.78 102 181102 181192 L79102 179102 179 152 196102 162102
02102 g 102 208102 704 102 205102 205102 28] 1p2

243 102
2431072
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Also, the methods based on Egs. (5)-(6) and (7)-(8)
pecome free of pathologies because the thermal
averages of the exponential function in (5) and of the
integrand in (8b) decay to zero at large times, leading
1o convergent integrals. Still, the correlation function
C(t) calculated from the classical analog of Eq. (5)
shows unphysical recurrences at long times, and the
results in columns LB and LW of Tables 1 and 2 were
obtained by truncating the integration in Eq. (1) before
this happens.

Tables 1 and 2 summarize the results for the
thermal rates obtained with the different approximate
methods outlined above. The results are presented for
several temperatures at two different values of the
crossing energy, V =3.5 and V =15. The dimensionless
value of the parameter o was taken a=6 as before, 130
The following observations can be made:

(a) The result of Ref. 13b as well as those in
columns LB, Cl and C2 of tables 1 and 2 were
obtained using a classical canonical averaging over the
initial nuclear states. Some improvement at low
temperatures can be expected by replacing this by an
average over the corresponding Wigner distribution for
the initial harmonic surface,

1
pw(x’p)=t_ia_rﬂ]._(l.ﬁh.—m)- exp

nh
—Ltanh(lﬁhm) E?:— +m@2x* 27
ho 2 m

In practice we found this does not improve the low
temperatures results considerably.

(b) All the procedures tested, except the
cumulant expansion method, perform well for high

enough temperatures, typically for T/#Aw 22. For
lower temperatures the local harmonic approximation
is superior to the procedure of Ref. 13b.

{c) The calculation based on the semiclassical
analog of Eq. (5) does surprisingly well, however it
may become tedious for more complicated models, due
to possible slow convergence.

(d) For the present model, the cumulant
expansion method does significantly more poorty than
the the other methods. The source of the problem can
be seen by comparing (Fig. 2) the correlation functions,
C(t), obtained in this approximation to the same
function obtained in the LHA (which is practically
exact in the present model). Two cumulant
approximations are obtained by doing the classical
evolution on the two potential surfaces. The correlation

Fig. 2: The absolute square of the correlation function, Eg.
(2), for the model of Fig. 1 at T / ko =10 - The full line
represents the result of the local harmonic approximation
(essentially exact for this case). The other, almost
overlapping lines, represent results from different versions of
the cumulant approximation defined in the text (propagation
on the harmonic or the linear surface; sampling with Wigner
function or exact quantumn mechanical sampling), which in
the present case give very similar results.

functions obtained from these methods decay too fast,
indicating the importance of the neglected higher
cumulants. It should be emphasized that this method is
expected to do better in higher dimensional situations,
where the character of the local coordinates which
dominate the transition may become more Gaussian.'?
(e) For the model considered here the LHA is
practically exact; the only remaining approximation in
our procedure is the use of frozen Gaussians. In fact,
thawed Gaussians can be used with almost equal ease.
Indeed. when this is done the exact rate is obtained.

Jilb. Displaced harmonic oscillators In this model
surfaces 1 and 2 are harmonic wells with equal
frequencies, displaced both in position and energy. A
review of the model is given in Ref 13b. The exact rate
is given by Eq. (1) with

C(t) = exp{-iAEL / i+ imwd? sin(or) / 2k

2
- m(;);i coth(1/ 2phw){1- COS((Q:)]} (28)
1

It is obvious that the LHA result (23) is exact for this
mode!l and the rate obtained from Eq. (25) will
therefore be exact if full quantum propagation is used.
Surprisingly, the exact rate is obtained also when the
EGA scheme is used, although the FGA propagation is
exact only in the special case where the Gaussian width
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is chosen to be that of the exact ground state (coherent

wave), a=ma /h. This indicates that the errors
associated with the FGA propagation on the two
identical potential surfaces cancel out.

Consider now the results based on (5)-(6) and
(7)-(8). Here the calculation can be done analytically.
Applying the Wigner distribution for the thermal
averaging of the semiclassical analog of the correlation
function in Eq. (5) leads to

C(t) = exp{-iAEt / b + imw?d®t | 24

m(nd2

[

coth(1/ 2Brw)[1 - cos(mr)]} (29)

The same result is obtained from the cumulant
expansion method, Egs. (7)-(8), when classical nuclear
dynamics and a Wigner distribution of initial states are
used. Eq. (29) is a short time approximation to the
exact correlation function (28). This approximation is
known to yield reliable results only in the "strong
coupling limit" when the two surfaces are strongly
displaced from each other.

IV Summary and Conclusions

We have presented improved methods for
calculating the golden rule expression for non-
adiabatic transition rates from computer simulations.
These methods are based on forming initial thermal

wavepackelts e'%BH[x) by imaginary time propagation,
following Hellsing et al,2? and representing them as
Gaussians. This can be. accomplished in the high
temperature limit (HTL) or in the local harmonic
approximation (LHA). The real time evolution of these
Gaussians then yields the correlation function C(t), Eq.
(2), which in turn is used to calculate the rate, Eq. (1).
In most cases it is sufficient to use the Frozen
Gaussians approximation (FGA) for the real time
evolution. In this case only classical trajectories are
required. More sophisticated propagation techniques
may be used.

The new procedures described in this work
provide three major improvements over out previous
method.!3 (1) The initial Gaussian width is now
determined unambiguously by the procedure without
additional assumptions. (2) The thermal averaging
involves sampling in configuration space and not in
phase space. (3) At low temperatures this sampling
uses an improved probability function.

The implementation of this method for a many
body system at low temperatures requires the use of the
LHA in the normal mode representation at each initial
configuration (Appendix B). Instantaneous normal
mode analysis in molecular liquid simulation were
recently shown to be feasible* In this case the
sampling of initial configuration involves a probability
function defined in terms of an effective potential as
described in Appendix B.

We have also tested the semiclassical
approximation suggested by Lax!2 and recently applied
by several workers.'”"1% The semiclassical analog of
Eq. (5) (obtained by replacing the exponential in (5) by
its classical counterpart) performed surprisingly well
when the temperature is not too low. The second order
cumulant approximation did not perform well in our
one dimensional example, but is expected to do better
in more realistic multidimensional situations in the
high temperature limit.

Appendix A. An outline of the frozen
Gaussian approximation (FGA)

The FGAZ2° needs only classical information
in order to propagate the initial Gaussian wavepacket
(Eq. (4)). The initial conditions for the classical motion
are x, and py from which the position, x,, and
momentum, p,, at time t are obtained by solving the
classical equations of motion. The wavepacket at time t
is given by

a 1/4 ,
Gx,0) = (__] exp(-La(x-x,)?
T

+ihp,(x - ) +i0(t) / 1) (A1)

with the phase ¢ given by

o) = I(: drL(t) (A22)

2
L) = 2~ (G|H|G®) (A2b)

Appendix B, The Local Harmonic Approximation in
the multidimensional case.

In analogous manner to the 1-dimensional
case, Eq. (17), we develop V(x) up to second order
about the point of interest, x’
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(B2a)

(B2b)

| K is a matrix whose elements are k. K, is the matrix
K, with the i-th column replaced by the vector 1;. Next,
a transformation to normal mode Q of the harmonic
. potential (B1) is done using the appropriate orthogonal

Q=D"X (B3)

"X is the vector of elements X,. The Gaussian thermal
, wavepacket, ¥ (Eq. 11) is obtained in the form

i, |
B H{nh sinh(ﬁhm,.)}

X exP{% tanh(1 / 28w; )05 }‘PE (0:(x)) (B4a)
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o, coth(l IZBﬁmf)}m

\P@:(Q;)={ =

X exp {—%com(l IZBnuJ,-)(Q; - @-,)2} (B4b)

@, is the frequency of the i-th normal mode,

Qo._(Q;)=-'ZDﬁJ;1; 8
j

cosh(%Bh(ﬂ;). In these equations the normal modes

Q, are related to the original coordinates x; by
equations (B2) and (B3). Using the following definition

and

Q; =0,/

Y5 = HTE (O (B3)

the matrix element required for the calculation of the
comelation function in Eq. (10) is given by

(¥ [P ) = [ e OFn(0F ()

1/2
= m;Q;
H{nh sinh(ma;)}

X exp{-‘f;—" tanh(1/ ZBﬁm;)QSE}
(gl .

with

(‘*’@‘\lel%) - [dQ¥z QP Q¥5(Q BT

The correlation function, Eq. (10), is finally given by
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1 ' 1
C(t) =Zjdx exp{-B[V(x)+

FXn008x) [ ¥e [Fl¥x) - @9)

The thermal wave packet can now be propagated by
using the FGA in the Q coordinates. This can be done
by sampling the initial conditions in configuration
space according to the probability function appearing
in Eq. (B8). The propagation of the thermal wave
packet can be performed in two ways: (a) The
equations of motion are solved in the x coordinates and
the solution transformed to the normal coordinates Q

in order to obtain the time propagation of ¥,(Q) )

The Hamiltonians H; and H, are transformed to the
normal coordinates and the equations of motion can be
now be explicitly solved using the normal coordinates.
To summarize the procedure : A point X' is
chosen according to the “effective potential”

V(x')+1/22n,.(x')5,.(x')- H, is expanded up o

second order in the coordinates about the point x'. The
quadratic Hamiltonian s diagonalized and the
eigenvalues ®2 and normal coordinates Q; are
obtained. A Gaussian wave packet, (B4). is located

with the center at Q. Two ways are available to

propagate the initial wavepacket. Either transforming
H, and H, to the normal coordinates and solving the

equations of motion starting at Q. or solving the
equations of motion in the x ¢coordinates starting at

x({QQ) and transforming the resulting trajectory to the
Q coordinates.

Finally note that the high temperature limit of
the multidimensional correlation function, Eq. (B8),
yields the HTL result, Eq. (16).
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