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This paper analyzes solvation and association in macromolecular solvents using mean-field 
theory applied to several lattice-gas models. The thermodynamic functions of solvation and the 
equilibrium constant for association is calculated in terms of the temperature, pressure, and 
solvent molecular size. Applications to ion association in polymer electrolytes are discussed and 
the advantages and flaws of the model are critically analyzed. Exact results for a simple one 
dimensional-model are also obtained and discussed. 

I. INTRODUCTION 

Ionic dissociation and ion mobility in electrolyte solu- 
tions is a long studied problem. This subject has come back 
into focus with the increasing interest in solid ionic con- 
ductors, and more recently in polymeric ionic conductors. 
The latter systems are essentially solutions of salt in poly- 
meric hosts and their conductivity properties are deter- 
mined as in other electrolyte solutions by the ion-host and 
ion-ion interactions. Considerable effort has been spent 
over the last decade in attempts to elucidate the effect of 
the polymer environment on these interactions and their 
consequences. 

The present study was motivated by the recent series of 
papers of Tore11 and co-workers1-3 in which ion association 
and mobility in polymer-salt complexes based on poly (eth- 
ylene oxide) (PEO) and poly(propylene oxide) (PPO) 
were studied for several salts as functions of temperature, 
pressure, and molecular weight of the polymer. Ion asso- 
ciation was monitored by Raman spectroscopy and the 
formation of ion pairs (tentatively assigned as contact 
rather than solvent separated pairs) was inferred from Ra- 
man shift in the vibrational spectrum of the associated 
anion relative to that of the “free” anion. The following 
observations of these studies are relevant to the present 
work. 

( 1) Ion pairing increases with increasing salt concen- 
tration in qualitatively similar fashion as in simple electro- 
lytes. 

(2) Ion pairing and association increases with temper- 
ature, above the host glass transition temperature, for per- 
chlorate and triflate salts of Li+, Na+ in PEO and PPO. 
The temperature dependence of ion association depends 
however on the system studied. It is practically tempera- 
ture independent (in the range studied) for Cu2+ triflate 
complexes and it decreases with increasing temperature for 
complexes containing Nd3+ cations. 

(3) Detailed thermodynamic analysis by Schantz4 of 
the ion association equilibrium in the NaCF3S03-PPO and 
LiClO,-PPO systems show a considerable negative free 
energy for the M+ +A - -MA reaction at room tempera- 
ture (AGc=-26&t and - 22 f 5 kJ/mol, respectively), 

small positive enthalpy ( AHc=4 f 8 and 13 f 8 kJ/mol, 
respectively) and large positive entropy ( Theo = 30 =I= 12 
and 36=l= 12 kJ/mol, respectively). The large entropy 
change which accompanies the association indicates that 
ion dissociation and linking with the host matrix has 
strong ordering effect on the system. 

(4) Ion association strongly depends on the pressure: 
For the LiCF3S03-PPO complex (ratio of oxygen to cat- 
ion content, O:M=32) the number of unpaired ions dou- 
bled when P increased from 1 atm to 3 kbar. 

(5) The association constant KA = [MA]/[M+][A -1 
depends on the molecular weight of the host polymer. 
While earlier studies with NaCF3S03 (0:M = 16) in PPG 
(poly propylene glycol-PPO terminated with OH groups) 
show an increase of KA with increasing molecular weight, 
M host, in the range Ghost = 400-4000 ( - 7-70 repeat units) 
it was realized that this host size dependence could be 
associated with strong H-bond formation between the tri- 
flate anion and OH end groups of the polymer. Indeed, 
more recent studies with “endcapped chains”-CH, termi- 
nated PEO, show the opposite effect: KA decreases with 
increasing size between 4 and 8 repeat units. Unfortu- 
nately, there is no overlap between the size ranges of these 
two groups of experiments. One can infer from the results 
published so far that with CH,-capped host polyethers, for 
which cation coordination to the electronegative oxygens is 
the main driving force for salt solvation and dissociation, 
that KA decreases with increasing Ghost. It has also been 
suggested, however, that the trend is reversed for longer 
chains (r>8, where r is the number of repeat units) in 
which the cations may form transient crosslinks. 

Schantz, Torell, and co-workers’A have pointed out 
that the dependence of the conductivity of these salt- 
polymer complexes on the salt concentration and on the 
temperature, is mostly related to the effect of these factors 
on the local flexibility of the host. For example,’ in PPO- 
NaCF3S03 (O:M= 30) the number of dissociated ions 
drop by - 50% when T increases from Ts- 220 to 300 K, 
whereas the conductivity increases in this range by 5 orders 
of magnitude. Still the issue of ion association in polymer 
electrolyte environments is of interest, both because of the 
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fundamental thermodynamic issues involved and because 
nonassociated ions affect, through the formation of tran- 
sient crosslinks, the rigidity of the polymer solvent itself. 

The observed temperature dependence of ion associa- 
tion in the Li+ and Naf salt-polymer systems seems to be 
in accord with the observed salt precipitation from several 
sodium salt-PPO systems when the temperature is in- 
creased above - 340 K.5-7 The observation of the opposite 
trend in the Nd3+ system3 indicates that the temperature 
dependence is affected by details of the ion-ion and ion- 
host interactions. Also, recent experimental results of 
Boden et aL8 raises new questions concerning the dynamic 
implications of ionic association-dissociation equilibria in 
these systems. 

The observed increase in the concentration of associ- 
ated ion pairs in the monovalent salt-polymer systems with 
increasing T was contrary to initial intuitive expectations 
for “weak electrolytes”’ and also to earlier experimental 
work.” However, similar trends are observed in many elec- 
trolyte solutions1’*‘2(a)*‘3*14 and has been explained in terms 
of the temperature dependence of the solvent dielectric 
constant. In the Bjerrum,15 Fuoss,16 and Denison and 
Ramseyi theories of ion pairing, the fraction of ion pairs 
depends on the temperature through the inverse product, 
( DT) -I, of the solvent dielectric constant, D, and the tem- 
perature. This fraction will increase with increasing tem- 
perature if 

alnD 
T aT c-1. 

The same result is obtained from any theory which as- 
sumes that the free energy for the reaction M+ +A- -MA 
is negative and proportional to D-‘: If AG= -a/D,(a 
> 0) then AH=AG+ TAS=AG- T(aAG/aT) = -a/ 
D[l + T(a In D/aT)] implying that AH> 0 if Eq. ( 1) 
holds. For the common model D= Doe- T’e this implies 
T > 8, which holds for many liquids at room 
temperature. ‘1*12(a) For ethers and polyethers the temper- 
ature dependence of the dielectric constant is much weaker 
than in more polar solvents (e.g., -dD/dT at 298 K is 
0.36 K-’ for water, 0.2 K-’ for methanol, 0.194 K-i for 
ethylene glycol but only 0.018 K-’ for di-2-propyl 
etheri2(‘)). For amorphous high molecular weight PPO 
-dD/dT=;0.016 (Ref. 18) and the inequality (1) is less 
likely to hold. Indeed, from the T dependence of D for 
PPO’* we may infer that ion pairing should increase with 
temperature for T 2 3 10 K,19 whereas such increase is ob- 
served for T>T,z220 K. 

The observed decrease in ion association with increas- 
ing pressure in the Li-triflate-PPO complex is also in qual- 
itative accord with observations in simple electrolytes.‘2(8) 
The usual explanation’2(a)720’21 involves the increase with 
pressure of the solvent dielectric constant and, possibly, the 
decrease with pressure of the effective ionic solvation ra- 
dius. From the thermodynamic point of view this is related 
to the pressure dependence of the free energy of reaction 

(2) 
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and to the expectation that the volume change AV associ- 
ated with the M+ +A- -+iUA reaction in a dielectric sol- 
vent is positive because of the electrostriction effect which 
accompanies ion solvation. These considerations in turn 
point out to the solvent compressibility as a major source 
of the pressure effect, underlining the importance of the 
free volume of the solvent. 

It is also of interest to consider the inter-relationship 
between the temperature and the pressure effect, e.g., by 
considering the temperature dependence of the association 
equilibrium constant at constant volume and at constant 
pressure. Note that while constant volume experiments are 
difficult, most numerical simulations in ionic solutions, in- 
cluding simulations of ion pairing processes22’23 are done at 
constant volume. Experimentally one can obtain constant 
volume data by extrapolating results obtained at different 
constant pressures. General thermodynamic relations lead 
to 

(:I,,= ($) V,T+ ‘( %),,(5),, 
=(zg,,+G (g),,s (3) 

where g is the reaction coordinate (e.g., for M+ 
+A- -MA, 6 is the fraction of MA molecules which are 
associated) and where 

i av 
( ) 

1 av 
a=? z p9 P=-7 ap T 

( 1 

are the isobaric thermal expansion coefficient and the iso- 
thermal compressibility, respectively. On the other hand, 
the derivatives (aH/ac) p, T and (awag) V,r determine the 
temperature dependence of 6 via the thermodynamical ex- 
pression of the Le Chatellier principle 

(6) 

where G” = (#G/ag2)nr,eg and A” = (a2G/ac2)y,r,eq 
are the second derivatives of the Gibbs and Helmoltz free 
energies, respectively, at equilibrium of the reaction, and 
are both positive. Since (a via61 p, r is generally positive for 
the ionic association process, Eq. (3) implies that (a&‘/ 
a0 “,r < (aH/ac)P,T. In particular it is possible that (aw 
at) V,T < 0 whereas ( aH/a{) P,T > 0, implying CpalitatiVdy 

different behavior of (@/LIT), and (af/aT) y. The factor 
Ta/P in Eq. (3) is essentially the internal pressure (Pi,, 
= Ta//3-- Pz Ta/P, if P is not too high) of the solvent. 
For polyethylene glycols above Tg it is -0.4 kJ/cm3,24 and 
for a modest guess for (a v/&!&T- 15 cm3/mol we get 
(am&T- (wac) Y,T” 6 kJ/mol, which is of the same 
order as the experimental enthalpy of association in the 
systems under consideration.4 

While the thermodynamic factors governing ionic 
association-dissociation equilibria are known and have 
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been widely discussed, little is known about the depen- 
dence of these factors on solvent structure and on the de- 
tails of solvent ion interactions. Our focus in the present 
work is on the macromolecular nature of the host. Specif- 
ically we pose the question: how does the molecular size 
and the molecular nature of the host affect the association- 
dissociation equilibrium? This issue is underlined by two 
observations: 

( 1) The (positive) entropy of ion pairing in the 
monovalent salt-PPG complexes [ 2 100 J/( K mol)] is 
larger than could be expected. This number is of the same 
order observed for NaC104 in l-propano125 for which, at 
room temperature, dD/dT= -0.14 K-’ whereas in the 
polyethers 1 dD/dT 1 is an order of magnitude smaller. In 
acetone, where dD/dT= -0.019 K-’ the association en- 
tropy of NaC104 is -27 J/( K mo1).26 

(2) The increase in association with increasing tem- 
perature in the 1:l salt-polyether complexes and the salt 
precipitation observed at higher temperatures, is reminis- 
cent of the common occurrence of lower critical solution 
temperature in polymer solutions. This phenomenon has 
been traced to the free volume dissimilarity between the 
mixture components,27 and has been argued to be an en- 
tropically driven process.28Y29 It has been speculated3 that 
the two phenomena, ion pairing and salt precipitation in 
salt-polymer complexes and phase separation in polymer- 
solvent mixtures are related phenomena. 

In the present work we examine these issues within the 
lattice theory of liquids and of liquid mixtures. In partic- 
ular we examine the equilibrium A + B=AB where A and 
B are simple solutes, occupying one site on the lattice, in a 
solvent S whose molecules occupy r sites (r-met-). If A and 
B are taken identical, their association may be viewed as 
the first step in the process of phase separation. We are 
interested in the thermodynamic quantities which control 
the equilibrium and in their dependence on temperature 
and pressure for different sizes of the solvent. An impor- 
tant feature of the model is that it allows for finite solvent 
compressibility by including vacant sites. This feature is 
known to be necessary for the model to show, when ap- 
plied to liquid mixtures, lower critical solution tempera- 
ture,28 and it can be therefore used to study the relation of 
this phenomenon to the behavior of the association- 
dissociation equilibrium. 

The model is characterized by nearest neighbor inter- 
actions and, except for one dimension it relies on the mean 
field approximation. We recall that our focus includes pos- 
sible entropic effects associated with the solvent molecular 
size and with the nature of the molecule ion binding. Two 
potential sources for such effects may be identified: (a) The 
effect of the molecular size on the entropy of mixing, a long 
studied problem in the lattice theories of fluid mixtures. 
(b) Cations dissolved in polyether hosts are known to form 
transient crosslinks and consequently reduce the configu- 
rational entropy of the host. The present mean-field treat- 
ment cannot account for the latter effect, and should be 
viewed as an approximate estimate of the importance of the 
former. The implications of crosslink formation in polymer 

solvents for equilibria involving crosslinking agents re- 
mains an open problem to be treated in future work. 

The use of short range interactions in the present study 
raises a question concerning the validity of the present 
calculation to the real polymer electrolytes. The systems 
considered are believed to be characterized by strong se- 
lective binding of the cations to the ether oxygens, with the 
maximum coordination number being probably four. At 
infinite dilution, ion-ion interactions (except between the 
ions constituting the pair) are negligible, and, in view of 
the large distance between oxygen atoms, cation interac- 
tions with oxygens which are not nearest neighbors to it 
are also expected to be relatively small. Finally, the en- 
tropic effects described above can clearly be discussed in 
terms of short range ion-host interactions, whereas long 
range effects may be incorporated in the dielectric re- 
sponse. As emphasized above, the latter cannot account by 
itself for the experimental observation. It appears therefore 
that short range interaction models of solvation equilib- 
rium in these systems can supply relevant information. 

Our focus is the equilibrium constant for ion pairing 
(or, more generally, the association reaction A + B=A B) 
and its dependence on temperature, pressure, and solvent 
molecular size. To this end we need to calculate the free 
energy of this reaction as a function of these parameters. 
The latter can be obtained from the solvation energies of 
the different components in the given medium. Mathemat- 
ically this amounts to evaluating the free energy associated 
(within the present model) with inserting an impurity into 
the given lattice gas, 

In what follows we first discuss solvation and 
dissociation-association equilibrium in two exactly solv- 
able noninteracting lattice gas (NILG) models. Next we 
investigate the thermodynamics of association-dissociation 
equilibria in systems with nearest neighbor interactions 
within the framework of the mean field theory of fluid 
mixtures of Lacombe and Sanchez.28 Implications of our 
results to the experimental work of Schantz, Torell, and 
co-workers are finally discussed. In addition we discuss the 
weakness of the present model when applied to systems 
with strong ion-solvent interaction. This weakness can be 
overcome by replacing the mean field approximation 
(MFA) by the quasichemical approximation (QCA) 
thereby taking into account short range correlations in the 
solvent structure about the ion. This version of the theory 
will be presented in a separate paper. 

II. EXACTLY SOLUBLE MODELS 

In this section we consider two simplified, exactly sol- 
uble models. The first is a simple NILG model where 
solvent-solvent interactions are only those forcing site ex- 
clusion, whereas solute-solvent interactions are limited to 
nearest neighbors. In the second model we take account of 
finite solvent molecule size, within a one dimensional 
NILG model. These models, even though simplistic, are 
useful in making clear some of the concepts developed af- 
terwards. 
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A. The noninteracting lattice gas (NILG) 

In this model each solvent molecule, S, occupies one 
site of the lattice (r,= 1) and multiple occupation of the 
same site is forbidden. The solute molecule, a, occupies r, 
lattice sites and have Z, nearest-neighbor sites. The inter- 
action between the solute and the solvent is taken as -E,, 
(E, > 0, i.e., attractive interaction) for nearest-neighbors 
sites and zero otherwise. Note that this model, in the terms 
described above, is analogous to the adsorption of solvent 
molecules on Z, independent and indistinguishable sites3’ 
In addition to solute and solvent particles, the lattice rep- 
resentation of the solvent contains vacancies (i.e., a com- 
ponent of the mixture which, except of the site blocking, 
does not interact with itself or with any of the other com- 
ponents). This is of course essential in describing phenom- 
ena where compressibility is expected to play a role. 

The grand-canonical partition function (GPF) for the 
NILG monoatomic solvent containing one solute mole- 
cule, is given by 

F _ = 1 +e’dkTt+JkT ‘a 
-e--o 

( l+@JkT ’ ) 
(7) 

where pcL, is the chemical potential of the pure solvent, M is 
the number of lattice sites, and Z,, the GPF for the pure 
solvent, is given by 

E’o= ( 1 +&+T)‘Y (8) 
The volume of the pure solvent is defined in terms of 

the number of the lattice sites as V=Mv*, where u* is the 
volume associated with a single site. Standard thermody- 
namical relations for the pressure P and the density of the 
pure solvent pS yield 

fi*=-kTIn(l-p,), 

,u,=kTInL 
l-k%’ 
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W,(R) does not usually include the potential responsible 
for the restriction that two particles cannot occupy the 
same site, there is an additional term in the solvation en- 
ergy which corresponds to the formation of a cavity in the 
solvent. Thus Eq. ( 11) is rewritten as 

pa=kT ln(pa&;l) +&‘+p~, (12) 

where ,uL= -kT In(exp[- W,(R)/kTj) and where 
W,(R) represents the nearest neighbor and longer range 
solute-solvent interaction. PC’ is that part of the solvation 
free energy which is associated with cavity formation- 
inserting a noninteracting (except site exclusion) solute 
into the solvent. 

Using the definition of pcl,: given by Eq. ( 1 1 >, it can be 
shown that it is given by (cf. Appendix A) 

&=AG,= -i,kT ln( l-pp,+e’dkTp,). (13) 

The cavity formation term is easily shown to be 

&) = -r,kT ln( 1 -p,), (14) 

where r, is the number of sites occupied by the solute. Here 
and in the following sections we will assume for simplicity 
that molecular sizes in the association reaction are additive 
so that &’ +&‘=&). Under this assumption the cavity 
formation parts of the solvation free energy cancel out of 
the free energy of association and have no effect on the 
association equilibrium. 

In general, the chemical potential of the solute, for the 
case of infinite dilution, is given by’2(b) 

The changes in volume and enthalpy for this solvation 
process can be obtained from standard derivatives of AG, 
together with the equation of state (9). A more instructive 
way is to use the average site occupation jYQ for each of the 
I, sites nearest to the solute3’ 

&s/kTeew’kT pp%JkT 
Pa’ 1 + &kTecm’kT= 1 _ ps+ pgcaik’ . (15) 

In terms ofjY= the changes in volume, energy, enthalpy, 
and entropy are given by 

pu,=kT ln(p,&;l 1 -kT ln(exp[ - W,(R)/kT]), 

=kT ln(paAkl) +pcl,:, (11) 

where k is the Boltzmann constant, pa is the number den- 
sity of the solute in the liquid, A, is the momentum parti- 
tion function or the thermal wavelength, qa is the internal 
partition function of the solute, and W,(R) is the interac- 
tion energy of the solute, fixed at a certain position, with 
the solvent molecules when they are at a certain configu- 
ration R. The symbol ( )R represents the average over all 
the solvent configurations R. Expression ( 11) is obtained 
for a continuum model. For lattice models the general 
form is the same: p, is given by a sum of an intrinsic term 
which depends only on properties of the solute molecule 
and another term, pi, which may be identified as the stan- 
dard (infinite dilution) free energy of solvation @CL,: 
= AG,), provided that the changes in the internal partition 
function of the solute in passing from the gas phase to the 
solution are disregarded. For lattice gas models, where 

AEO = - eJ&, , 

AV,= -; (j&p&*, 

(16) 

(17) 

AH‘,=AE&PAV,, 

A&=$ (AH,-AG,). 

(18) 

(19) 

Note that Pa increases with increasing interaction E, . Also 
note that because of the noninteracting character of the 
NILG, it is necessary to use very high pressures (in the 
range of kbar) in order to obtain values of ps in a range 
consistent with the liquid state (~~~0.5-0.9). Therefore, 
the value of P may be overestimated, assuming values of 
the order of the internal pressure Pi,, of common (inter- 
acting) solvents. Consequently, estimates of the PA V, con- 
tribution in Eq. ( 18) may be exaggerated in this model. 

Using the above results for the association reaction 
A+ B-+AB one gets for the changes in the thermodynamic 
functions of reaction 

J. Chem. Phys., Vol. 100, No. 1, 1 January 1994 

Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



AG-= AG,b-AGn-AG6-Er=&,-~~-~;-Er, 
(20) 
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,us= - kT (d ln Q/&V) V,T, and using the Stirling’s ap- 
proximation for the factorials in Bq. (25), leads, in the 
thermodynamic limit, to 

Pv*=kT In 
l-p,(l-l/rs) 1 l--P, ’ 

(26) 

MS 
l-pJl-l/r,) 1 1 -r,ln 

l--P, II l-p,(l-l/r,) ’ 
(27) 

AV-= -; ~Ld%r-IaPo-h&- U,r-L--b>p,l, . - 
(22) 

&.wx+PAV-, (23) 

AS,,= (l/T) (AHh-AGti), (24) 

where E, is the energy of the opposite (dissociation) reac- 
tion (E,>O) and where p; is given by Eq. (13), (i 
=a,b,ab). The equilibrium constant for the association- 
dissociation reaction is given by Km=exp( - AGh.J 
kT). Note that if one does not include the existence of 
empty sites in the fluid ( ps= 1) then A V*=O while 
j&=&=&b= 1. M- is then determined simply by the 
change in the interaction energies. 

B. One-dimensional NILG with arbitrary solvent size 

When the NILG solvent is polyatomic (occupying r, 
adjacent sites) the calculation of the thermodynamic func- 
tions of solvation is considerably more involved and gen- 
erally requires approximations. The results can no longer 
be represented as simple functions of the occupation prob- 
ability of sites nearest neighbor to the solute. In fact, the 
number of configurations for a pure system of polyatomic 
molecules in a general lattice can be obtained exactly only 
in one dimension. The only exact result for d > 1 that is 
known to us is for a completely firred two dimensional lat- 
tice with molecules of size rs=2.31 For d= 1 an exact so- 
lution may be obtained; in fact in this case the problem 
may be shown to be isomorphic to the 1-D Ising model. In 
what follows we consider solvation in this one-dimensional 
model. 

The system considered is a one-dimensional lattice gas 
in which the solute is the same as before whereas the sol- 
vent molecules are larger, each occupying r, lattice sites. 
Note that this one-dimensional model lacks the important 
contributions of different molecular orientations that in 
higher dimensionalities will contribute to the partition 
function and to the thermodynamic functions. However, 
even this model shows dependence of the solvation ther- 
modynamics on the solvent size. 

It is convenient to use the canonical partition function 
(CPF) formulation of the problem. The CPF for the pure 
noninteracting solvent (Qo) is determined by the number 
of configurations. The latter is given, for a lattice with M 
sites and N noninteracting molecules (blocking interac- 
tions only) of size r,, by the number of ways to arrange 
M--Nr, identical holes and the N identical molecules on 
the lattice 

(M-fVr,+N)! 
Qo(MsN)= (M-Nr,)!M * (25) 

Using the standard thermodynamic relations for the 
CPF, namely, A= -kT In Q, P=kT (a In Q/aV),, and 

where p,=rfl/M. Equation (26) is the equation of state 
for the system. Note that the number of nearest neighbors 
Z, is 2 for this geometry. For r,= 1 Bqs. (26) and (27) 
reduce to Bqs. (9) and ( lo), respectively. 

The CPF for the system in which a solute molecule is 
introduced can be obtained in terms of Q. (see Appendix 
B). The final result for p: is the difference between the free 
energies of the (solvent +solute) system with and without 
solute-solvent interaction (except exclusion). We get 

&=-2kTh 
l-P, ppEdkT/rs 

l-PS(l-lI/rS)+l-p,(l-ll/rS) ’ 1 
(28) 

Using standard relations for the thermodynamic deriva- 
tives of the free energy, together with the equation of state 
(26), then leads to 

AE,=--22~~ ‘Se 
CdkT/r 

’ 
1 - ps+ pse’JkT/rs ’ (29) 

AV,=2v* 
( 1 - ps) ( 1 - e’JkT) 
1 - ps + pgedkT/rs ’ (30) 

AHO=AEn+PAV, (31) 

A&=; (AI&--G,). 

Here the contributions associated with the cavity forma- 
tion were disregarded as discussed above. These exact re- 
sults for the excess thermodynamical functions show, for a 
given solvent density ps, explicit dependence on the solvent 
size r,. It is interesting to note however that if we express 
the chemical potential of the solvent in terms of r 
=exp( -Pu*/kT) instead of ps, using Bq. (26), the re- 
sulting expression for pt,: does not depend explicitly on the 
solvent size 

&= -2kT In[rr+ (1 -r)e’JkTl. (33) 

Thus at constant pressure, pi as well as quantities (e.g., 
A&,, AV,) derived from it by constant pressure deriva- 
tives, do not depend on the solvent size. This property of 
the excess thermodynamical quantities is special to the one 
dimensional model considered and is associated with the 
constraints imposed by the one dimensional geometry. 

C. Mean field approximation 

An exact calculation of solvation energies for solvents 
of arbitrary molecular size can be obtained only in one 
dimension, as described above. In the general d > 1 case 
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approximations are needed. Here we present the solution 
within the Flory-Huggins mean field approximation 
(MFA). The solvent is described as a mixture of molecules 
of size r, and holes (of size 1) distributed on a lattice.32’33 
The solvent-solute interaction is taken, as before, to be a 
nearest-neighbor interaction -E, (E,,> 0). The MFA is 
introduced by assuming that the solvent site occupation 
probability is ps for sites not nearest neighbor to the solute, 
and is pp’dkT/( 1 - ps + ppcadkT) for sites nearest neigh- 
bor to the solute, where ps is the pure solvent density. 

This approximation is believed to be a good description 
for the pure (melt) polymer, since in this state the polymer 
behaves as ideal chains and the correlation length for the 
chains are of the size of a monomer.34 Note however that 
changes in the internal entropy of the solvent associated 
with possible long range effects of its binding to the solute 
are disregarded. 

Our pure solvent consists of N noninteracting (except 
site exclusion) r,-mers distributed on a lattice of M sites 
(so the “free volume” is Ne=~V-rfl). For this system 
the Flory’s MFA3’ assumes that the probability to insert 
subsequent monomer segments [of the (n + 1) th r-mer] 
into the lattice after n r-mers have been already inserted is 
taken to be proportional to the mean site availability. This 
leads to the canonical partition function (here-the num- 
ber of configurations) 

SN rrA 
Qo(MJO= ; (~)N(yl)~ 

0 

s 

(34) 

where S is the number of configurations of a chain with one 
of its ends at a given position. For a completely flexible 
chain without excluded volume effects, s = z(z 
- 1 )‘s-‘. (T is the symmetry number of the chain: For a 
chain with indistinguishable ends, a=2; otherwise (T= 1. 

Using the Stirling’s approximation, the partition func- 
tion (34) can be written in terms of the average occupation 
of a site, p,=rJ/M, in the form 

where o is given by 

(35) 

(36) 

This is an internal entropy factor, and represents the num- 
ber of configurations of the r-mer in the closed packed 
state.33 From the partition function (35) we obtain the 
equation of state and the chemical potential of the solvent 
in the forms 

P”*=kT[ -P,ll--i)-ln(l-p,)], 

Srs 
ps=ln;+r,ln(l-p,)-ln(p,). 

J. Chem. Phys., Vol. 100, No. 1, 1 January 1994 

Next consider the same solvent in the presence of a 
single impurity (“ion”) which interacts with nearest- 
neighbor solvent sites with interaction energy E,. We 
make the following ansatz for the solvent partition func- 
tion Q,(M,N) in the presence of this impurity 

Q,(MtN = [ pP’kT +(~-P,>I’~Qo(M,N. (39) 

The first factor on the right-hand side of Eq. (39) accounts 
for the solute-solvent interaction in the 1, sites nearest to 
the impurity, while the Q. factor represents the pure sol- 
vent. Equation (39) and the thermodynamic functions de- 
rived from it yield for r,= 1 the exact results of Sec. II A. 
Furthermore, the form (39) is consistent with the result 
obtained by applying the quasichemical approximation to 
the same mode1.35 Using the same reasoning as in Sec. II B, 
the chemical potential of the solute (excess free energy at 
infinite dilution relative to the non-interacting solute case) 
is obtained in the form 

AG,=&= -1,kT ln( 1 -pPs+ppEaJkT). (4) 

Standard derivatives of Eq. (40), together with equa- 
tion of state (37) lead to the change in volume associated 
with the solvation 

AV,= 
u*rJJ 1 - p,) ( 1 -&JkT) 

( 1 - ps+ pse”~s/kT) 11-t pJr,- 1) ] 
(41) 

and to the other excess thermodynamical quantities 

AE, = - I,E,, 
pp%P= 

1 -ps+p#fJk=,7 
(42) 

AHa=AE,+PAVa, 

A&,=; (A.&- AG,). 

(43) 

(4) 

Again, the cavity formation terms were disregarded, as- 
suming that they cancel in AG,,,, and related quantities. 
The equilibrium constant for the association reaction 
A+ Bd B, is given, as in Sec. II A, in the form KAssoc 
=exp( - AG,,,/kT), where AG,,,, = AG,,, - AG, 
-AG,-E,=&-/.L;-p;-E,. 

Results based on this theory are displayed in Fig. 1. 
This figure shows the pure solvent density ps (a), the sol- 
vation enthalpy AH, (b), and the solvation entropy A,S, 
(c) as functions of the solvent molecular size r,, for Pu*/ 
kT= 1.609 and for two values of the solute-solvent inter- 
action: qJkT=2.0 and l ,JkT=O. 1. In the present, 
mean-field, theory the results are independent of the lattice 
geometry, and when scaled by the number of nearest- 
neighbor sites I,, are also independent of the dimensional- 
ity. For this pressure ps=0.8 for r,= 1. In Figs. l(b) and 
1 (c) only quantities derived from pi are compared, in the 
spirit of the comment made after Eq. (44). In one dimen- 
sion the MFA result is expected to be the least satisfactory, 
however, in this case the exact results, Eqs. (29)-( 32) are 
available. As discussed above, the exact one-dimensional 
AHa and AS, do not depend on r, at constant pressure, 
while the MFA results show such dependence. 
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FIG. 1. The dependence of the pure solvent density (a), solvation en- 
thalpy (b), and solvation entropy (c), on the solvent size expressed by r,. 
The results are obtained from the mean-field theory for eJkT=O.l (dot- 
ted line) and QkT=Z (solid line), both at W/kT=1.609 (for this 
choice p,=O.8 for r,= 1). 

The models discussed so far are of the NILG type, 
with the solvent being the lattice equivalent of a hard- 
sphere fluid. In what follows we consider a model, due to 
Sanchez and Lacombe which takes into account interac- 
tions between solvent molecules in a mean-field scheme. 
We shall use the model in our first attempt to analyze the 
experimental result. 

Ill. MEAN FIELD APPROXIMATION FOR INTERACTING 
LATTICE GAS 

The models considered in Sec. II disregard solvent- 
solvent interactions. Another mean-field approach, due to 
Sanchez and Lacombe (SL) 28*33 takes such interaction into 
account. The price paid in this approach is the neglect of 
correlations in the solvent structure near the solute which 
may be important for strong solvent-solute interactions. In 
this section we explore the consequences of this theory for 
the association reaction in general and for ion pairing in 
particular. 

As before we consider the free energy associated with 
the insertion (at infinite dilution) of an impurity (solute) 
molecule to the pure solvent. From this solvation energy 
other thermodynamic quantities are derived. We again ap- 
ply the result of this calculation to evaluate the thermody- 
namic quantities associated with a simple association reac- 
tion A + B+AB. With appropriate choices for the 
interaction parameters for the different species, estimates 
for the equilibrium properties of ion-pairing reactions can 
be obtained. The dependence of this equilibrium on the 
nature of the solvent, on the solute-solvent interaction and 
on the temperature and the pressure is finally obtained 
within this model. 

A brief review of the SL theory follows. The system 
studied consists of a mixture of Ni molecules of type i, 
(i= l,...,k), where i denotes the particular component of a 
k-component mixture. Each molecule occupies ri sites on a 
lattice of coordination number z. The total number of sites 
is M=No+&rfll where No is the number of empty 
lattice sites. The average molecular size is defined as 
r= 2;= trfli/N, where N= 2:= tNi is the number of mole- 
cules. We also define pi= rJJi/rN, SO that l/r= Xf= I#i/ri. 
pi is the probability that a site is occupied by molecule of 
type i in a closed packed ( No=O) mixture. 

The volume of the system is defined, as before, by 
V=Mu*, where u* is the average volume of a lattice site in 
the mixture. In general, v* is a function of the volumes 
vr that will be used in a lattice description of the pure 
component i, but in this simplified approach we take vr 
= v*, independent of i. Using a closed-packed volume, de- 
tined as v*=v*rN, the reduced volume irand the reduced 
density p can be defined as v= V/v*= l/p. Then, using 
the definitions for di and E the probability of occupation of 
a given site by a molecule of kind i is given by pi=+ip 
= rfl/M. It is also useful to define the closed packed mass 
density of component i, p” = mi/(r,U*), where mi is the 
corresponding molecular weight. 

The energy of the system, considering only nearest 
neighbor interactions is given by 

E=- 2 C Nijeijj 
i=l j>i 

(45) 

where Nij is the number of nearest-neighbor pairs of mol- 
ecules of types i and j and where Eij is the (attractive) 
interaction energy between particles of kinds i and j. The 
latter is assumed to be temperature independent. The in- 
teraction between an empty site and its neighbors is taken 
zero. For Nij Sanchez and Lacombe33 use a mean-field 
approximation 

Nij = $Mpipj 

which leads to 

(46) 
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k k 

E=-EM C 1 pipjeij 
i=l j=l 

k k 

=-- M C C Pipj$.=---Mp@*, i=l j=l 
(47) 

where E$= (z/2)~ij is the scaled attractive energy Eij 
( =eji) and 8 is defined as 

E*= ii, 4&- i C $AjA$s (48) 
i=l j>i 

where Aej = (ez + eTj - 2~;). 
The Gibb’s free energy of the system can be obtained 

as the logarithm of the isothermal-isobaric partition func- 
tion or, using standard procedures, as the logarithm of the 
maximum term in the corresponding sum over energy and 
volume. This is equivalent to considering the free energy as 
the logarithm of the generic term in the sum over V 

G(V) =E( V) +PV-kT In Q(V) (49) 

[where E( V) and a( V) correspond to the maximum term 
in the sum over E for a given Vj then find its minimum 
with respect to the volume. In Eq. (49) the volume V is 
given by V= Mv* = i%*rN and the number of configura- 
tions is estimated using the Flory approximation3’ 

(50) 

where Wi are the internal entropy factors, defined by Eq. 
(36). This leads to 

k +i 4i +i*np+ ,zl ,i*n - ( III . 
*i 

(51) 

In the reduced representation of Eq. (5 1) the minimization 
with respect to V amounts to the condition [a(G/rN)/ 
aq,,,=O. The result is an equation of state of the mixture, 
which relates the value of V (or No) to the pressure P, T, 
and r, 

Elp’+Pv*+kT[ln(l-p)+( 1-i)p]=O. (52) 

Note that the values of r and E* in the above equations 
correspond to the average values for the mixture. The same 
equation of state is obtained for the pure components. A 
pure solvent is characterized by three independent param- 
eters e;, u*, and r, that can be fitted to experimental 
data.29133 The additional parameters l $ are, in general, es- 
timated from empirical rules, e.g., the Berthelot (geomet- 
ric mean) formula e$ = &j& 

The isothermal compressibility (8) and the isobaric 
expansivity (cz) are derived from the equation of state (52) 
as 

(54) 

Note that the average size r of the molecules in the mixture 
appears explicitly in the above equations. In addition (r and 
p depend on r also via the r dependence of p. Equation 
(52) implies that the density increases with the size (r) of 
the chain, for constant interaction energies and site vol- 
ume. Indeed, 

aP ( ), PP 
z pT=m* (55) 

This is in agreement with the analysis of Patterson2’ ac- 
cording to which the free volume decreases when the chain 
size becomes longer. Finally, the internal pressure of the 
mixture, Pint, which is a measure of the strength of the 
intermolecular interactions,29 is given by 

(56) 

Consider now the thermodynamics of a binary mixture 
of a solute a and solvent s. The pure components are char- 
acterized by the parameters r,, ~2, r, , and eza, however the 
thermodynamic properties in the limit of infinite dilution 
will not depend on e$,. r, and eg determine, via the equa- 
tion of state (52) for the pure solvent, the density ps. In 
addition, the mixture is characterized by the solvent solute 
interaction ezS. The chemical potential of the solute in the 
mixture, pa, is obtained from Eq. (51) 

I+= a2v, N pT ( 

aG 

) , 

=kT in(k) +kT&+ra(pi;u*-p&+pAe~& 

+kT -$+(Ll)ln(l-p) 
I II . (57) 

In the infinite dilution limit (4,-O, 4,-l, p+ps, and 
4=ps=: pa) this becomes 

+kT -i+(U,-l)ln(l-p,) 
[ II 

=kT[(l-r,)+ln(p#;‘)l 

+r,[-2E~~p,-kTln(l-pp,)]. (58) 

The first term on the right-hand side of Eq. (58) depends 
on properties of the solute only and plays the same role as 
the first term of Eq. ( 11). The remaining term, 
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pf’ = --r&Tln(l-p,), (59b) 

A= - ~~&sPs (59c) 

may be identified as the free energy of solvation, AG,, in 
infinite dilution. This energy is composed of two contribu- 
tions. The first, pjr”, which survives when e,*, -+ 0, is the 
cavity formation term. The other, p:, is associated with the 
solute-solvent interaction. Note that the solvent-solvent 
interaction ez do not appear explicitly in Eq. (59), in 
agreement with the general treatment of Yu and Karplus,36 
so that AG,, depends on this interaction only via ps. 
Changes in the other thermodynamic quantities associated 
with the solvation can be calculated from pi. The results 
are 

AHa=ra -2~zp,$- Tci, -2c$,$kT ps 
i ( )I l--P, ’ (60) 

I 
PS AV,=rg, -2&,i-kT - 

1-A 1 
=r, & 2ps(ez--Ez) -kT i +z , 

I I I I 
(61) 

AE,=AHa-PAV,, (62) 

A+&=; (AH*-AG,). (63) 

The same results can be obtained from the infinite dilution 
limit of the expressions derived by Sanchez and La- 
combe.29 Note that Eqs. (60)-(63) contain contributions 
associated with the cavity formation, that were disregarded 
in the results of Sec. II. Also note that because e$ does not 
appear explicitly in Eq. (59c), this result for pi has the 
same form as the weak coupling, ez < kT, limit of JZq. (40) 
(to see this the substitutions ezs = $E, and rg= I, should be 
made). It should be kept in mind however that ps is dif- 
ferent, for given P and T, in these different models. 

Using the above results for the association reaction 
A + B -+ A B we get for the thermodynamic functions of the 
association reaction 

AG~soc= -E,-PPs(E,b--slab-Easla-Eb~b) 

-kT(r,b-t-,-r&( I-&), (64) 

~ASXX:= -4- PJ 1+ Ta,) (%b--sJab-Eadz-~b~b) 

asps +kT*(r,b-I’,-rb) - 
l---P,’ 

(65) 

PS 
+kT&(rab--ra--rd - 

l--P,’ 
(66) 

(67) 

TABLE I. Parameters i*, and v* for long chain PEO and PPO obtained 
from a non-linear fitting of the thermodynamic data given, respectively, 
by Refs. 24 and 38 to the equation of state (52). 

PPO 
PEO 

@  (kcal/mol) 

1.127 
1.339 

v*(cm’/mol) 

11.41 
11.07 

asps ln(l-p,)+T----- 1 l-f, ’ 
(68) 

where ET is the energy of the dissociation reaction (E,> 0) 
and where li=rs (i=a,b,ab). The terms proportional to 
r&-ra-rb are associated with the cavity formation, and 
vanish if the solute sizes are additive, i.e., r&,=r,+rb. The 
equilibrium constant for the association reaction is given as 
before by 

K Assw = exp ( - AGAss& T 1. (69) 

IV. IMPLICATIONS FOR POLYETHER ELECTROLYTES 

In the case of a pure long chain polymer (i.e., very 
large rs), the equation of state (52) depends only on the 
parameters e$ and v*. These parameters are obtained in 
general from a nonlinear fit of the thermodynamic proper- 
ties of the polymer to those inferred from the equation of 
state. Since the available data is usually the temperature 
dependence of the mass density (not the number density) 
at atmospheric pressure (PzO), this procedure yields ~2 
and p*. In order to obtain the value of v* it is necessary to 
use one additional relation, e.g., Eq. (56), for the internal 
pressure.2g’37 Applying this procedure, using the thermo- 
dynamic data for long chains (rp CO ) PEO and PPO, 
given, respectively, in Refs. 24 and 38, leads to the values 
given in Table I.39 Note that the interaction energy ob- 
tained for PEO is larger than that for PPO, implying a 
smaller free volume in PEO than in PPO. This is probably 
related to the partial crystalline structure of PEO and may 
not reflect the correct properties of amorphous PEO. Using 
the temperature dependence of the mass density for long 
chain PPG given by Stevens and co-workers@ one finds a 
value for ~2 that is only 5% larger than the one for PPO in 
Table I. Therefore, we use the values in Table I for all the 
experiments involving PPO and PPG. 

In what follows we assume that the solute molecular 
sixes are additive, namely, r&=r*+ rb so that terms in the 
free energy of solvation associated with the cavity forma- 
tion will cancel in the free energy of the association reac- 
tion. We also assume that the interactions E,beS, east EbS, 
E, and the numbers of nearest neighbors I,, lb, and I&, are 
temperature independent constants. Under this assumption 
the dissociation-association equilibrium is determined by 
the pure solvent properties expressed by ps, Ta,, and & 
and by the two energy constants E,--the ion-ion binding 
energy and Es= (+,-&,-E,la- eblb) . It is interehng t0 
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FIG. 2. Temperature dependence of the thermodynamic functions (en- 
thalpy, entropy, and volume) of the association reaction, for constant 
pressure (P= 1 atm) and solvent molecular size (r,= 10 OCO). 

note that, within the present model, the equilibrium con- 
stant Eqs. (64) and (69) depend on the pure solvent prop- 
erties and on the external pressure and temperature only 
through the solvent density ps. 

Not enough is known about the molecular parameters 
to make the theory fully predictive, and in any case the 
model may be too restrictive to fully account for the ex- 
perimental observations, as discussed below. In what fol- 
lows we compare the behavior of the model with experi- 
mental observations in order to see whether consistency 
can be obtained with a reasonable choice of parameters. 

In order to use the data for AHti and ASh,, pro- 
vided by Schantz4 we note that these values were calcu- 
lated by identifying hGM = - kT In EbW with E,,, 
calculated in units of //mol. Our Ka is dimensionless 
since the concentrations were expressed in number of mol- 
ecules per site. Therefore, K&,-- - v*KAssoc and v*, the vol- 
ume per site should be expressed in e/mol. Therefore a 
factor of - kT In v* should be added to our AGkssoc and 
ASti in order to correspond to Schantz’s data. (This 
factor is sometimes referred to as the “molar translational 

50 I 
0.0 1.0 2.0 < . 

logJP/atm) 
I 

FIG. 3. Pressure dependence of the thermodynamic functions of the as- 
sociation reaction, for constant temperature (T=295 K) and solvent 
molecular size (r,= 10 COO). 

entropy change in the association reaction.“‘2(a’) In what 
follows we denote zAsWc = AG&, - kT In v* 
=AHM-T~kgsoc. 

Using the results of Schantz:4 AH*,=4 kJ/mol and 
X3-= 101.7 J/(K mol) for NaCF3S03-PPO at 295 K 
together with p,=O.9223 and a,=7.205 X 10M4 K-’ (ob- 
tained from Eqs. (52) and (53), respectively, using the 
parameters of Table I and r= 10 WO) and v*=11.41 
x 10U3 e/m01 (cf. Table I), we get from Eqs. (65 ) and 
(68) E,=229.7 kJ/mol and E,= -209.0 kJ/mol for this 
system. A similar analysis for LiClO,-PPO where, at 295 
K, AH&,= 13 kJ/mol and hsh = 122.0 J/(K mol) 
(Ref. 4) yields Er=249.3 kJ/mol and Es= -234.5 k.J/ 
mol. 

The value obtained for E, is about half of the electro- 
static interaction between the two bare ions separated by 3 
A. This low value reflects the fact that only short range 
interactions are included in our description: Es includes 
only such short range contributions to the solvation energy 
of the ions and of the associated pair, therefore Er repre- 
sents the energy needed to separate the ions in vacuum 
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FIG. 6. Temperature dependence of the association equilibrium constant 
at constant volume (i.e., constant solvent density). The value of ps used 
is pl=0.92, which is the density calculated from Fq. (52) at P= 1 atm 
and T=295 K. Solvent size is r,= 10 OCO. 

represents the triflate anion. This is a reasonable result 
considering the fact that both the anion and the ion pair 
interact considerably more weakly with the PPO solvent. 

50. ! I 
0 5 10 15 20 

P s 

FIG. 4. The dependence of the thermodynamic functions of the associa- 
tion reaction on the solvent size expressed by r,. The temperature and the 
pressure are T= 295 K and P= 1 atm. 

Consider now the implications of these results on the 
temperature, pressure, and solvent molecular size depen- 
dence of the thermodynamic functions of the association 
reaction. Figures 2, 3, and 4 show the change in enthalpy, 
entropy, and volume per association-mole as functions of 
i? P, and r,, respectively, using Es= -209.0 kJ/mol and 
E,.=229.7 kJ/mol. Figures 5 and 6 show the temperature 
dependence of the association constant at constant pressure 
and at constant volume respectively for a solvent of large 
molecular weight (r,= 10 000). Note that these figures (as 
well as Figs. 7 and 8) show xASsoc = u*KASSoc. The pressure 
dependence of gASsoc is displayed for the same r, in Fig. 7. 
Finally, Fig. 8 shows the r, dependence of EASSoc at stan- 
dard temperature and pressure. It should be emphasized 
that r,, the number of “chain units,” does not necessarily 
represent the number of real ether monomers in the chain. 
It is however proportional to this number. 

reduced by the long range part of the contribution from the 
solvent polarization. 

From the results displayed in Figs. 2-8 the following 
conclusions can be drawn: 

If, following Papke et ab41 we take E,,= 59 kJ/mol and 
1,=4, where Q is Naf in NaCFsSOs-PPO, the above esti- 
mate of Es leads to E,~-$~~-E~J~z~~.O kJ/mol, where b 

(a) The enthalpy and entropy of the association reac- 
tion vary in a reasonable range with temperature and pres- 
sure. It is interesting to note that AHAssoc changes sign with 

11.1 I / I I lLO I 

LOS I I I I I 
290 310 330 350 

T(K) 
‘.Oo~ lo!z,o(p/atm) . 

FIG. 5. Temperature dependence of the association equilibrium constant 
at constant pressure for P= 1 atm and r,= 10 Ooo. 

FIG. 7. Pressure dependence of the association equilibrium constant at 
T=295 K, for rr= 10 000. 
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FIG. 8. Solvent size dependence of the association equilibrium constant 
at P= 1 atm and T=295 K. 

increasing pressure which indicates that the observation of 
increasing ionic association at higher temperatures may be 
pressure dependent. The temperature and pressure depen- 
dence of j?*,, is consistent with the experimental obser- 
vation. 

(b) The dependence of the thermodynamic functions 
of association on the solvent molecular size and in partic- 
ular the decrease of i?Assoc with r, shown in Fig. 8 is con- 
sistent with the observation of Tore11 and co-workers3 on 
short (4-8) chain methyl caped PPO, but not with the 
observation of the opposite effect in longer chain PPG.2 
Unfortunately, there is no overlap between the size range 
of these two groups of experiments and the results of Fig. 
8 suggest that the trend observed in PPG is due to chain- 
end effect as discussed in Ref. 3. This statement cannot be 
made conclusively, however, in view of the shortcomings 
of the present model as discussed below. 

(c) The results for the volume change which accom- 
panies the association reaction greatly overestimate what is 
reasonably expected. Typical volume changes per reaction 
mol are expected to be of order of 10 cm3/mol, an order of 
magnitude lower then the results displayed in Figs. 2-4. 
The reason for this failure of the SL model is the use of the 
simple mean field assumption (46) as the estimate of the 
number of nearest-neighbor pairs, as discussed below. 

(d) As pointed out in Sec. I, the increase in association 
with increasing temperature in the 1:l salt-polyether com- 
plexes is reminiscent of the phenomenon of lower critical 
solution temperature observed in many polymer solutions. 
Indeed, in a simple mixture composed of a “solvent” s and 
a “solute” a, the association reaction a+a+aa may be 
viewed as a first step in a phase separation process. How- 
ever, a closer look at the theoretical results indicates that 
no direct connection exists between the two phenomena. 
To see this note that our arguments are derived from the 
thermodynamics of the system at infinite dilution where 
phase stability [see Eq. (58b) of Ref. 281 is automatically 
satisfied. It is nevertheless interesting to examine the im- 
plications of Eqs. (64)-(68) for this simple association 
reaction. Taking b=a, r,,=2r,, IZ~~-~=E,, and I,,-21, 
= -2 we find from Eqs. (65) and (68) 

Wisoc= --Er+2p,( 1+ Ta,k,,, (70) 

As Assm = %4%% 9 

so that 
(71) 

Mt,s.wc= ( --E,.+2psqzJ + TM~psw. (72) 
The terms in brackets in Eq. (72) is of energetic origin and 
measures the net reaction free energy (bare reaction energy 
-l-difference in solvation energy between an aa dimer and 
two u monomers). The other, entropic, term is positive 
(provided that the vacancy concentration is not zero so 
that a,> 0) and its presence enhances the possibility that 
~Asscc will be positive, namely, that association will be 
enhanced at higher temperatures. 

(e) The structure of the result for MA,,, , Eq. (65) is 
consistent with the observation that the trend in the tem- 
perature dependence of the ionic association is reversed for 
species of higher ionic charges (e.g., Ndf3-triflate com- 
plexes3): within the present model it simply implies that 
the ratio E/Es is usually larger for systems with more 
highly charged species. 

While, except for the prediction for the volume change 
upon association, the SL model seems to behave reasonably 
in the present context, the structure of Eqs. (64)-(68) 
reveals a major weakness: Consider, for example, the first 
term in the expression for hs,,,, Eq. (68). This term is 
linear in Es so that when, e.g., ebs=enbes=O this term di- 
verges when ens+ CO. This is unphysical: in reality once the 
solvent occupation is saturated in the sites nearest to spe- 
cies a, further increase in the interaction energy cannot 
affect ASb, in this nearest-neighbor interaction model. 
The same reservation holds for the similar term in A I’,,,, . 
Since Es was fitted to the experimental value of hs,,,, , the 
entropy behaves reasonably but the volume change is over- 
estimated. 

The origin of this unphysical behavior lies in the ap- 
proximation (46) which takes Nii to be independent of Eij. 
This is a poor approximation unless Eij < kT. Note that 
this simplification is avoided in the mean-field treatment of 
Sec. II C, where our ansatz (39) takes the solvent density 
in sites nearest to the solute to explicitly depend on the 
Boltzmann factor eEdkT. This may be achieved more rig- 
orously and without sacrificing solvent-solvent interac- 
tions by using the Guggenheim quasichemical approxima- 
tion (QCA) .35 

V. CONCLUSION 

In the present paper we have presented a model for 
association-dissociation reactions in polymer solvents in 
the framework of lattice gas models, and have discussed 
ion solvation in polymer-salt complexes in this context. 
After introducing the theoretical concepts using several 
noninteracting lattice gas models, we have focused on the 
Sanchez-Lacombe theory in our first attempt to analyze 
experimental data. Our model focus on the effect of short 
range interactions on the temperature, pressure, and sol- 
vent size dependence of the thermodynamic functions of 
solvation and of association equilibrium. Although the for- 
malism has sufficient physical contents to enable such anal- 
ysis, and even though most general behaviors predicted by 
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the model are reasonable, the analysis shows a critical flaw 
in the model associated with its inability to correctly ac- 
count for strong solvent-solute interactions. In a following 
paper this flaw is remedied by applying the QCA to the 
same model. 
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APPENDIX A: DETAILS OF THE CALCULATION OF pi 

Using the definition of & given by Eq. ( 11)) one has 

Pi= -kT ln(exp[ - W,(R)/kT])R, (AlI 

where the average is over all the configurations R of the 
solvent. In the present model W, is a sum over the sites 
nearest to the solute of the nearest neighbor interactions, 
and the average is over the occupation probability of these 
sites: each site can be occupied or not with probability 
proportional respectively to 1 and @dkT. Therefore, the 
average in Eq. (Al) leads to 

(exp[ - W ,WVkTl)R= 
=(l-pp,+pge~kT)r~, (A2) 

where in the last equality Eq. (10) was used. This leads to 
Eq. (13). Note that the average (exp[- W,(R)/k7’j)R is 
equal to the ratio BJZO of Eq. (7)) with the substitution of 
&JkT in terms of ps. 

APPENDIX B: THE CHEMICAL POTENTIAL OF AN 
IMPURITY IN A 1D NILG 

We consider a one-dimensional lattice with M+ 1 sites 
containing N solvent molecules of size r, (each occupying 
r, consecutive sites) and one impurity molecule of size 1. 
The impurity interacts with nearest-neighbor solvent sites 
with energy -E,. We use cyclic boundary conditions 
(ring geometry) and take M-+ CO at the end of the calcu- 
lation. This system has three energy levels: E=O (when 
sites adjacent to the impurity are vacant), E= --teas (when 
one of the two sites adjacent to the impurity is occupied by 
the edge site of the solvent molecule) and E= - 2~5, (when 
both sites neighboring the impurity are so occupied). The 
rest of the system behaves as a free solvent. Correspond- 
ingly the partition function for this system can be written 
as 

QdM,N) =Qo(M-2,N) +2Qo(M- 1 -r,,N- l)ecdkT 

+Qo(M-2rs,N-2)~e~~kT. 031) 

Using Eq. (25) this can be rewritten in the form 
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2Ne%s/kT 
Qe(M,N) =Qo(M--2,N) 1 +M- 1 -Nr 

s 

N(N- l)e2@= 
‘(M-Nr,)(M-1-Nr,) ’ 1 U32) 

Using the Stirling’s approximation and neglecting 0( l/M) 
terms we have 

In Qe(M--2,N) =ln Qo(M,N) -2 ln(“iyNzN) 

(B3a) 

and to the same order 

2NeedkT N(N- l)e2EadkT 
M--l-Nr,+(M--Nr,)(M-1-Nr,) 

=2ln( l+g). 

(B3b) 

These equations lead to 

Q,W,N> =Qo(M,N) . 

The excess free energy, or the solute chemical potential 
at infinite dilution is obtained from 

&=&--Ao= -kT(ln Q,--ln Q,), 035) 

where A is the Helmoltz free energy. Equations (B4) and 
(B5) lead to Eq. (28). Note that the result does not de- 
pend on the system size M, as expected from a local per- 
turbation. 
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