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A procedure for calculating nonadiabatic transition rates in the semiclassical limit is 
implemented and tested for models relevant for condensed phase processes. The method is based 
on evaluating the golden rule rate expression using a quantum description for the electronic 
subsystem and a semiclassical propagation for the nuclear degrees of freedom, similar to Heller’s 
calculation of absorption and Raman spectra. In condensed phase processes, the short lifetimes 
of the relevant correlation functions make it possible to implement the procedure within the 
frozen Gaussian method. Furthermore, because of the large density of states involved, which 
implies fast dephasing, incoherent superpositions of frozen Gaussian trajectories may be used for 
the evaluation of the rate. The method is tested using two simple exactly soluble models. One of 
them, consisting of two coupled electronic potential surfaces, harmonic and linear, is also used 
for testing and comparing a recently proposed algorithm by Tully. The other, the well-known 
displaced harmonic potentials model, is a prototype of many condensed phase processes. Finally, 
the method is applied for calculating the nonadiabatic radiationless relaxation of the solvated 
electron from its tist excited state to the fully solvated ground state. 

I. INTRODUCTION 

There has been much activity in the past few years 
aimed at developing methods for simulation of quantum 
processes in condensed phases.‘12 Because of restrictions 
imposed by available computing resources, most ap- 
proaches use some form of mixed quantum-classical repre- 
sentation of the system. The idea behind this approach is 
that, for many processes in condensed phases, quantum 
mechanics may govern only the time evolution of solute 
molecules under study, whereas the motion of the sur- 
rounding thermal bath is essentially classical. This is the 
basis for several calculations which apply a variety of 
methods for mixed quantum classical calculations, e.g.; 
path integral Monte Carlo,‘(b)F1(c) path integral molecular 
dynamics, ‘(‘)J(~) 
approach,‘(e) 

the Car-Parrinello density functional 
and the quantum-classical time dependent 

self-consistent field (TDSCF) approximation.’ (f)71(g) Of 
these, only the latter is capable of treating excited states 
and quantum dynamical phenomena. 

In mixed quantum-classical approximations of the 
SCF type (including the path integral and the Car- 
Parrinello method), the force exerted on the classical par- 
ticles by the quantum subsystem is approximated by the 
corresponding expectation value with the instantaneous 
wave function of the latter. This is a reasonable approxi- 
mation when the quantum subsystem explores the proba- 
bility space occupied by its wave function on a time scale 
short compared with the characteristic time of the classical 
system. When this is not so, e.g., when the quantum mo- 
tion involves slow tunneling between two distinct sub- 
spaces, SCF approximations may fail badly. 1(g),374 It is im- 
portant to realize that this is a failure of the SCF scheme, 
not of the mixed quantum classical representation per se. A 
fully quantum Hartree approximation will also fail under 
similar circumstances. In such cases, multiconfiguration 
TDSCF’(g)13t4 provides a practical generalization, similar 

to configuration interaction methods in time independent 
calculations. In this approach, the wave function for the 
total system is represented as a sum of Hartree-like prod- 
ucts Y (s,b,t) =Et4i(S,t)Ki(b,t), where s and b denote “sys- 
tem” and “bath” coordinates, respectively. However, un- 
like its single configuration counterpart, the MC-TDSCF 
cannot be carried over to the mixed quantum-classical rep- 
resentation in which the time evolution of K(b,t) is re- 
placed by classical equations of motion. 

A special case in which the quantum subspace is 
strongly divided and simple SCF fails is when the process 
under study involves nonadiabatic transitions between dif- 
ferent states of the quantum subsystem. Here the classical 
subsystem is associated with different potential surfaces for 
the different quantum states, and applying the simple TD- 
SCF scheme amounts to replacing these by a mean poten- 
tial whose value is determined by the instantaneous popu- 
lations of the different quantum states. Again this may fail 
very badly as has been discussed by several authors.‘(g)p4-7 
A practical quantum-classical approximation for this class 
of problems is provided by the Tully-Preston surface hop- 
ping technique, ’ in which classical motion is carried on 
isolated potential surfaces, except at near crossing loca- 
tions, where Landau-Zenerg or an equivalent theory is 
used to assign new populations to the different quantum 
states. Obviously this method is limited to processes in 
which the nonadiabatic transitions are dominated by sur- 
face crossing events. An important generalization of this 
approach was recently provided by Webster et al. lo and 
applied to describing solvation of an excess electron in wa- 
ter. In this approach, the force on the classical subsystem is 
calculated, during a short coherence time At, using the 
Pechukas theory” which provides an expression for the 
effective force on the classical subsystem in terms of the 
full quantum path taken by the quantum subsystem. Be- 
cause of the self-consistent iterative manner in which this 
effective force has to be calculated, this method is highly 
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CPU demanding and can be applied reliably mainly to 
cases where the transition is dominated by isolated surface 
crossing events. Also, the dependence of this method on 
the choice of the coherence time At is a drawback that will 
need further studies in future applications. 

Another generalization of the surface hopping tech- 
nique was recently suggested by Tully.’ In this algorithm, 
as in the original surface hopping method, trajectories 
evolve on individual surfaces and make instantaneous hops 
from one state to another with corresponding velocity ad- 
justment to conserve energy, however, hops can occur any- 
where in space and time as governed by quantum transition 
probabilities, provided energy can be conserved. The algo- 
rithm is supplemented by the “fewest switches criterion” 
designed to achieve the correct fraction of classical trajec- 
tories assigned to each quantum state with the minimum 
number of state switches. It was recently applied to the 
dynamics of electron solvation in liquid helium by Space 
and Coker. l2 

The important advantage of the new Tully method5 
over the original surface hopping approach’ is that it can 
be applied to transitions which are not dominated by dis- 
tinct surface crossing events. Many such situations are 
characterized by weak coupling between the quantum 
states involved, and consequently, the transitions are slow 
so that evaluating rates can become very costly. Also this 
algorithm cannot be applied to tunneling transitions (e.g., 
the Landau-Zener curve crossing model with initial energy 
below the surface crossing energy) because of the inherent 
classical nature of the trajectory. On the other hand, in 
most such situations, perturbation theory is valid. This 
suggests that a direct evaluation of the perturbation theory 
expression for the transition rate using some form of mixed 
quantum-classical simulations may be a useful alternative 
route for studying many nonadiabatic processes. 

To be specific, consider the golden rule expression for 
the thermal transition rate between two electronic states 1 
and 2 

k 

(1) 

where /3= (JcB7’)-l and Z1 = Ze-@li. I i) and ( f) are 
nuclear states associated with the initial ) 1) and the final 
12) electronic states, respectively. Denoting V,, 
= (1 I VJ 2) (still an operator in the nuclear subspace), Eq. 
( 1) may be rewritten as a Fourier transform -of a correla- 
tion function 

QJ k 1-h2= 
s 

dt eiAEt”C( t) , (2) 
--cI) 

where AE is the difference between the energy origin of 
surface 2 and 1 

C(t) =Zv1fiw2 C e-/3E’(iI ~l,eiHzt/~~21e-iHit~~ 1 i) 
i 

=tT2( V12e’H2t’V21e- iH1 t/ii ) T. (3) 

In Eq. (3), H1 and H2 are the nuclear Hamiltonians asso-- 
ciated with the electronic states 11) and ]2), respectively, 
each measured from its own electronic origins. This sug- 
gests that the rate may be obtained from a classical or 
semiclassical evaluation of the correlation function C(t) . 
Heller13 has used this approach in his evaluation of optical 
and Raman line shapes using Gaussian wave packets. 
More recently, the same approach was used by Herman14 
for vibrational relaxation and by Villareal et al. l5 for vibra- 
tional predissociation. A different method was recently 
used by Haug and Metiu16 for absorption spectra in a 
mixed quantum classical system by using a swarm of tra- 
jectories to represent a “classical” wave function for the 
essentially classical coordinate. 

In a recent preliminary report,17 we have used this 
approach to calculate the rate of the nonadiabatic radia- 
tionless transition from the first excited state of the hy- 
drated electron to the ground fully solvated state of this 
species. This calculation has followed recent reports18y1g 
which indicated that the observed evolution of absorption 
spectra associated with electrons injected into liquid water 
cannot be accounted for by an adiabatic evolution on a 
single potential surface. We have used the golden rule ap- 
proach described above, where the correlation function 
C(t) was evaluated using classical molecular dynamics for 
the water molecules in the two electronic states. There 
were two new elements in this calculation: (a) because the 
adiabatic potential surfaces associated with the ground and 
excited states of the hydrated electron are not known, they 
were evaluated in the course of the simulation by evaluat- 
ing the electronic energies, the forces on the nuclei, and the 
coupling matrix elements V1, at every nuclear position. 
(b) Classical mechanics for the nuclei is not sufficient for 
this calculation because of the expected role of Franck- 
Condon factors in determining the values of the matrix 
elements (li 1 VI 2 f), so semiclassical wave packets were 
used as in Refs. 13 and 15. However, we have argued that 
because of the short lifetime of C(t) in condensed phase 
processes [C(t) was shown to decay to zero with a lifetime 
of - 10 fs], frozen Gaussians2’ were sufficient for this cal- 
culation. Consequently, with a proper choice of the Gaus- 
sians widths, all the needed information is obtained from 
classical nuclear trajectories. 

The present article has three objectives: (a) we criti- 
cally examine the use of frozen Gaussian wave packets for 
evaluating golden rule rates of the form ( 1) by comparing 
results for simple models for which the golden rule can be 
calculated exactly; (b) we test the performance of the 
Tully algorithm for one of these models for which the exact 
time evolution may also be calculated; (c) we provide de- 
tails and corrected results for the application of the golden 
rule approach to the nonadiabatic hydration dynamics of 
an injected electron. 

The method is reviewed in Sec. II. Application to the 
(exactly soluble) model, which involves one harmonic and 
one linear one dimensional potential surfaces, is described 
in Sec. III, where a comparison to the performance of the 
Tully method is also presented. In Sec. IV, we discuss the 
performance of the frozen Gaussian-golden rule method 
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within the displaced harmonic potentials model, for which 
the golden rule rate can be evaluated exactly. Finally, in 
Sec. V, we describe the application of this approach to the 
nonadiabatic solvation dynamics of an electron. We con- 
clude in Sec. VI. 

II. THE METHOD 

The golden rule expressions ( 1 )-( 3) are a result of 
perturbation theory and, within the limits of its validity, 
can be used with many choices of zero order states and 
perturbations as dictated by the nature of the particular 
problems. In the simple models discussed in Sets. III and 
IV, we consider diabatic potential surfaces coupled by a 
constant (i.e., independent of nuclear position) perturba- 
tion. For these cases, the correlation function C(t) [Eq. 
(3)] takes the form 

cct)= 1 vlzlz @If@$-iH~t/fi)r 
#i 

, (4) 

where the thermal average is taken over the distribution of 
nuclear states on the initial potential surface. In actual 
application, e.g., the calculation described in Sec. V of the 
radiationless transition from an excited to the ground state 
of a solvated electron, the initial and final electronic states 
are assumed to be the Born-Oppenheimer adiabatic states 
and the perturbation V is the nonadiabatic coupling result- 
ing from the nuclear kinetic energy. In this case, the cou- 
pling depends on both nuclear positions and momenta. In 
what follows, we describe the calculation in terms of this 
coupling. The matrix element ( li [ VI 2 f) is approximated 
by 

(li] J712f)= 7 (~~)-1(Xj1)I~r(~llPll~z)Ix:2)) 
(5) 

where $r and & are eigenstates of the electronic Hamil- 
tonian iY,= T,+ V,,+ V,,+ Y,, (containing the elec- 
trons’ kinetic energy T,, the electron-electron interaction 
V ee, the electron-nuclear interaction Ve,,,, and the 
nuclear-nuclear interaction VNN, respectively) and where 
xi’*’ and #’ are eigenstates of the nuclear Hamiltonian 
H,=T~+(hlHelrP,) and H2=T~+(421He142). TN 
= B&/2Ml (the sum is over nuclei) is the nuclear kinetic 
energy expressed in terms of the nuclear masses MI and 
nuclear momenta PI. .Note that in Eq. (S), we have disre- 
garded terms containing a second derivative of the elec- 
tronic wave functions with respect to the nuclear coordi- 
nates (see below). Using Eq. (5), the rate k,,, and the 
correlation function C(t) takes the form 

k 112= 
s 

m  &C(t), (64 
--a0 

C(t) = 2 (M&fpZ*) -1 c &?-P-Q 
II’ i 

X(X!l’,lF,*~eiHz~‘~l,*~~,e-‘HI~‘*IX!l’), (6b) 

where Fr=K’(& 1 Prl &). The function Fl is also equal to 
the matrix element of the force between the two adiabatic 
states 

@ ,+ (6 I dVed%I $2) 
E , - E2 -” - (7) 

Note that in contrast to Eqs. (2) and (3), ~the Hamilto- 
nians HI and H, in Eq. (6b) are measured from a common 
energy origin. Therefore, the term exp (iAEt) which ap- 
pears explicitly in Eq. (2) is now contained in Eq. (6b). 

Our semiclassical calculation of the correlation func- 
tion (6b) is based on the observation that close to the 
classical limit it can be. approximated by 

C(t)= 
( 

c x til,[R(2)(t)] l v:;2’(t)FI[R(‘)(O)]vl1) 
I I1 

x (O>J(t) 
> T’ 

(W 

J(t)=(G’2’[R’2’(t),P(2)(t)] lG’1)[R’*)(t),P”‘(t)])(8b) 

where v=P/m and ( )r denotes thermal 
averaging. R@) (t) and v@) (t) (a = 1,2) are classical po- 
sitions and velocities evamated on the electronic surface (Y 
starting with initial conditions R(l) (O),vl”(O). These ini- 
tial conditions are sampled from the canonical distribution 
on surface 1 to achieve thermal averaging. The function 
1 Gca)[Rca) (t) ,P(“) (t)]) is a product, over the classical at- 
oms, of frozen Gaussians whose time evolution follows the 
classical trajectory 

= v Gj”‘(Ri,t)exp[i/fiJ’ L(")(t')dt'], 
0 

(94 

= (a/n-> 3’4 exp -I al Rl-Ria)(tj 2 
I I 2 

+i/fiPia’(t). [Rl-Rja)(t)] 
I 
9 (9b) 

L’“‘= f: [Pj”‘(t)12/Ml- @  Gjn’(H,I 7 Gja’). (9c) 

Once we limit ourselves to frozen Gaussians, the time ev- 
olution needed to evaluate J(t) and C(t) is purely classi- 
cal. It is important to note, however, that since the trajec- 
tories needed to evaluate J(t) [Eq. (8b)] evolve on 
different potential surfaces, the quantum mechanical 
phases associated with the Lagrangian (9c) do not cancel 
and may contribute in a significant way to the final result. 
Note also that the initial conditions for the time evolutions 
are identical for the two potential surfaces. In order to 
evaluate C(t) [Eq. (8a)], these initial conditions are sam- 
pled from an approximate thermal distribution associated 
with the initial nuclear Hamiltonian HI. In the present 
application, we approximate this thermal averaging by 
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sampling from a classical canonical distribution on surface 
1. This high temperature approximation can be improved 
upon in several ways that will be described in a subsequent 
paper. 

Finally, note that even though the two trajectories used 
to evaluate J(t) start from the same positions and mo- 
menta, the corresponding energies .are different since they 
evolve on different surfaces. This nonenergy conserving na- 
ture of the trajectories which stand in marked contrast to 
the usual surface hopping methods is not a matter of con- 
cern here because we do not evaluate the physical time 
evolution of the systems, but only information needed to 
calculate the transition rate. 

In Sec. III, we also examine the use of frozen Gaus- 
sians to calculate the transition rate out of a particular 
nuclear quantum state x$“(R) (with energy El,) of H1 . 
This can be done on two levels: 

(a) Following Heller?0Y21 the initial state is repre- 
sented as a superposition of N Gaussians, characterized by 
some chosen width to be discussed below, distributed 
evenly on the energy shell E(P,R) =Eln, 

x(R)= 5 CjGj(R) LW’j;Rj>=4,1. : (104 
j=l 

The correlation function C(t) = (x I V12eiH@Vzl 
X e--iHlt’* 1 x) then becomes 

C(t) = -c C qC’k(Gj 1 V~2e’H2”*V12e--iHlt’* ( GJ. 
i k 

(lob) 

The matrix element in Eq. (lob) is then evaluated in the 
frozen Gaussians approximation (FGA) as described 
above. In this case, the time evolved Gaussians are added 
coherently to form C(t). 

(b) The initial position and momenta are sampled 
from a classical microcanonical distribution characterized 
by the energy E,, (a better approximation, e.g., using a 
Wigner distribution, can be used). A proper width is cho- 
sen for the Gaussians centered about this initial position 
and momenta. The correlation function is calculated for 
this Gaussian by evolving it on the two surfaces, and finally 
an ensemble averaged over the initial position and mo- 
menta is formed. This amounts to neglecting the nondiag- 
onal terms in Eq. (lob) and to take all I Cj I 2 the same 
(i.e., l/N) for all initial samples which correspond to the 
given initial energy. While the latter scheme involving in- 
coherent superposition of Gaussians is obviously inferior to 
the former, this is a useful approximation for microcanon- 
ical rates in condensed phase systems where the potential 
surfaces (hence the initial nuclear wave function) are not 
known. In such systems, many initial quantum states con- 
tribute within the experimental energy resolution, and co- 
herencies associated with the nondiagonal terms in Eq. 
(lob) are expected to wash out. 

In many applications, e.g., Sec. V, the potential sur- 
faces E,(R) are not known, but can be evaluated locally in 
mixed electronic (quantum) -nuclear (classical) simula- 
tions. In such simulations, the relevant electronic wave 
functions 4,(R) and energies E,(R) are obtained for the 

instantaneous nuclear position R, and the nuclei move clas- 
sically under the combined influence of their mutual inter- 
actions and the expectation value of their interaction with 
the electron (s) (I& I d V,,/aR I4i) evaluated with the elec- 
tronic wave function $i (R) of the initial electronic state. It 
is important to note that in- this calculation of the elec- 
tronic transition rate, the needed electronic interaction is 
only that contained in the adiabatic wave functions and 
energies. The nonadiabatic coupling is obtained as a func- 
tion of nuclear position using Eq. (7). We note in passing 
that another nonadiabatic coupling term (& 18 I 42> that 
was disregarded in Eq. (6) can be evaluated in a similar 
way using the relation 

(+q$l+2) 
(4, i a%dafC 1 d2> =- El--E, 

+ c (~lIav,,/a~li9n)(~niav~~a~li~2) 

~ni52 (4--E,) (En---Ed ’ 

Obviously, thesum in the second term has to be truncated. 
Such adiabatic simulations have been used recently2225 

to calculate spectroscopic and transport phenomena asso- 
ciated with the solvated electron. A preliminary report of 
our application to nonadiabatic solvation of an electron in 
water has been recently published.” We note that adiabatic 
simulations using the Car-Parrinello’(e) method cannot be 
used at present for such applications because it is not suit- 
able for calculating excited electronic states. 

The procedure described above is only one of several 
possible approximation schemes. In particular, the use of 
the frozen Gaussians approximation (FGA) could be 
avoided; the variational Heller propagation method26 could 
be employed with a modest increase in computational ef- 
fort. However, FGA is expected to be valid for most con- 
densed phase processes because of the fast decay of the 
correlation function C(t). The reason for this is that dur- 
ing the short lifetime of C(t), the classical motion spans 
only very limited space and the atoms do not move far 
enough to explore the anharmonicity of their local envi- 
ronment. 

Another approximation employed in Eqs. (8) and (9) 
is the separability of G as a product over atomic Gaussian 
functions. Again this approximation is expected to do well 
for short times. A better but costlier alternative is to ex- 
press G as a product of Gaussians defined for the normal 
modes associated with the local harmonic approximation 
to E,(R). 

Finally, we discuss the choice of the frozen widths 
4 -1’2 of the Gaussians in Eq. (9b). For the coherent ex- 
pansion of individual energy levels [Eq. (lob)] of the har- 
monic oscillator in Sec. III, we have used the standard 
coherent states of the harmonic oscillator which are Gaus- 
sians whose width is that of the ground state wave function 
{a= [ ( mw)/Sij1’2). For high temperatures, the width is 
chosen to minimize the error resulting from the application 
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FIG. 1. A  scheme of the potential surfaces used for modeling transitions 
between a harmonic and a linear surface. 

of this method to the thermal transition rate in the dis- 
placed harmonic oscillators model. This leads to (see Sec. 
IV> 

6mkBT /It,, -’ 
a= 

fi2 ( 1 
u- 

6 + (11) 

As could be expected, a-1’2 is of the order of the thermal 
de Broglie wavelength Ath and has the convenient property 
of being independent of the local potential surface. At 
lower temperatures, the choice of the Gaussian width is 
less straightforward. For a harmonic oscillator at T=O, 
the width of the ground state Gaussian is [(mo>/fl-“2. 
This will be our choice also for anharmonic systems, pro- 
vided that they can be represented for each nuclear con- 
figuration as a collection of stable normal modes using the 
local harmonic approximation. This issue will be consid- 
ered in a future publication. 

In what follows, we describe several application and 
critical tests of the methods described above. 

In the diabatic representation, the correlation function 
C(t) for the thermal rate is given by Eq. (4) 

C(t) =- firil ~e--BEli(~(~)I~i~2~zr/fi~--i~l~/~I~~*)) (13) 

and the semiclassical approximation is invoked by replac- 
ing Eq. (13) by 

C(t)=$ (J(t))T (14) 

with J(t) given by Eq. (8b). We also consider transitions 
out of a single quantum state of the harmonic surface as 
discussed above. 

Consider first the transition rate from a single energy 
level of the harmonic potential to the linear potential. The 
golden rule expression for this rate can be obtained exactly 
as outlined in Appendix A. Following the procedure de- 
scribed in Sec. II, we represent the initial harmonic wave 
function as a coherent superposition of Gaussians, and 
propagate these Gaussians according to the FGA. It is 
convenient to use for this expansion the standard harmonic 
oscillator coherent states,20Y21 which are Gaussians whose 
width is that of the ground state of the oscillator [i.e., 
a= (mo)/A in Eq. (9b)]. Taking the initial wave function 
to be the nth level of the harmonic surface, the expansion 
in terms of N such Gaussian wave functions takes the form 

N 

xn(X>= C CjGj(X), 
j=l 

(154 

$2 
' jENEn/2 - exp (En/2 ) exp ( inrj + iPjXj/2 ) , (l>b) 

n 

III. TRANSITION BETWEEN HARMONIC AND LINEAR 
SURFACES 

Here we apply the method-to a simple model for which 
both the exact golden rule rate and the exact full time 
evolution may be calculated. We also use the same model 
to evaluate the time evolution according to the Tully mo- 
lecular dynamics with electronic transitions (MDET)~ 
method.5 

The model consists of two diabatic surfaces. An initial 
harmonic surface 1 coupled to a linear surface 2 with a 
constant interaction VI2 (Fig. 1). We use dimensionless 
representation in which the coordinate, the momentum, 
and energy are given in units of [fi/( mw)]“2, (mfiiw) 1’2, 
and &, respectively. The potential surfaces are given in 
these units by 

v, =-&x2, (124 

V2=aX+Eo; (12b) 

changing E. amounts to changing the crossing energy 
Vc = a =t= dm of the two surfaces. In all the calcu- 
lations presented, we used a = 6 (the same parameter was 
used by Heller13(‘) in a similar context). 

The comparison between the exact and the “coherent” 
FGA calculations [based on Eq. (lob)] of the transition 
rate from the n= 11 level of the harmonic oscillator is 
shown in Fig. 2(a) as a function of E,. The number of 
Gaussians used in this calculation is N= 300. For E. 
=40.3, the surfaces cross at the energy of the 11th oscil- 
lator level V,= E,= ,, = (y1+ l/2). For E. > 40.3, the initial 
energy E,,=,, is smaller than the crossing energy and the 
transition takes place by tunneling. We see that the agree- 
ment is very good even at the tunneling regime as long as 
the rate is not’ too small. The observed oscillations result 
from the structure of the initial harmonic (n = 11) wave 
function which has 12 maxima. For values of E. for which 
the peak in the Airy function [the eigenfunction of the 
linear potential (see Appendix A)] overlaps a peak in the 
harmonic wave function, the golden rule rate goes through 
a maximum as seen in the figure. Figure 2(a) also shows 
the result of the corresponding incoherent approximation 
using the same number N= 300 of Gaussians and keeping 
only the diagonal terms j = k in Eq. ( lob). Note that while 
the Gaussians used in the coherent expansion are the co- 
herent states whose dimensionless width is a-“‘= [ii/ 
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where rj=(2r/N)j, j=1,2 ,..., N, Xi= J~E,cos(T~), 

Pi= ~ Sin(rj), and E,=n+ l/2. G](X) are one di- 
mensional Gaussians [Eq. 9(b)] with averaged position Xj 
and momentum Pi. 
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(b) 
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n 

FIG. 2. (a) The transition rate from the n=ll level of the harmonic 
oscillator to the continuum associated with a linear potential. Parameters 
of the potentials are given in the text. Shown are the exact golden rule 
result (solid line), the “coherent” FGA calculation (dotted line), and the 
incoherent FGA results with A=1 (dashed line) and A=30 (dashed 
dotted line). (b) The transition rate as a function of the quantum number 
of the initial harmonic level for Eo= 19.37 ( Vc=3.5). Shown are exact 
golden rule results (solid line) and incoherent FGA results. Using A= 1 
(dashed line), A=30 (dotted line), and A=500 (dashed-dotted line). 

(mdY, in the incoherent calculation, we try different 
choices of this width because in practice the oscillator fre- 
quency is not known. In what follows, we use the dimen- 
sionless quantity A = [$V(mw)]a, so that the~ground state 
width is A-“‘= 1. In Fig. 2(a), we plot the results of the 
incoherent calculation for two different values of A,A = 1 
and A=30. It is obvious that this calculation cannot re- 
produce the oscillations observed in the exact and in the 
“coherent” FGA calculations. However, it does reproduce 
the general trends, e.g., the two peaks at Eo- - 15 and 40 
which result from the fact that in the microcanonical dis- 
tribution, larger weight is associated with phase points near 
the classical turning points. We also conclude that the 
choice of the width does not affect the results dramatically. 
Change of the width by nearly two orders -of magnitude 
does not change the rate by more than a factor of 2 in most 
of the spectrum. 

The exact and incoherent FGA results are shown as 
functions of the initial energy level in Fig. 2(b). Here E. 
= 19.37 ( V,=3.5). As before, the oscillations observed in 
the exact result are smoothed out in the incoherent FGA 

. _. 
-. FIG. 3. The transition rate out of-the n= 11 level of the harmonic oscil- 

lator. The exact results [from the solid line of Fig. 2(a)] are averaged over 
intervals of AEe=4 (solid line). Also shown are the incoherent FGA 
results with A=30 from Fig. 2(a) (dotted line). 

results, however, the general behavior is again reproduced 
correctly and as long as not too extreme values of the 
Gaussian width are chosen, the results do not depend 
strongly on this width. The latter observation holds partic- 
ularly for the higher energy states. 

Figure 3 compares the incoherent FGA result with 
A=30 to the exact result, the solid line of Fig. 2(a) coarse 
grained by averaging over E. windows of width AEo=4. It 
is seen that at this resolution, the results agree fairly well. 
For condensed phase systems where many quantum levels 
contribute to the initial energy state within the experimen- 
tal resolution, the incoherent FGA is thus expected to pro- 
vide a fairly good approximation to the microcanonical 
rate. 

The results obtained for individual levels can be fur- 
ther averaged to get the thermal rate. The temperature T 
will be expressed in units of (&)/kB. Since the thermal 
rate is an average of rates from individual quantum levels, 
we expect that the oscillations associated with the structure 
of individual wave functions will cancel out, and that the 
incoherent FGA will perform well even for the simple one 
dimensional example considered here. Indeed, as shown in 
Table I, the thermal rate is reproduced correctly by the 
FGA calculation at high enough temperatures. In the cal- 

TABLE I. The exact and FGA (incoherent) thermal rates for two cases 
in which the same linear and harmonic surfaces (parameters given in the 
text) are displaced differently, as expressed by the crossing energy V,. 
The FGA calculation was performed with A=6T. 

T Exact Vc=3.5 FGA Vc=3.5 Exact V,=15 .FGA V,=15 

0.5 1.04x 10-s 3.95x 10-4 4.24~ lo-l3 4.15x lo-‘* 
1 1.02x 10-r 9.81 x lo-’ 9.64x 1O-8 -1.4 x 1o-8 
2 3.64x10-* 3.70x 10-2 8.98 x lo-’ 7.10x 10-S 
3 5.25 x lo-* 5.31 x 10-2 8.63 x 1O-4 8.23 x 1O-4 
5 6.45 x IO-* 6.48 x lo-* 4.88~10-~ 4.87~ lo-’ 

10 6.45~ lo-* 6.47x lo-* 1.53x lo-* 1.55x lo-* 
12 6.30~ 10-l 6.26x lo-* 1.78~ lo-* 1.81 x lo-* 
15 5.87~ lo-* 5.94x 10-2 2.02x 10-2 2.08x lo-* 
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FIG. 4. The thermal FGA rate as a function of the frozen Gaussians 
width @=a-‘“) for different temperatures T=5 (solid line), T= 10 
(dotted line), T=12 (dashed line), and T=15 (dashed-dotted line). 
The harmonic and linear surfaces cross at V,= 15. 

culation summarized in Table I, the width of the Gaussian 
packets is taken as in Eq. ( 1 1 ), i.e., A=6T. However, the 
result is not strongly sensitive to this choice. In Fig. 4, we 
plot the dependence of the rate on the chosen Gaussian 
width. It is seen that for width within two orders of mag- 
nitude of the thermal de Broglie wavelength, the results are 
not sensitive to this width. This results from the fact that 
the decay of the correlation function is caused, for high T, 
mainly by cancellation of phases which are independent of 
the width. This issue is further discussed in Sec. V. It 
should be noted that if we expand the initial state in a 
complete basis set of coherent (Gaussians) states, then 
perform thermal averaging over the initial state distribu- 
tion, the quality of the resulting rates depends only on the 
frozen Gaussian approximation, and when the latter is 
avoided, the rate is exact (within the golden rule), inde- 
pendent of the chosen Gaussian width. This independence 
is maintained in a large range of this width also in our 
approximate incoherent sampling, however, the rate does 
become unphysically dependent on the width when the 
latter takes extremely large or small values. 

For T<l, the calculation fails as seen in Table I. In 
this temperature range, the result is also very sensitive to 
the Gaussian width. 

Next we apply to the same model the method recently 
proposed by Tully for molecular dynamics with electronic 
transitions (MDET). For completeness, the algorithm is 
described in Appendix B. One obvious limitation of this 
method is that electronic transitions are not allowed if the 
initial energy is below the crossing energy of the two sur- 
faces. Thus, tunneling is essentially forbidden. Another 
problem in applying this method for the present model is 
that in contrast to the assertion made in Ref. 5, the average 
number of trajectories on each potential surface is not nec- 
essarily equal to the average of the corresponding diagonal 
elements of the density matrix. This results from the fact 
that, when the initial energy is not much higher than the 
crossing energy, many transitions will be rejected for fail- 
ing to satisfy the energy conservation criterion, leading to a 

h 

0.4 _I] 
0 6 10 15 20 25 30 35 40 45 

TIME 

0.6 ] 1 I 1 I L I 1 I 
0 6 10 15 20 25 30 35 40 * 

TIME 
5 

FIG. 5. (a) The average number of trajectories on the harmonic surface 
[state 1 (dotted line)] and the average of the density matrix element p,,, 
starting at the n= 16 level of the oscillator. The harmonic and linear 
surfaces cross at V,=15. (b) The same as (a) starting from the n=30 
level of the oscillator. 

bias in the populations of the electronic states which is not 
reflected in the value of the diagonal elements of p. This is 
demonstrated in Fig. 5 (a). 

The potential advantage of the MDET method is that 
it provides the full temporal evolution of the system and 
not just the transition rate. Obviously this is also a draw- 
back if the rate is well defined, but small, since very long 
trajectories may be required. 

Figure 5 displays results obtained using this method 
for the model of coupled harmonic and linear potential 
surfaces. The simulations were performed with a=6, E. 
=47.86 ( V,= 15), and Vi2=0.5. Shown are the depletion 
rates out of two initial eigenstates of the harmonic surface 
it= 16 and n=30. The initial conditions were sampled 
from a classical microcanonical distribution with the en- 
ergy of the initial level. At each initial point, a total of 500 
trajectories were generate-d in order to achieve a conver- 
gent result from that point and one hundred such points 
were used for each initial quantum level. This is a much 
larger computational effort than that needed to evaluate 
the golden rule rate. 

For the sake of comparison, we have also -obtained 
“exact” numerical results for the same process using a di- 
rect solution of the time dependent Schriidinger equation 
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based on the fast Fourier transform (FFT) algorithm with 
second-order di@erencing evaluation of the time deriva- 
tives.27 The FFI simulation was carried out on a grid of 
256 points with spacing hx=O.125 and with the minimum 
of the harmonic surface located at position 160 on the grid. 
In order to perform simulations for long periods of time 
with this limited grid size, we have followed the procedure 
used by Heather and Metiu2* The wave function propa- 
gating on the linear surface is absorbed as it approaches the 
end of the grid, by multiplying it by the function f(x), 

(a) 

h 

f(x)={l+exp[-c(x-Z)]}-’ (16) 

with c= 12.0 and Z= - 18.0, whenever its value at the grid 
surface exceeds 10m5. 

1 I 1 I 
0 lo 20 30 40 

TIME 

Figure 5 (a) shows P, (t), the average fraction of tra- 
jectories remaining on the harmonic surface at time t, and 
the average of pi,l (t) [Eq. (B3a)] starting from the n = 16 
level of the harmonic potential. It is seen that pl,i (t) has a 
staircase structure which follows Pi only in a coarse 
grained sense. When the initial energy is much higher than 
V,, transitions are less restricted by the energy conserva- 
tion criterion, and pl,* and Pi almost coincide as seen in 
Fig. 5 (b) , which shows the evolution out of the initial level 
n=30. 

A comparison between the exact evolution and the 
MDET results for the transitions out of the n= 16 and 
n = 30 levels is shown in Fig. 6, which again shows PI ( t) as 
a function of time as obtained from the MDET algorithm 
and from exact FFT time evolution. We see that the 
MDET algorithm underestimates the rate out of the n = 16 
level, whereas it overestimates it for the n = 30 level. More- 
over, while the exact dynamics, for all the initial levels 
studied, shows an exponential decay of the population in 
the initial electronic state, the MDET decay is qualitatively 
different and is in general nonexponential. In spite of this, 
we have fitted both exact and MDET decay curves to ex- 
ponentials in order to obtain a measure for the transition 
rate. The results are shown in Table II together with the 
golden rule rates obtained from both the exact calculation 
and from the FGA calculation with A = 30. Table II shows 
that (a) the golden rule is a very good approximation for 
this choice of parameters; (b) unlike the FGA rate which 
averages the oscillations in the dependence of the exact rate 
on the initial vibrational level, the MDET shows such os- 
cillations, however, it cannot reproduce their correct posi- 
tions as functions of the initial energy. 

0 10 20 30 40 
TIME 

FIG. 6. (a) The comparison between the exact FFT result (solid line) 
and the MDET result (dotted line) starting with the n= 16 level of the 
harmonic surface. (b) The same as (a), starting from the n=30 level. 

which we take as an estimate of the thermal rate. Table III 
also shows the exact golden rule result from Table I. We 
see that k,,, underestimates the golden rule rate (which 
was seen ,to be practically exact for this choice of parame- 
ters) by a factor of -2. 

Finally, we consider the adiabatic case in which the 
value of the coupling constant Vi2 is large. In this case, the 

To calculate the thermal rate by the MDET approach, 
initial conditions are sampled from a Boltzmann distribu- 
tion on the harmonic surface. Since the evolution is not 
exponential, and populations in levels lower than the cross- 
ing energy do not decay in this approximation, we have 
characterized the process in terms of i’,(t) =Pi (t) -P, , 
where P,=P,(t- oo 1. P,(t) is fitted to a two exponen-~ 
tial evolution 

TABLE II. A  comparison between the exact FFT, the MDET, the exact 
golden rule (G.R.), and the FGA (incoherent) transition rates from an 
initial quantum level of the harmonic surface to the continuum.of levels of 
a linear potential. Parameters of the potentials are given in the text. The 
crossing energy is Y,= 15. 

n Fm- MDET G.R. FGA 

P,(t) =Ale-klf+A2e-kzt. (17) 

This leads to the results shown in Table III for T&5, 10, 
and 15 for potentials crossing at Vc= 15. Also shown is the 
initial rate 

15 3.14 
16 3.98 
18 0.39 
19 1.03 
20 2.30 
23 1.18 
25 1.69 
28 0.16 
30 0;31 
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1.65 2.88 1.80 
1.44 4.34 1.95 
1.49 0.24 1.95 
3.43 1.14 1.82 
1.40 2.54 1.66 
4.17 1.25 1.15 
3.51 1.68 0.93 
0.72 0.12 0.79 
0.78 0.33 0.77 
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TABLE III. Parameters obtained from the fit of the survival probability P,(t) on the initial surface, 
obtained from an MDET calculation, to the function A1e-kl’+Aze-k2’+P, . Initial conditions are sa’mpled 
from a classical canonical distribution characterized by a temperature T. The harmonic and linear surfaces 
cross at V,= 15. 

T Al A2 k, kz PC0 k Mm3 k exact 0.R 

5 0.0325 0.0186 1.15x1o-2 0.127 0.95 1 2.7 x10-’ 4.88~ 1O-3 
10 0.185 0.067 138x lo-’ 0.105 0.756 9.4 x 10-3 1.53 x 10-2 
15 0.302 0.107 1.49x 10-2 0.090 0.604 1.41 x 10-2 2.02x 10-z 

golden rule approximation is expected to break down. In- 
deed for V12)2, the exact time evolution is nonexponential, 
with an overall decay much slower than that predicted by 
the golden rule expression. The MDET method, on the 
other hand, performs quite well at least at early times. This 
is seen in Fig. 7, where the probability P, to stay on the 
harmonic surface starting from the n = 23 level is displayed 
for three different values of the coupling V,,. One feature 
of the exact dynamics which is not reproduced by the 
MDET method is the long time behavior of PI, in partic- 
ular, for larger values of V12. The observed long time tail 
results from the fact that part of the wave function remains 
trapped on the upper adiabatic surface. This trapping is 
not reproduced by the MDET algorithm because of the 
energy conservation criterion, which does not allow trajec- 
tories to reach the upper adiabatic surface. The bottom 
energy of this surface is V,+ V12, so for V,= 15 and V,, 
> 7, this minimum is above the initial energy En=23. This is 
not a failure of the algorithm itself, but simply a mapifes- 
tation of the fact that for large VIZ, the diabatic energy is 
not a good measure of the real energy that should be con- 
served. This observation suggests that in the strongly adi- 
abatic limit, the MDET algorithm will perform better us- 
ing the adiabatic, rather than the diabatic representation. 
The initial harmonic state will be represented by a linear 
combinations of states defined on the two adiabatic sur- 
faces, and the splitting of populations will follow naturally. 

h 

0 
0 5 10 15 20 25 30 36 

TIME 

NG. 7. The exact (solid lines) and MDET (dotted lines) probabilities to 
remain on the initial harmonic surface starting at the initial n=23 har- 
monic level. Lines showing increasing initial rates correspond to V,,=2, 
4, and 6, respectively. 

IV. DISPLACED HARMONIC OSCILLATORS 

The displaced harmonic potentials model is commonly 
used to describe chemical reactions, electron transfer, and 
other radiationless transitions in molecules and condensed 
phases. We shall use the simplest version of this model 
with two muttially displaced identical multidimensional 
harmonic surfaces 

v*$ 22 
j-l 

mjUjXj,  

N 
V2=: ,& mjwj(xj+dj)2-AE. 

J--1 
(20) 

In dimensionless units Xi= (mjwj/fi) “‘Xj and Aj 
= (mjwj/fi) ““dj , these surfaces become 

VI2 -5 sim jx;, 
2 j=l 

(21) 

N 
V2=’ C tij(Xj+Aj)2-AE. 

2 j=l 
m(22) 

The crossing of these surfaces defines an N- 1 dimensional 
surface. The minimal crossing energy U, obtained by min- 
imizing V, subject to the constraint V,(X) = V,(X) is 

UC=-& (AE-EM)2, 

where EM is one-half of the Stokes shift given by 

EM=; yi &,A;. 
P-1 

(24) 

The golden rule expression for the thermal rate in this 
model can be evaluated analytically.2g The canonically av- 
eraged correlation function C(t) [Eq. ( 13)] is given by 

C(t) =$ exp{G+ (t) + G- (zf) - G-iAEt/fi}, (25) 

where 

G+(t)=: r-,!m A~(~j+l)Pjt, 
J-1 

(264 

(26b) 
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G=G+(O) +G-(0) = 5 A,?CEji l/2), (26c) 
j=l 

(26d) 

G is referred to as the coupling strength. A convenient 
representation is 

(27) 

where (0) is the characteristic, e.g., averaged frequency. 
The case G>l which is obtained for k,T)fi(w) and/or 
large Aj is referred to as the strong coupling limit. In ad- 
dition, increasing the number of shifted oscillators, i.e., 
nuclear modes which are strongly coupled to the electronic 
transitions, also takes the system towards this limit. In the 
strong coupling limit, the correlation function decays fast 
and on the relevant time scale G+(t) and G--(t) can be 
expanded in a power series of t to second order 

02~ jgl ti@~(Ej+*l2)* _ 
Using this approximation (6) leads to 

For k,T%Sim, this becomes 

k 
l/2 

e- udk BT 

whereas for low temperature, we get 

k-2=$ (&)lnew[ -,,,~,,]. 

(284 

(28bj 

(29) 

(30) 

(31) 

The FGA result for this case can also be obtained 
analytically since it involves only Gaussian integrals. The 
result for J(t) [Eq. (8b )] is 

--;A; sin(wjt>-iAjXj sin(wjt) 

-iAjPj( l-cos wit) II 3 (32) 

{X,} and {pi); j = l,...N are the center positions and mo- 
menta of the frozen .Gaussians and Aj= [W(mjwj)]aj . A 
classical averaging over the thermal distribution of {Xj} 
and {Pi> @ds t0 

-c(t)=$(J(t))T 

=$exp 
. N 

-iAEt/li+i c A; sin(ujt) 
j-l 

-Cl sA:(l-COStijt) 
J 

A. A2 
+’ A?( 1 -cos ojt)2+l sin2 Wit . 4 J 4Aj 1 (33) 

In thestrong coupling limit, an expansion of the exponent 
in powers oft up to second order is valid. The requirement 
that the short time expansions of the exponents in the exact 
and the FGA results [Eqs. (26) and (33)) respectively] are 
identical leads to 

or 

for high temperatures ~j/kBT < 1, this becomes 

(34) 

(35) 

as in Eq. ( 11). The error in this estimate of the width is 
already less then 10% at a temperature for which ~~j/kBT 
=0.5. At low temperatures, aj approaches the width of the 
ground state according to 

mjoj 2mjkBT 
a.=T+--g---. J (37) 

The high temperature result (36) is useful for realistic 
simulations since all the quantities are known and we can 
immediately assign a width to each particle. The low tem- 
perature result is less useful unless we use a local normal 
mode representation so that a frequency is assigned for 
each degree of freedom. Alternatively, as seen below, it is 
possible to estimate the average frequency and use it in Eq. 
(37). 

At T=O, the FGA results are exact, provided that we 
take aj=mjwj/fi. This follows from the fact that the 
ground state wave function is a Gaussian of such width 
centered at Xj=Pj=O. The FGA propagation of this wave 
function on a harmonic surface of frequency Wj is exact. 

A comparison between the “exact” golden rule and the 
FGA results is shown for a system of 20 displaced har- 

-manic oscillators in Fig. 8. The oscillators are character- 
ized by equal displacements A= 6, which corresponds to _ 
the strong coupling limit G= 50 at T =O. Two sets of fre- 
quencies are studied. The frequencies of set A are, in arbi- 
trary units, distributed uniformly between 0.7 and 1.3, with 
average frequency (w) =0.962 and AE= 80. This corre- 
sponds to lJ,=5.29. The frequencies of set--B are also 
equally spaced-in the range between 2 and 4, with average 
frequency 2.873, AE=239, and UC= 15.8. Figure 8 shows 
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FIG. 8. The transition rate between the displaced harmonic surfaces as 
function of the temperature. (a) Parameters from set A  (see the text). 
(Solid line) exact golden rule; (dotted line) FGA with width given by Eq. 
(35); (dashed line) the strong coupling limit [Eq. (29)]. (b) The same as 
(a) using the parameters from set B. 

the exact golden rule rate, the semiclassical rate with the 
width given by Eq. (35), and the strong Coupling limit 
[Eq. (29)]. It is seen that the FGA provides a good ap- 
proximation to the exact rate in the entire temperature 
range. In both extreme limits Td 03 and T-+0, the FGA 
result becomes exact. 

The sensitivity of the result to the chosen Gaussian 
width can be inferred from the results of Tables IV and V 
which give the rate for several temperatures with different 
widths. At low temperatures k,T <fi(w>, the result is very 
sensitive to the width. The reason is that at such temper- 
atures the decay of the correlation function is caused 

TABLE IV. A  comparison between the exact thermal rate and the FGA 
thermal rate for the transition between displaced harmonic surfaces char- 
acterized by the parameters of set A  (see the text). The FGA is calculated 
using the width parameter A, of Eq. (35) multiplied by a constant factor 
Y- 

T y=O.l y=l y=5 Exact 

0.1 4.42~ lo-’ 3.36x lo? --8.71~10-~ 3.92~ lo-’ 
1 1.06x lo-’ 1.94x 10-3 3.18x 1O-4 2.17x 1o-3 
2 1.85x lo-’ 1.36x10-* = = 1.35 x W2 1.34x 1o-2 
5 4.04x 1o-2 3.99x 10-2 4.04x 1o-2 3.97x 1o-2 

TABLE V. The same as Table IV, with the parameters characterizing the 
harmonic surfaces taken from set B  (see the text). 

T  y=O.l y=l y=5 Exact 

0.1 1.27x 1O-2 1.32~ lo-’ 3.86x 1O-6 1.37x lo-’ 
1 6.63 x 1O-3 1.54x 10-s 2.55~ 1O-5 2.66x 1O-5 
2 3.84x lo-’ 1.34x 10-4 ,-2.20x 10-4 1.84x 1O-4 
5 5.15x 10-3 3.09x 10-3 2.86x 1O-3 3.12x 1O-3 

mainly by the terms in the exponent of C(t) [Eq. (33)], 
which contain the width explicitly. At higher temperature, 
these terms become increasingly less important, and in the 
high temperature limit, the result is nearly insensitive of 
the width, within reasonable bounds about the thermal de 
Broglie length. The choice (36) is optimal as discussed 
above. The sensitivity of the low temperature result to the 
chosen width of the Gaussian wave packets and the uncer- 
tainty in choosing the width, unless a normal mode repre- 
sentation for the nuclear degrees of freedom is known, 
make the low temperature calculation more complicated. 
It is possible to choose the Gaussian width as an average 
over the distribution of molecular frequencies (this can be 
obtained from a Fourier analysis of the classical motion) in 
order to obtain an order of magnitude estimate (see Table 
VI). Alternatively, in many applications, nuclear modes 
may be separated into two groups-one containing high 
frequency “inner sphere” modes that can be described as 
harmonic oscillators and the other group of low frequency 
“outer sphere” modes for which the high temperature limit 
may be valid. Such systems may be studied by using the 
high temperature limit and the harmonic approximation 
separately for the different groups of the modes. 

V. DYNAMICS OF ELECTRON HYDRATION 

The formation and relaxation of solvated electrons 
have been the focus of intensive research for a long time.30 
It is only recently, however, that the primary step in this 
complex process has become accessible to experimental ob- 
servation. Recent experimental results18~‘g suggest that the 
solvation dynamics following electron ejection into liquid 
water involve at least one, and possibly more intermedi- 
ates. In particular, a relaxation process from a transient 
species that absorbs in the near IR to the fully solvated 
electron was reported with relaxation time reported to be 
-240 fs by Migus et al. l8 and 540 f 50 fs by Long et al. I9 
These experimental results cannot be explained by either 
dielectric theories or adiabatic simulations, which, in con- 
trast to experimental observation, predict continuous shift 

TABLE VI. A  comparison between the exact golden rule rate and the 
FGA rate at T=O. The width is taken from Eq. (37) with equal fre- 
quency (either (w) or (02)/(o)) for all the oscillators. 

Set 

A  
B  

A+B 

(4 b2)/b) Exact 

5.62x lo--’ 4.92x 1o-5 3.92~ lo--’ 
2.14~ 16-5 1 1.72~ 1O-5 1.38x lo-’ 
6.87x1O-4 2.39 x 1O-4 1.12x 10-4 
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of the absorption peak. Assuming that the intermediate 
state is an excited state of the hydrated electron, this re- 
laxation process may be explained by a nonadiabatic tran- 
sition from this excited state to the ground state. Reason- 
able choices of such excited states are the three nearly 
degenerate p like states which carry most of the oscillator 
strength of the 1.7 eV absorption of the fully hydrated 
electron.22(a)123”5 This section describes the calculation of 
the rate of this process using the procedure described in 
Sec. II. A preliminary report of this calculation was pub- 
lished. ” 

The calculation is based on a mixed quantum-classical 
adiabatic simulation22 in which the electron is described 
quantum mechanically and the water molecules classically. 
The electron is restricted to remain in a single adiabatic 
state (either an excited or the ground state) at the instan- 
taneous water configuration by a combination of imaginary 
time propagation and orthogonalization to lower 
state(s) .22 The waters move classically under their mutual 
interactions and the expectation value of the water- 
electron interaction. We use the RWKZM (flexible) water 
potentia131 and the electron-water pseudopotential devel- 
oped by Barnett et aZ.32 The simulations are performed on 
a cluster of 128 water molecules and one excess electron. 
Simulation of the absorption spectrum of this system indi- 
cates that it represents quite well the electron in bulk 
water.22(a) 

As discussed in Sec. II, the information needed to cal- 
culate the golden rule rate can be obtained from the adia- 
batic trajectories. All relevant electronic states and states 
and energies are evaluated at each nuclear configuration. 
First, a long equilibrium trajectory (at temperature 300 K) 
is obtained in this way. From this trajectory, configurations 
are selected at 75 fs intervals for the rate calculation. Each 
of these configurations is the starting point for the calcu- 
lation of the correlation function C(t) of Eq. (8). In the 
latter calculation, two trajectories are calculated, both 
starting from that same initial conditions. In one, the nu- 
clei move in the potential of the electron in its initial (ex- 
cited) state. This trajectory is in fact part of the equilib- 
rium trajectory obtained earlier. In the second trajectory, 
the nuclei are subjected to the final (ground) state poten- 
tial. The overlap (as a function of time) ~between the nu- 
clear wave functions-the frozen Gaussians associated with 
the classical nuclear positions and momenta, along these 
two trajectories, together with the adiabatic electronic en- 
ergies and the nuclear positions and momenta associated 
with the initial electronic stat-are the needed input for 
calculating C(t) of Eq. (8). 

An important technical point concerns the nondiago- 
nal terms (Z#Z’) in Eq. (8). For symmetry reasons, these 
terms should cancel out in a proper averaging, but in our 
limited statistics, their inclusion increases the statistical 
error. We have therefore disregarded these terms at the 
outset, replacing Eq. (8) by 

xFTR”‘(t) +(t)FIR(‘)(0) +‘(O)J(t) . 
I > 

63) 
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FIG. 9. (a) The correlation function C(t) for H,O (solid line) and D,O 
(dotted line). (b) The nonadiabatic rate for the transition from the fmt 
exciteQstate to the ground state of the electron in H,O as a function of 
log&&J. a=a-“2. 

Fifteen trajectories of 10 fs each were used to calculate an 
approximate thermal average. This is obviously poor sta- 
tistics dictated by our limited computing resources, but 
should be enough for crude estimates. Note that in our 
earlier report,*’ we have imposed the Condon approxima- 
tion, replacing Eq- (38) by C(t) 
=BI([FL(0) l v1(0)12) r(J( t)) r. The results reported below 
are based on the full correlation function (38). We have 
also corrected a mistake in our previous calculation,” 
which changed the results for the rate by a factor of 2. 

Figure 9 (a) shows the correlation function C(t) as a 
function of time for electrons in H20 and D,O. The Gauss- 
ian width in this calculation is that of Eq. ( 11). The cor- 
relation function decays on a time scale of 10 fs which 
provides a posteriori justification for the use of frozen 
Gaussians in this calculation. The calculated rates are 
shown, as functions of the width of the frozen Gaussians, 
in Fig. 9(b). Using the value for the width from Eq. ( 1 1 ), 
the transition time in the regular water environment is 
found to be km1 f: 220 fs. The same procedure gives k-’ s 
800 fs for D20 [we also observe for D20 a stronger depen- 
dence of the calculated rate on the chosen width, however, 
this may be an artifact of the statistical error (see below)]. 
We find k-’ = 800 fs. The result for H,O is very close to 
the experimental values cited above. However, the isotope 
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effect is much larger than found experimentally (35% by 
Long et al. ,33 in an experiment that could be affected by the 
isotope effect in the electron-parent ion recombination pro- 
cess, 34 and a very small effect of - 10% by Gauduel 
et QL~~). As already observed in the previous sections, the 
rate is not very sensitive to the Gaussian width, which in 
Fig. 9 (b) spans a scale of two orders of magnitude, as long 
as not too extreme values are used. This is in agreement 
with the results of the previous sections. 

It is encouraging that the results obtained in this cal- 
culation are of the same order of magnitude as the exper- 
imentally observed rates. The disagreement between the 
observed isotope effect and between the calculated one, 
however, raises doubts about this suggested interpretation 
of the intermediate process in electron hydration. It should 
be emphasized that the present calculation is not intended 
to give more than an order of magnitude estimate of the 
rate because of the very small number of trajectories used. 
It suffers from a few other drawbacks: (a) the electron- 
water pseudopotential used in the simulation was obtained 
by fitting with quantum chemistry calculations in the 
ground state,32 but is used here to run trajectories on the 
excited state. (b) The use of classical distributions for the 
thermal averaging is a source of error, especially for the 
high frequency modes. (c) Only one of the three closely 
lying p-like excited states of the hydrated electron is used 
in the present calculation. (d) The fact that the rate is 
obtained from an integral over the correlation function 
C(t) which in the present calculation contains large posi- 
tive and negative parts [see Fig. 9(a)] is another source of 
numerical error. This error can be made smaller by com- 
puting more trajectories. Within the physical approxima- 
tions made here, this is probably the most important 
source of numerical error in the present calculation. We do 
not believe, however, that the calculated isotope effect is an 
artifact of these simplifications because, on physical 
grounds, we expect that nuclear motions involving hydro- 
gens are the main accepting modes in this relaxation pro- 
cess, as in other radiationless transitions in molecular sys- 
tems.29 

VI. CONCLUSIONS 

The computation of nonadiabatic transition rates for 
condensed phase processes poses practical and conceptual 
difficulties. These are related to the inherent quantum na- 
ture of the process, which takes place in an otherwise es- 
sentially classical environment. In this paper, we have pre- 
sented and tested a procedure for evaluating such rates 
using the golden rule approximation and getting the infor- 
mation needed for its semiclassical evaluation from classi- 
cal trajectories. The numerical approach makes it possible 
to avoid using simplified models such as harmonic poten- 
tials and the Condon approximation, usually invoked in 
analytical procedures. An important simplifying feature is 
the fact that, for condensed phase processes, the lifetime of 
the correlation function related to the golden rule rate is 
very short, making it possible to use frozen Gaussians im- 
posed on the classical trajectories. Another important as- 
pect of this approach is that it does not rely on the knowl- 

edge of the global electronic potential surfaces of the initial 
and fmal electronic states, only on their local properties. 
This makes it possible to evaluate the needed information 
along the trajectory. Finally, the calculation focuses di- 
rectly on the rate. When the latter exists, this is a much 
more economical route for evaluating it then using the full 
time evolution. 

We have tested the method by applying it to simple 
models which are also amenable to exact calculations-a 
coupled harmonic-linear potentials model and the dis- 
placed harmonic oscillators model. For the first, the 
method appears to work well, provided that the tempera- 
ture T is not too low. For the latter, it works well for all T 
provided that a particular, well-defined procedure for 
choosing the frozen Gaussian width is taken. For the first 
model, we have also tested and compared a procedure re- 
cently proposed by Tully. Tully’s algorithm is valuable be- 
cause it provides a simple way to calculate an approxima- 
tion for the full time evolution. However, when a rate 
exists and the golden rule is valid, our approach is shown 
to be superior. 

We have applied the method for calculating the rate 
for the nonadiabatic relaxation from the first excited to the 
fully solvated ground state of the hydrated electron. It is 
encouraging that the results are at the same order of mag- 
nitude as the experimentally observed rate between the in- 
termediate (“wet”) and the final (“solvated”) forms of the 
hydrated electron. However, the large predicted isotope 
effect raises questions concerning this interpretation of the 
observed process. Nevertheless, this application demon- ’ 
strates that such calculations can be performed in a very 
complicated many body systems. 

Since the calculation is based on the golden rule ex- 
pression for the rate, it will fail when the latter does. Fur- 
thermore, the classical thermal sampling of the initial dis- 
tribution and the high temperature approximation inherent 
in the choice of the frozen Gaussian width in all but har- 
monic oscillator models introduce new sources of error. 
These procedures can be improved; e.g., a Wigner distri- 
bution could be used for the initial sampling or a local 
harmonic approximation36 to the potential surfaces could 
be used in order to avoid the uncertainty in choosing the 
Gaussian width.37 Finally, generalizations of the simple 
golden rule rates (e.g., the rate for a superexchange model 
of electron transfer in bridged systems3*) can be computed 
in similar ways to those described here. These and other 
developments of this approach will be described in future 
publications. 

APPENDIX A 

Here we outline the calculation of the golden rule rate 
of transition between the harmonic and the linear poten- 
tial. We start with the expression for this rate between the 
nth level of the harmonic potential and the continuum of 
states on the linear potential 

2?r 
w n~-vxmt = - fi v2 s 

d-f? p(E) 1 (El n> 1 2SW+~~-~n>. 

(Al) 
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[E) is an eigenstate of the Hamiltonian H=i?‘+oX, cor- 
responding to the eigenenergy E. The wave function of the 
state E is the Airy function 

Y,(X)=(XIE)=2 1’3a-1’6 Ai[ (2c~)“~(X-E/a)]. 
(A21 

The normalization is chosen such that p (E) = 1. The over- 
lap integral (El n) is obtained by using the following rep- 
resentation of the Airy wave function:39 

1 
YE(X) =- 

s 
m 

2?i-& m  
dk exp[ik3/6a+ik(X-E/a)], 

(A3) 
the overlap integral is 

s 1 
= m dX- 

s 
m  dk 

-co 2lr& --m 

Xexp[ -ik3/6a--ik(X-E/a)]Yn(X), (A4) 

where W,(X) is the wave function associated with the nth 
level of the harmonic oscillator. This leads to 

W/n)= 2La 
7-J 

O” dk exp[ -ik3/6a+ikE/a]@,(k), 
--m 

(A5) 

where G,(k), the Fourier transform of Y’,(x), is given by 

G,(k)-z’( -i)nY,(x=k). (AZ) 

We are left with the simple integral (A5) over k, which is 
performed numerically using Filon’s method.39 

APPENDIX B 

Here we give a brief description of Tully’s MDET al- 
gorithm which is tested in Sec. III within the coupled har- 
monic and linear potentials model. 

The electronic wave function is given in the diabatic 
representation by 

Y(t)=C*(t)exp[ -is d7 V,(T)]@, 

+C,(t)ev[ -is d7 v,(T)]%. (Bl) 

VI and V2 are the diabatic potential surfaces which depend 
on time via the time dependence of the nuclear coordi- 
nates. $r and & are assumed here to be independent of 
the nuclear coordinates. (This assumption can be relaxed. ) 
The density matrix is defined according to 

pij=Ci~ @a 

and its equation of motion are 

bIl=--2VnIm(exp(--i~ dr[V,(r)-V2(T)]/p12), 

Wa) 

dd VI(T) - V2(7) I\ (PII--22) Wb) 

and similar equations for fi22 and p2t. The nuclear motion 
at each time step takes place on a single potential surface 
and is determined by the classical equations of motion. The 
following switching probability per time step is defined for 
a switch of the nuclear motion from surface i to surface j: 

p.tch&E, 
Pii 

where ljjj is given by Eq. (B3a) or its equivalent with 1 
and 2 interchanged, and where At is the time step used in 
the simulation. This switching probability is designed to 
make the average number of trajectories (Ni) on the ith 
surface at time t equal to pii( t) and to achieve this aver- 
aging property using the smallest number of state switches. 
(Note, however, that contrary to the assertion of Ref. 5, 
this equality between (Ni) and pii does not always hold, as 

-discussed in Sec. III.) At each time step, a random number 
{ is generated from a uniform distribution between 0 and 1. 
If { < Pswitch, a switch is made, after which the trajectory is 
continued on the new surface with momentum modified in 
order to conserve energy. If energy conservation cannot be 
satisfied, the switch is denied. The method is easily gener- 
alized to the case with more then two potential surfaces 
and for representations other than diabatic (see Ref. 5 for 
details). 
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