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The superexchange model for the facilitation of electron transfer between donors and acceptors by means of 
intermediate bridges is recast in a time-dependent framework. We develop a model in which three electronic 
states (donor, bridge, and acceptor) are considered and vibronic levels are included on the donor and acceptor. 
An explicitly time-dependent formulation, in which the golden rule is rewritten in the form of an integral over 
a time-dependent correlation function, is used to calculate the rate. Simple example calculations for model 
three-site systems are given; inverted region behavior and reasonable values are obtained. The model is a 
general one and should be useful for interpretation of superexchange-assisted transfer based on experimental 
observations of frequencies and displacements (such as the information that can be obtained with Raman 
spectroscopy). The model can be generalized to include effects such as dephasing, relaxation, solvent dynamics, 
and anharmonicities, as well as breakdown of the Condon approximation. 

Electron transfer is one of the most important fundamental 
steps in chemistry, and interest in elucidation of electron-transfer 
rates in chemical reactions has recently made it the focus of 
numerous excellent treatments.' Specifically, the very attractive 
superexchange model, first introduced by McConnell,* has been 
carefully examined in the context of bridged, intramolecular 
charge t r a n ~ f e r . ~ ? ~  McConnell suggested that orbital sites 
intervening between donor and acceptor could facilitate the 
electron-transfer process. In the electron superexchange model, 
an electron is transferred between degenerate donor and acceptor 
orbitals, aided by the presence of high-lying (not necessarily 
degenerate) empty bridge orbitals (model 1). (A similar case 
exists for hole superexchange through low-lying fully occupied 
bridge orbitals.) The superexchange model differs from a 
'hopping" model (model 2) in that the electron does not actually 
occupy any of the bridge orbitals during the transfer event. 

Following McConnell's original formulation, the coupling element 
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between donor and acceptor is given by 

where /3ij is the tunneling integral between orbitals i and j, ED,A 
is the (degenerate) energy of the donor and acceptor orbitals, Ei 
is the energy of the ith bridge orbital, and n is the number of 
bridge orbitals. 

The McConnell superexchange model is simple to use for most 
cases of superexchange; however, it should be noted that this 
model is useful primarily for evaluating the electronic coupling. 
It is independent of both time and nuclear vibrations and requires 
that D and A be degenerate and energetically well removed from 
the bridge orbitals. 

Perturbative methods for the calculation of electroniccoupling 
in electron-transfer reactions have been offered by a number of 

It should be noted that these methods only yield the 
nonadiabatic coupling element between donor and acceptor, HDA. 
This, in turn, may be used within a vibronic theory such as that 
of Jortner8s9 or Fischer and Van Duyne.Io 

We present here a new approach to electron-transfer rate theory. 
It is based on an explicitly time-dependent rate expression for 
superexchange-assisted nonadiabatic electron transfer. This 
method is suggested by the very useful reformulation of such 
problems as optical line shapes," resonance Raman spectra,I2 
and solvated electron dynamics13 in an explicitly time-dependent 
form. It describes thermal electron transfer and can be extended 
to include full vibrational behavior, frequency changes, anhar- 
monicities, dephasing, and non-Condon terms; it can also be 
adopted to approximate discussions of slow gating modes and 
solvent relaxation. Further, since it does not require that the 
donor and acceptor states be degenerate, it generalizes the 
superexchange formalism in an important way. In section 11, we 
describe a first-order version of our model, in which we use 
harmonic energy surfaces and the Condon approximation. In 
section 111, we give the results of calculations on a model three- 
site system, consisting of a donor, a bridge, and an acceptor. 
Section IV offers some conclusions. 
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Inserting (9a) into (8) yields 

Figure 1. Initial (I), bridge (B), and final (F) electronic states and 
associated vibrational levels ((i), (b), and (fl, respectively) for the transition 
described in the text, for T = 0. 

11. A Time-Dependent Superexcbange Model 

Even though we are ultimately interested in a time-dependent 
formulation of the electron-transfer rate, it is convenient to begin 
with a time-independent formulation. For simplicity, we consider 
a system of three electronic states: an initial state I, a bridge 
state B, and a final state F. We further ignore direct electronic 
coupling between the initial and final states, so VIF = V F ~  = 0. 
In what follows, & refers to a summation over vibrational levels 
belonging to the electronic state S (= I, B, and F). We take ti 
= 1. 

We first consider the transition out of a particular state i, 
referring to the model in Figure 1. The transition rate is associated 
with the imaginary part of the self-energy Si(E) (at E = Ei), 
defined by 

(4) 
1 

E - Ei - Si(E, )  
Gii(E) = 

where Gjj(E) is Green's function element ($E - H + ie)-Ili) ( e  - 0) .  For the present model, Gii(E) is calculated by using the 
Dyson equation G = GO + Go VG to obtain a set of closed coupled 
equations: 

(7) 

Here, e. = (E - Ej + ie)-I. Inserting (7) and (6) leads to a set 
of equations (one for each b) of the form J! 

Multiplying this equation by Vb followed by a summation over 
b yields the following result (for x CbV/bGbi): 

x = +ii Uf 
1 -a 

where 

( 9 4  

Inserting this result in (5) finally yields (4) with 

Since Sj(E) is to be evaluated at E = Ej, we keep the small 
imaginary term ie in the denominator which may otherwise vanish 
(since E j r  Ei). Similarly, we take a << 1, since it is the quotient 
of the energy width of the final state divided by the electronic 
excitation gap. 

The transition rate out of state i is associated with the imaginary 
part of Sj(Ej): 

which is the usual golden rule with the renormalized i--coupling 
(eq 9b). In what follows, we assume for simplicity that V, VFB 
and vbi  V B ~  are independent of the individual vibronic level 
(this assumption may be relaxed in a somewhat more involved 
treatment), whereupon 

vi/= <4m 
with the operator U defined by 

Here Hs (A = I, B, F) is the nuclear Hamiltonian associated with 
the electronic state S. Finally, using the fact that the kinetic 
energy parts of H I  and H B  are the same, (14) is rewritten in the 
form 

where Vs(X) is the potential surface for the nuclear motion in 
electronic state S. 

The rate (eq 12) can be expressed as the Fourier transform of 
the time correlation function 

where AE = I$ - E$ is the difference between the origins of the 
electronic states F and I and where H I  and HF are the nuclear 
Hamiltonians associated with thesestates. Finally, the thermally 
averaged rate is 

where 

(17) 

and 

Following Neria et al.,I3 we now make a semiclassical 
approximation by replacing li) in (1 7) by Gaussian wavepackets 
centered about the classical position and momenta of the atomic 
nuclei moving on the I potential surface. The thermal average 
is implemented by sampling these positions and momenta from 
a Boltzmann distribution. 
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The timeevolution exp(iH1t))i) is implemented with the frozen 
Gaussianll approximation which is valid if C(t) decays to zero 
before the wavepacket distorts appreciably. In this approximation, 
the time evolutions exp(iH1t)lt) and exp(iHFt)(i) are obtained by 
moving the mean position and momentum of the Gaussian 
according to the classical equations of motion on the corresponding 
potential surfaces. 

Consider now the operation qi) encountered in ( 1  7), where 
ti) is now a Gaussian wavepacket associated with the classical 
positionX(0) and momentumF(0) and a corresponding classical 
energy El = H1(cl)(X'(0),Pi(O)) (where is theclassical nuclear 
Hamiltonian on electronic state I). In this case, qi) may be 
approximated by 
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where @)(A+) is the (classical) nuclear potential (electronic 
energy as a function of nuclear position) in state S (=I ,  B). 

From the Heisenberg representation, 

Ue+"li) = q i ( t ) )  (20) 
where i(t) is a Gaussian wavepacket centered a t  w ( t ) , P i ( f ) )  (the 
classical positions and momenta obtained by propagating the 
initial classical state X'(O),P(O) with the classical Hamiltonian 

associated with electronic state I). Therefore, 

Equation 17 then becomes 

1 ] J ( r ) )  (22) 
[* I ) (X(t))  - V(,"l'(X(t)) T 

with 

J( t )  = (X(0)P(O)~eiH1'e- iHFf~(O)P(O) ) (23) 
where (-)T in (22) denotes the classical thermal average over 
the initial positions and momenta. Here, exp(-iHst)p(O)P(O)) 
(S = I, B) denotes the time-dependent frozen Gaussian wavepacket 

e- '"Sf~(0)P(O))  = p( t )P( t>)  = exp[ia(X- .P(t))' + 
i P ( t ) ( X - y ( t ) )  + i r ( t ) ]  (24) 

where 

and 

The phase term is 

where P Q  is the classical momentum at X for total energy E. 
Equations 16-22 represent a semiclassical, time-dependent 

wavepacket approach to the calculation of electron-transfer rate 
constants. The actual calculation proceeds by propagating the 
packets on the initial and final states, computing the overlap 

150 . . . , . . . , . . . ,  . . . , . . .  
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Figure2. Integrandofeq 16,asdescribedinthetext. Relevantparameters 
for the one-mode case shown are as follows: hw = 500 cm-l; h E b ,  = hEbf 
= 20 000 cm-l (i andfare degenerate); KB = VBF = VBI = Vm =-4000 
cm-l; location of minima (unitless): Xo.1 = -1.15, &,B = 0.00, XOJ = 
+1.15. 1 atu (atomic time unit) = 2.4189 X 10-l's. Note the effects 
of the phase factor, defined in eq 27, seen here as secondary peaks in the 
integrand. Note also that in the absence of irreversible processes such 
as damping, slow gating, dephasing, or dissociation, we observe recurrence, 
and no rate can be defined. 

integral, and thermally averaging over the initial statedistribution 
to obtain C(t ) .  

We now apply this treatment to a model system. 

111. A Model System 

As a first test of the time-dependent calculation, we choose to 
sample some parameters of a real intramolecular electron-transfer 
system, [(H~N)SRU~I-~,~'-~~~~-RU~I~(NH~)~]~+ (here 4,4'-bipy 
is 4,4'-bipyridine), a symmetric, mixed valent dimer, which has 
been the focus of a number of experimental studies.I4J5 With the 
understanding that the electron-transfer process involves many 
vibrational degrees of freedom, we choose the most significant 
vibration, 4 0 0  cm-I, corresponding to the asymmetric ruthe- 
nium-ammonia breathing mode (in which Ru-N distances are 
increased about one ruthenium center and simultaneously 
decreased about the other), and use it in a one-dimensional 
application of our method. We obtain unitless equilibrium 
displacements16 of the initial (-1.19, bridge (O.OO), and final 
(+1.15) states from crystal structures of the bis(ruthenium 
pentaammine)-pyrazine 4+ (Ru1I-Ru1I) and 6+ ( R u ~ I ~ - R u I ~ ~ )  
dimers.]' These displacements are based on the difference of the 
average Ru-NH3 distances between the RulI and RulI1 centers. 
(The  bridge-localized s ta te  corresponds to  [(H3N)5- 
R~~~~-4,4'-bipy-Ru~~~(NH3)s]~+, in which both rutheniums are 
identical and the odd electron is localized on the bridge.) VIB and 
VBF for this system are assumed to be equal and are taken to be 
4000 cm-I.I* As vibrational levels are very closely spaced on the 
bridge state relative to the separation between the initial and the 
bridge states (20 000 cm-I), vibronic states are ignored on the 
bridge. 

Figure 2 shows the integrand term of (16) for the one- 
dimensional, harmonic system described above, with degenerate 
donor and acceptor electronic states, at  the T = 0 K limit.19 At 
t = 0, the system is prepared by assigning the ground-state 
Gaussian (with zero momentum) on the initial surface. The final 
state Gaussian is assigned the same position and momentum, 
such that 

X(0) = Y(0) 

P(0)  = p'(0) = 0 (28)  

The Gaussians are then allowed to propagate classically, and the 
real part of Cf(t)) i ( t )  ) is calculated analytically. 
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Figure 3. Integrand of eq 16, as described in the text. Relevant parameters 
for the three-mode case shown are as follows: hwl = 500 cm-]; hw2 = 
1 cm-I; hw3 = 170 cm-I; u b i  = 20 000 cm-1; = 7000 cm-1 (this 
is the crossing point shown in Figure 4b; note the absence of "phase" 
effects as seen in Figure 2); VIB = VBF = VBI = VFB = 4000 cm-'. 1 atu 
(atomic time unit) = 2.4189 X s. Note that addition of twosolvent 
modes (with positions noted in the text) removes recurrence, and a rate 
can be defined. The rate for the system described is 1.68 X I O l 3  s-l. 

V,CX, VFW vp, V,W V,W VFW 

'X 
'41 ' 0 3  

Figure 4. Harmonic, one-dimensional initial and final state potential 
surfaces. (a) Shows the system in the 'normal" regime, (b) shows the 
crossingpoint,at which therateismaximum, and (c) shows the'inverted" 
region. 

Without damping, slow gating, dissociation, dephasing, or some 
such irreversible process, recurrence is inevitable, as is shown in 
Figure 2. In reality, one cannot assign a rate for a process 
exhibiting such undamped recurrences. The addition of more 
degrees of freedom, especially solvent modes (both high- and 
low-frequency modes with substantial displacements), increases 
the recurrence time until it becomes unreasonable to sample any 
but the initial decay shown in Figure 2. Figure 3 shows, for a 
similar time scale, a three-mode system, including the 500-cm-I 
metal-ligand mode and two solvent modes. The two solvent 
modes, with frequencies 1 and 170 cm-I and unitless changes in 
equilibrium displacement f58 and f6.2, respectively, were defined 
according to the method of Siders and Marcus,20 in which they 
used a two-frequency quantum description of the interaction of 
water with an electron-transfer system. The addition of these 
two modes, as shown, removes the recurrence, and thus a rate can 
be defined. For the system shown, calculated at  the crossing 
point to the inverted region (see Figure 4b and text, below), the 
calculated rate is 1.69 X lo1) s - I . ~ ~  

As the initial state surface is raised from being degenerate 
with the final state, the activation energy decreases, until the 
minimum on the initial state surface crosses the final state surface, 
at  which point the activation energy is effectively zero (Figure 
4). If the initial state surface is raised further, the activation 
energy begins to increase again, and the system enters the so- 
called inverted or abnormal region described by Marcus.22 
Inverted region effects for the single-mode system described above 
(integrated over the first decay only)lg are shown in Figure 5. A 
number of discussions have appeared dealing with inverted region 
effects on rates, including those by Marcus,22 Van Duyne and 
Fischer,Io Wa~ielewski,~3 Closs and Miller,24 and others.25 We 

5000 6000 7000 8000 9000 

A E , ~ ,  cm-' 
Figure 5. Variance of rate with for the three-mode system. The 
maximum occurs at the point where the minimum of the surface I crosses 
surface F and the system crosses into the inverted region (see text and 
Figure 4b). Other relevant parameters are as described in Figure 3. 

observe the expected increase and decrease in rate; further, we 
see nonquadratic behavior, as expected for a multimode energy 
gap. 

As a means of comparison, we used the formula derived by 
J ~ r t n e r ~ , ~ ~  from the low-temperature limit of a polaron treatment 
to estimate the rate for the electron transfer at  T = 0: 

(29) 

where TDA is the effective superexchange electronic-transfer 
matrix element, w is the oscillator frequency, and S = A/w (A is 
the reorganization energy). As this is a maximum rate for a 
one-mode (single-frequency) system, it is appropriate to compare 
it to our single-mode system at the crossing point to the inverted 
region (see Figure 4b). Using the parameters outlined above for 
the ruthenium dimer system and making use of eq 3 (BDA = BBA 
= 4000 cm-l, n = 1) to give TDA = 800 cm-I, we obtained a rate 
of 2.2 X 1013 s-' using Jortner's treatment. If we integrate over 
the first peak only in the single-mode system, we obtain a 
(maximum) rate of 1.69 X lOI3 s-'. 

IV. Remarks 

We have demonstrated a new electron-transfer model based 
on an explicitly time-dependent reformation of the superexchange- 
assisted nonadiabaticelectron-transfer process. As such, it offers 
several important extensions to the degenerate, purely electronic 
superexchange model of McConnell. As it is time-dependent, it 
is able to explicitly include vibronics, and temperature can be 
included to allow for a distribution of initial and final vibronic 
states. It is not limited to degenerate donor and acceptor states. 
Both theoretical (normal mode analysis routines) and experimental 
(near- and at-resonance Raman)1k*26 methods can be used to 
generate unitless equilibrium displacements and frequencies, 
which can be put directly into our model to generate electron- 
transfer rates for molecular systems. 

The current formulation is semiclassical in two senses: first, 
the quantum vibrational states are represented as frozen Gaussian 
wavepackets; second, the Hamiltonian operators in the propagator 
(14) are replaced by the potentials in (19). Both of these 
semiclassical approximations can break down in specific cases 
(such as an excited state that is very anharmonic and weakly 
bound), but for most vibrations of stable molecules, we expect 
them to hold reasonably generally. 

In the absence of damping or dephasing processes, we observe, 
for the T = 0, one-mode system, the expected recurrences (Figure 
2). Inclusion of solvent modes increases the recurrence time to 
the point that calculation of a rate becomes possible (Figure 3), 
and an examination of rate vs AQindicates the expected inverted 
region effects (Figure 5 ) .  



Electron Transfer via Superexchange 

Future discussions of this model will include both electronic 
and vibronic dephasing, temperature dependence, unfreezing of 
the Gaussian wavepackets, inclusion of vibronic levels on the 
bridge, removal of the Condon approximation, and anharmo- 
nicities. 
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