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A examination of the temporal evolution of the excited states of 
DHP and cis-stilbene along with some trajectory calculations to 
test several possible potential energy surfaces may be necessary 
to unravel the reasons for this. These results suggest that several 
different microscopic solvent-solute interactions are perturbing 
the potential energy surface(s) and thereby affecting the excited 
cis-stilbene lifetimes. 

Note Added in Proof. Repinec et al. ( J .  Phys. Chem. 1991, 
95, 10380) have recently reported ultrafast transient absorption 

measurements on DHP following cis-stilbene excitation. Kinetic 
modeling of the cis-stilbene - DHP reaction suggests an inter- 
mediate with a lifetime of 300 f 200 fs is present. Results from 
the excitation of DHP are also presented. 
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In this paper we study the equilibrium properties of semiconductor particles of intermediate sizes (tDebye length) in contact 
with an electrolyte solution containing a given redox pair. We focus on the size dependence of electrical and thermodynamical 
quantities associated with such particles. The equilibrium distribution of the potential and of the charge in the particle and 
in the surrounding electrolyte is obtained analytically in limiting cases and computed in the general case using the nonlinear 
Poisson-Boltzmann equation, assuming Boltzmann statistics for carrier distributions in the semiconductor. A simple relation 
for the size-dependent redox potential of a semiconductor sphere characterized by its radius and charge is proposed and is 
found to provide a good approximation for a broad range of electrolyte concentrations. This leads to an expression for the 
'equilibrium constant" for the semiconductorlelectrolyte system, which relates the concentrations of the electrolytic redox 
components to the concentration, size, and charge of the semiconductor particles. 

I. Introduction 
The physical and chemical properties of small particles and 

clusters have been subjects of many studies over the last decade.'" 
A common feature to many of these studies is the generic question 
concerning the size evolution of macroscopic bulk properties. Of 
particular interest for potential applications are such size-de- 
pendent properties which imply unique chemical or photochemical 
activity of small clusters. The observation of unique sizedependent 
photochemical activity in colloidal semiconductor particles has 
lead to intense research, mostly motivated by the need to develop 
efficient photochemical processes for solar energy 
Such processes involve redox reactions which follow the photo- 
generation of nonequilibrium concentrations of electrons and holes 
in the semiconductor. Consequently, the question of the size 
dependence of the redox potential naturally arises.'&'2 It should 
be emphasized, however, that such photoredox reactions, being 
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inherently nonequilibrium processes, are not directly related to 
the equilibrium redox potential of a suspension of semiconductor 
particles. 

In the present paper we focus on the equilibrium redox prop- 
erties of well-characterized semiconductor particles in the dark. 
Our results are therefore not directly related to the photoredox 
properties of these systems, but to the question of size evolution 
of macroscopic, in the present case surface, properties. The model 
semiconductor particles are assumed to be spheres. The semi- 
conductor is characterized by its macroscopic bulk and surface 
properties: the band gap, the absolute positions of the band edges 
and of the Fermi energy, and the density and nature of the dopants. 
We investigate the redox properties of such particles by studying 
their equilibrium with an electrolyte solution containing a given 
redox pair. 

Previous work on particle size dependence of redox properties 
has focuses on small metal par t i~ les . '~ - '~  The equilibrium M s 
Mz+(aq) between a metal M and its solvated ion in water depends 
on the state of the metal. For example, the case where M is M(aq) 
(dispersed metal atoms) and the case where M is a bulk metal 
electrode differ in their free energies by the sum of the free energies 
of dispersion and hydration (per atom) of the bulk metal. Hen- 
glein'2a has shown that for silver atoms this implies a standard 
redox potential for the Ag/Ag+ of --1.8 V, as opposed to +0.8 
V for the same equilibrium with a silver electrode. Plieth" has 
derived a relation for the size dependence of the redox potential 
associated with the M(cluster)/M+(aq) equilibrium into which 
the size dependence enters via the surface tension of the metal- 
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/water interface, in analogy to the Kelvin equation for the size 
dependence of the vapor pressure above a liquid droplet. Note 
that in the equilibria considered in these examples the metals 
participate chemically in the process considered. Another pos- 
sibility is that the metal particles only act as suppliers or absorbers 
of electrons (the case where M is solvated neutral metal atom 
corresponds to both cases). The processes discussed in the present 
work are of the second type: the semiconductor particles are 
assumed to enter the redox process only by exchanging electrons 
with the electrolyte solution. 

The semiconductor particles considered in the present work are 
relatively big, of the order of the Debye length (a few hundred 
angstroms at  the carrier density ranges considered) and larger. 
Very small semiconductor particles cannot be characterized by 
the corresponding bulk properties. Thus a dopant density of 10l8 

corresponds to an average of 0.5 dopant particles per sphere 
of radius 50 A. For such small clusters, the statistical distribution 
of semiconductor particles with different number of dopants, rather 
than the mean properties for a given density of dopants, is dom- 
inant. Also, we use the Poisson-Boltzmann (PB) equation in order 
to analyze the chemical and electrostatic equilibrium between the 
semiconductor and the electrolyte solution, in analogy to the 
procedure used for the bulk semiconductor-electrolyte interface." 
This is essentially a mean field theory which breaks down if the 
number of charge carriers is too small. Thus, the results presented 
in the present paper are not directly valid for very small (a few 
nanometers) particles; however, they should describe well the 
behavior of particles of size lDebye length, and in particular, the 
size evolution from the small particle limit to the macroscopic 
surface. 

The semiconductor sphere model has been discussed before by 
several authors. Brus'O has considered this model in the limit of 
very small particles, focusing on the quantum states of electrons 
and electron-hole pairs in spherical dielectric particles. A similar 
treatment has been put forward by Henglein and co-workers.I2 
These discussions of electronic states in confined dielectric en- 
vironments have served to explain the observed size-dependent 
blue shifts in exciton absorption in nanometer size colloidal sem- 
iconductor particles relative to the bulk materials. More closely 
related to the present paper are the works by Albery and co- 
workersI8 who have treated a spherical semiconductor particle in 
the total depletion limit, and, also for a depletion case, in the very 
large sphere limit. These authors focus on the potential distribution 
within the particle as a necessary input for a discussion of carrier 
transport in the particle. We focus on the size evolution of redox 
properties, for which we require an exact solution of the PB 
equation describing the particle-electrolyte solution. 

The description of equilibrium between a macroscopic flat 
semiconductor electrode and an electrolyte solution containing 
a given redox pair" is achieved by equating the electrochemical 
potentials of electrons in the two phases. In the semiconductor 
this is determined by the Fermi energy and in the electrolyteby 
the redox potential which depends on the relative concentrations 
of the redox pair. When a semiconductor flat electrode is replaced 
by a distribution of small colloidal particles, two new characteristic 
properties of the semiconductor system emerge: the concentration 
of the particles and their size (or size distribution). The description 
of equilibrium in such a system has to be expressed also in terms 
of these quantities. In a sense, a semiconductor particle plays now 
the same role as one of the ions in the electrolyte solution. The 
main difference lies in the fact that such a particle can be in many 
"oxidation states", characterized by the number of electrons that 
it gains from or gives to the electrolyte. In principle the redox 
potential (Fermi energy) of the semiconductor is related to the 
relative equilibrium concentrations of all these states. For the 
large particles considered here, for which the average numbers 
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of electrons exchanged with the electrolyte can be several hundreds 
or thousands, it is more useful to use the Fermi energy of the 
particle. The latter may in turn be expressed in terms of the 
number of electrons gained or lost by the particle and of the 
particle size. The basic question of chemical equilibrium is: Given 
the nature and the initial concentrations of the reactants, what 
are the concentrations of reactants and products a t  the final 
equilibrium state? This may be answered by considering the 
charge exchange balance between the semiconductor particles and 
the electrolyte. The result depends on the density and size of the 
semiconductor particles. 

While the above considerations and the main focus of the paper 
are related to the semiconductor electrolyte equilibrium in the 
dark, they have direct bearings on the optical properties, and hence 
on the photochemical activity of semiconductor particles under 
such equilibrium conditions. Liu and BardI9 have recently dis- 
cussed the implications of charging a semiconductor particles on 
the shift in the absorption band edge. The origin of this shift (first 
discussed by BursteinZ0) lies in the fact that the absorption 
probability depends on the electronic levels occupation numbers 
via factors likef,(l -h), wheref, and f, are occupation numbers 
for levels in the valence and conduction bands, respectively. For 
semiconductor particles a t  equilibrium with an electrolytic redox 
pair these occupation numbers change, leading to a shift in the 
absorption edge which depends on the redox potential in the 
solution. This suggests a potentially very useful way to monitor 
the semiconductor particles/electrolyte equilibrium. The im- 
plications for photoelectrochemistry are obvious. 

In this paper we limit our discussion to ideal semiconductor 
particles which do not contain surface states, and which therefore 
may be considered as finite spheres of bulk material. The effect 
of surface states will be considered in a subsequent paper. In 
section I1 we describe in detail the equilibrium between a single 
spherical semiconductor particle and an electrolyte solution, and 
in section 111 we discuss the dependence of the redox potential 
or the Fermi energy of a particle on its size, charge, and the 
surrounding redox system. The equilibrium between a finite 
density of colloidal SC particle and an electrolytic redox system 
is discussed in section IV. 

11. The Semiconductor SphereElectrolyte Equilibrium 
In this section we consider a spherical semiconductor (SC) 

particle of radius R embedded in an electrolyte solution. To 
analyze the equilibrium between the two systems we have to 
evaluate the potential and charge distributions in each of them. 
We first consider the spherical particle and as a reference point 
we take the potential in the bulk of the electrolyte to be zero. The 
SC is assumed to be nondegenerate so that the local concentrations 
p ( r )  and n(r) of holes and electrons are assumed to obey Boltz- 
mann statistics. Furthermore, the impurity atoms (donors and 
acceptors) are assumed to be fully ionized. Under these as- 
sumptions the space charge density is given by 

( 1 )  

where q denotes the electron charge and where p = p ( r )  and n 
= n(r) are the local concentrations of holes and electrons, re- 
spectively, while Pb and nb are the corresponding quantities in the 
interior of a macroscopic (R - m) bulk semiconductor (we assume 
that the intrinsic carrier densities are negligible relative to the 
impurity originated ones, so that P b  = NA, nb = ND, where NA 
and N D  are the densities of acceptors and donors, respectively). 
p ( r )  and n(r) satisfy 

P = q[(P - P b )  - ( n  - nb)l  

p ( r )  = pbe-i%(@(r)-h) 

n(r) = nb&(@(')-@b) (2) 

where 4(r)  is the local potential in the SC sphere and 4 b  is the 
fully developed equilibrium potential difference between the in- 
terior of a macroscopic bulk semiconductor and the electrolyte. 

(19) Liu, C.; Bard, A. J.  J .  Phys. Chem. 1989, 93, 3232. 
(20) Burstein, E. Phys. Reu. 1954, 93, 632. 
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is therefore the difference between the original position of the 
Fermi level of the SC and that of the electrolyte. The latter is 
the redox potential of the electrolyte system expressed on the 
vacuum scale. 

The electrostatic potential 4 is the solution, with appropriate 
boundary conditions, of the Poisson equation 

4* 
csc 

v24 = - --p(r) (3) 

where eSC is the static dielectric constant of the SC. Equations 
1-3 lead to the Poisson-Boltzmann equation, which for the present 
case of spherical symmetry takes the form 

where 

is the dimensionless potential, 

are intrinsic properties of the semiconductor, and 

is the Debye length in the SC. The boundary conditions for eq 
4 are 

@ ( R )  = @‘R (6b) 

Equation 6a results from symmetry considerations. Equation 6b 
introduces the potential at the sphere surface as a parameter to 
be considered later. 

Equation 4 cannot be solved analytically in its general form. 
Analytic solutions are known for some limiting cases: (a) If 0 
C lOl<< 1 throughout the particle, eq 4 may be linearized, leading 
to 

(7)  

In this limit, the field a t  the sphere surface and the net charge 
in the particle are given by 

1 cash ( R / L s c )  1 
Qsc = csC(@, - A 1 - - 

(b) In the case of a heavily doped small n-type (p-type) semi- 
conductor particle with a negative (positive) surface potential, large 
enough so that the particle is entirely depleted of its majority 
carriers, but not too large so the Fermi energy is still far from 
the band edges, eq 4 becomeslsa (for the specific example of an 
n-type SC) 

d 2 9  2 d 9  1 
d 9  r d r  kC2 (9) - + - - = - -  

whose solution is 

where O0 = aR + R2/6Lsc2 is the potential at the center. 
For the general case, eq 4 can be solved numerically to yield 

the potential distribution and the charge accumulation in the SC 
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Figure 1. The dimensionless potential 9 in the SC sphere as a function 
of the ratio between the distance from the sphere center and its radius 
for different sphere sizes. Surface potential is -4 in Figure l a  and +4 
in Figure Ib. (-) RD = 0.1L; (-.---) R = ~ L D ;  ( - - - )  R = 2LD; (---) 
R = 5LD; (---) R = 10LD; ( - - - - - - )  R = 50LD. The latter case is 
indistinguishable from a planar SC. 

particle. In many situations we will encounter special cases of 
eq 4. For an intrinsic sc (nb = Pb = ni) eq 4 becomes 

+ - - = -  (e* - e-*) (1 1) 
- d 2 0  2 dO 
dr2 r dr  (LSci)* 

where 

For an n-type wide band gap SC where ND >> n,NA and where 
nb z N D  >> Pb, eq 4 becomes 

d 2 9  2 d 9  1 - + - - =  -(e” - 1 )  
d 9  r dr  Lsc2 

Similarly, for p-type SC where NA >> n,,ND and where Pb z NA 
>> nb 

d 2 0  2 dO 1 
dr2 r dr Lsc2 
- + - - = -(I - e-*) 

It should be kept in mind that 9 is to be determined by fitting 
to the electrolyte side of the interface. 

Before considering the electrolyte side, we show in Figures 1-3 
some results which demonstrate the effect of the finite particle 
size on the potential distribution and the charge in the SC particle. 
In these figures OR, the difference between the surface potential 
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Figure 2. (a) The charge density g = Qsc/qVNd (V, particle volume) as 
a function of R for different negative surface potentials (depletion). (b) 
The same data plotted as d[log Qsc]/d[log R] vs [R/&]. Full line: aR 
= -8, dashed-dotted line: r$R = -6; dotted line: aR = -4; dashed line: 
@R = -2. 

and the potential that would have existed in the interior of the 
particle in the limit R - m, is used as a parameter. The SC is 
taken to be n-type wide bandgap material, so eq 13 has been used 
to compute e. 

Figure l a  shows, for aR = -4, the potential distribution in the 
particle for different particle sizes. Figure 1 b shows similar results 
for aR = 4. It is seen that for R I &C the potential is almost 
constant and the bands are unbent throughout the particle. The 
same is true for R - m, except in the space charge region of order 
kc near the surface. 

Figures 2 and 3 show the charge in the particle as a function 
of aR for particles of different sizes. In Figure 2a,b we show the 
charge in the SC particle as a function of its size R, for several 
negative values (depletion) of aR. In these figures the same data 
is shown: In Figure 2a we plot the charge per unit volume (g = 
Qsc/qVND; V = 4?rR3/3)) as a function of the sphere size. For 
R - m, g - 1/R, reflecting the fact that the accumulated charge 
is proportional to the particle surface area. Figure 2b shows the 
size dependence of the slope d(1og Qz)/log R. This slope changes 
from 3 at small R, where the charge is proportional to the particle 
volume, to 2 as R - a, again reflecting the surface nature of the 
charging in this limit. In Figure 3a,b we show similar results for 
the case of accumulation (aR > 0). Note that in this case the 
slope of log Qsc vs log R approaches the value 3 as R / k c  - 0 
much more slowly then in the depletion case. In the latter, when 
conduction band electrons are depleted from the SC particle, g -. 1 when aR -. -- (see Figure 2a). Such an upper limit on Id 
does not exist in the case of aR > 0 (Figure 3a) where electrons 
enter the semiconductor. Here the charge density can be much 
larger for the same IaRI and the proportionality to the volume is 
approached more slowly when R - 0. 

Next consider the electrolyte side. We use the Gouy-Chapman 
theory2’ for the description of the ionic part of the double layer. 

R A C  

b 

1 10 100 

R A C  
Figure 3. Same as Figure 2, for positive values of +R(accumulation): full 
line, @R = 4; dashed dotted line, +R = 3; dotted line, +R = 2; dashed line, 

This theory is based on the Poisson-Boltzmann equation which 
now takes the form 

@R = 1. 

= 4CZ1c,+(r) - qEzlcl-(4 (16) 
I I 

where eel is the dielectric constant of the solution (-80 for water), 
Z, are the ionic charge numbers, and 

cl+(r) =: C,O+e-Z&9(r) 

c,-(r) = C,O-eZtUqQ(r) (17) 
The potential in the bulk of the electrolyte is set by our choice 
to be zero. c:’, cl* are the concentrations of the ions in the bulk 
of the solution (namely far from the SC particle). They are related 
by the condition of electroneutrality. 

czl€,o+ = EZIClO- (18) 
I I 

where the sum over i goes over all ion types in the solution. They 
also determine the Debye length of the electrolyte 

Again, analytical solution may be obtained only in the linear case, 
(&$(r) << 1). In this limit 

(21) Bockris, J .  O’M.; Reddy. A. K. V. Modern Electrochemimy; Plenum 
Press: New York, 1970. 
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where ael(r) = j3q4(r) and & = j3q4G. 4~ is the potential a t  the 
SC side of the Gouy layer. The electric field a t  the surface and 
the total charge in the Gouy layer are given in this limit by 

A complete solution of the SC particle-electrolyte solution 
equilibrium is obtained by matching the numerical solutions of 
eq 4 (or one of its variants (1 l ) ,  (1 3), or (14)) and the equation 
resulting from eqs 15-17. These are two second-order differential 
equations, and four boundary conditions are needed to specify a 
unique solution. These are (1) d 9 / d r  = 0 at  r = 0 (the center 
of the SC sphere); (2) a(-=) = 0 (in the interior of the elec- 
trolyte); (3) overall charge neutrality in the system: Qsc = -Qel;22 
and (4) continuity of the potential across the interface. In addition, 
the constant dbr the potential in the interior of a bulk semicon- 
ductor in equilibrium with the same electrolyte, is determined from 

(22) 

where EoFqsc is the Fermi energy of the free semiconductor. For 
example, for an n-type SC with fully ionized donors it is given 
by 

(23) 

where Ec, Nc, and N D  are the conduction band edge energy, the 
density of states in the conduction band, and the donor density, 
respectively. EF,cl is the Fermi energy of the electrolyte 

q4b = @,SC - EF,el 

@.SC = Ec - kT In [NC/NDI 

EF.el -q*ox(red -k c (24) 

aoxlrcd is the redox potential of the electrolyte relative to the 
standard H2/H+ electrode (SHE) 

q is the electron charge, n is the number of electron transferred 
in the redox process, and C is the difference between this elec- 
trochemical scale and the physical (vacuum) scale. C is estimated 
to be 4.2-4.8 eV.23 In the calculations described below we took 
C = 4.5 eV. Note that in eq 25 cox and crd represent in general 
products of concentrations corresponding to the particular redox 
system. 

In order to use the continuity of the potential across the interface 
we need to take into account the potential drop across the 
Helmholtz layer associated with the discrete structure of the 
electrolyte on the atomic scale. To this end we assume that the 
Helmholtz layer (with width - ionic diameter) does not depend 
on the particle size. Its electrical properties can therefore be 
inferred from bulk measurements of its capacity. Denoting by 
EH the electric field in the Helmholtz layer, t H  its dielectric 
constant, and dH its width, we have for the potential drop across 
the Helmholtz layer 

where Esc(R) is the electric field a t  the particle surface and C, 
is the differential capacity of the Helmholtz layer. Its experi- 
mentally determined value is of the orderz4 6-8 pF/cm2. In the 
calculations presented below we took the value C = 8pF/cmz. 

With these model assumptions we can now calculate the po- 
tential distribution and the charge for a given spherical SC particle 
embedded in an electrolyte solution as a function of its size, the 

(22) Note that the condition QSC = -Q together with E(R) = -(47r/f)u, 
where the surface charge is u = Q/4rR2,!mplies cscEsc(R) = :&,(R), so 
this electrostatic conditions is not an additional boundary condition. 

(23) See for example, ref 17, p 61. 
(24) Myamlin, V.  A.; Ple-skov, Y.  V .  EIecrrochemistry ojSiPmiconducrors; 

Plenum Press: New York, 1967. 
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Figure 4. Potential profile (as a function of r ,  the distance from the 
particle center) in a system of CdS sphere in methylviologen redox so- 
lution. Parameters used for the S C  particle and for the electrolyte are 
given in the text. (a) R = kc; (b) R = S ~ C ;  (c) R = l o k c .  

characteristics of the bulk semiconductor (band structure, im- 
purities, carrier densities), and the type and concentration of the 
electrolyte solution. The potential difference between the center 
of the particle and the interior of the electrolyte solution is given 
as a sum of the different contributions (SC space charge layer, 
and Helmholtz and Gouy potentials) which are determined as 
described above. 

The numerical solution of the PB equation was obtained using 
the DVCPR routine of the IMSL library. The two numerical 
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Figure 5. The charge accumulated on a CdS particle as a function of its 
size. Note the change of slope d(log Qsc)/d(log R) (indicated by the 
dashed lines) from 3 for R I kc to 2 for R >> kc. 

nonlinear algebraic equations which represent the boundary 
conditions were solved using ICSSCU and ICSEVU routines for 
spline interpolation and the ZSPOW routine for solving the 
equations. 

Figures 4 and 5 show results of numerical calculations on CdS 
particles in methylviologen Mv+/Mv2+ electrolyte solution at  300 
K. CdS is a wide band gap n-type semiconductor whose gap width 
is 2.4 eV and its static dielectric constant is 8.9. For the density 
of the donors we take, unless otherwise stated, the typical value 
2 X 10l6 mr3. For this donor density (with all the donors assumed 
ionized) the Debye length hc is 252 A. The Fermi level of the 
(bulk) SC is 0.122 eV below the conduction band edge and 0.578 
eV above the Fermi level of the S H E  (Le., C of eq 24). The 
standard (SHE) Mv+/Mv2+ redox potential is -0.445 eV. The 
electrolyte concentration (Mv’ + Mv*+) was taken 1.66 X lo4 
M (Le., 1 X 10’’ ions/c”) and for the particular examples shown 
here we used cMV+ = cMUlvz+, so the Fermi level of this solution is 
0.445 eV above that of the SHE. Thus &, = 0.133 eV. The charge 
of the counter ions is taken as -2 and their concentration is 7.5 
X 10l6 ~ m - ~ .  The Debye length calculated from eq 19 is LeI = 
145 A. 

Under these conditions the absolute value of the potential drop 
in the SC is much larger than the absolute value of the Helmholtz 
potential and of the potential drop in the solution, and conse- 
quently, the main part of the interfacial potential drop lies in the 
space charge region of the semiconductor. Since the Fermi level 
of the bulk SC is higher than that of the electrolyte solution, 
electrons go out of the semiconductor and a depletion layer is 
formed at  equilibrium. In Figure 4a-c we show the potential 
profile in this system for different sizes (R /& = 1, 5, 10) of the 
SC particles. For small particles (R I kc) the band bending 
in the particle is small. When R L l o b c  the particle is nearly 
in the bulk limit and the potential reaches the bulk value (& = 
133 mV) at  the sphere center. Figure 5 depicts the (positive) 
charge accumulated on the SC particle as a function of its radius. 
It is seen that the charge changes by 3 orders of magnitudes when 
the particle size varies between R = l& to lo&. As before 
(Figure 2b) the slope of the Qsc vs R plot changes from nearly 
3 at for R I 4~ to 2 for R >> &, indicating the transition from 
volume to surface charging as the sphere size increases. 

111. The Redox Potential of a Colloidal Semiconductor 
Particle 

The oxidation reduction properties of an electrolyte system 
containing a redox pair with concentrations crCd and cox are 
characterized by the redox potential given by eq 25. @ox,rcd 
measures the tendency of the redox system to exchange electrons 
with another system. 

What is the equivalent property in a dispersion of SC particles? 
Consider a finite density csc of semiconductor particles, which 
for simplicity we take to be of uniform size. We assume that this 
density is low enough so that direct interparticle interactions can 
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be neglected. This is equivalent to the assumption of low con- 
centration in the electrolyte solution which makes it possible to 
approximate activities by concentrations in eq 25. Under this 
assumption @ox,rd does not depend on the absolute concentrations 
of the redox components, only on their ratio. 

If we want to treat the SC particles (P’s) in complete analogy 
to this electrolyte system, we should consider all the oxidation 
states P’ of one particle, and all the equilibrium reactions P’ + 
e- s Pz-l, For a simple n-type S C  with all the donors ionized, 
z can take values from NDV to -(Nc - ND)V, where Nc is the 
density of states in the conduction band (the electrolytic redox 
pair corresponds to the case where z can take only two values). 
The redox properties of the colloid could be calculated in principle 
in terms of the distribution of particles along these states. 

A different point of view is reached by coming down from the 
macroscopic limit. For a macroscopic SC the Fermi energy (which 
is equivalent to the redox potential, cf eq 24) is an intrinsic 
property, determined by its electronic structure and its surface 
potential and independent of the particle density. This should 
remain true for a finite size particle, a t  least when it is large 
enough. However, the Fermi energy should now depend, in ad- 
dition to the properties of the macroscopic SC, also on the particle 
size. 

The fact that the redox properties of a dispersion of SC particles 
may be associated either with the properties of a single particle 
or with the distribution of oxidation states of the particles suggests 
a potential way to characterize this distribution. We defer further 
considerations along these lines to future work and focus in this 
section on the size dependence aspect of the Fermi energy of a 
SC particle in equilibrium with an electrolyte solution. We stress 
that within the model approximations of the present work this 
equilibrium is completely determined by the solution of the 
Poisson-Boltzmann equation as described in section I1 and that 
the discussion in this section just gives another representation of 
this solution. In section I1 we have characterized the equilibrium 
state of the particle by its charge Qsc, given that its Fermi energy 
is equal to that of the electrolyte. A more appealing description 
of the state of the SC particle would express its Fermi energy as 
a function of its geometrical characteristics (here its radius R) 
and its charge Qsc. This will be similar to the usual way of 
expressing the ionization potentials and electron affinities of metal 
clusters in vacuum as functions of their size and charge.1,2-25 

Note that it is not a priori clear that such a description is useful 
for a SC particle in a redox solution. To express E ,  as a function 
of Qsc, R, and properties of the bulk semiconductor (e.g., @F,sc) 
would mean that the effect of the electrolyte enters only in de- 
termining the equilibrium charge, while in effect the presence of 
the electrolyte contributes another energy term-the solvation 
energy of the charged particle. Still, in analogy with the electrolyte 
redox system, where for low ionic concentrations we find that 
depends approximately only on the concentrations of the redox 
components themselves (eq 25) (the effect of other components 
of the solution enters via their effects on the activity coefficients 
which were taken to be 1 in eq 25), we may hope that the direct 
effect (beyond the effect on Qsc) of the electrolyte on EF,SC will 
be small. Indeed we find below that EF,SC may be expressed to 
a good approximation in terms of EoF,+,-, Qsc, and R, and that its 
explicit dependence on the surrounding electrolyte is relatively 
small. 

We have not been able to find a rigorous explicit expression 
for EF,SC from the solution of the PB equation. We did find for 
an n-type S C  (and we expect an analogous situation for a p-type 
SC) that under a broad range of conditions the following ex- 
pression is satisfied to a very good approximation 

c 

( 2 5 )  (a) Engel, E.; Perdew, J .  P. Phys. Rev. 1991,843, 1331. (b) Seidi, 
M.; Spina, M. E.; Brack, M. In the Proceedings of The International Sym- 
posium on Small Particles and Clusters, to be published in 2. Phys. D. (c) 
Makov, G.; Nitzan, A. To be published. 
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TABLE I: a ( R )  Calculated from the Linear Approximation Eq 31 
and Numerically from the Slopes of the Lines in Figure 

8.0 
7.0 
5.0 
4.0 
2.0 
1 .o 
0.5 
0.1 

0.074 
0.072 
0.066 
0.061 
0.042 
0.022 
0.010 
0.001 

0.411 0.410 0.433 
0.419 0.417 0.406 
0.446 0.442 0.343 
0.473 0.468 0.340 
0.648 0.635 0.523 
1.089 1.056 1.01 1 
2.054 

10.02 10.04 

"For the latter, two values are shown: at the point of zero charge 
(pzc) and at Cox = Crd. 

@F,sc, the Fermi energy of the bulk SC (or of the uncharged 
particle) is equivalent here to the standard redox potential of the 
ion pair in eq 25, Qsc, is the maximum positive charging possible 
for the particle, e.g., for an n-type SC under depletion conditions 
QX, = qNDK a(R) is a constant which depends on R for small 
R, and becomes size independent as R - m. 

Equation 27 cannot be derived as a rigorous result from the 
PB equation; however, its linearized form 

can be derived (using the charge conservation condition, Qsc = 
-Qcl, and the continuity eqs 26) from the linearized PB equation, 
Le., for situations characterized by small potential drop in the 
particle and in the electrolyte. This calculation yields 

(29) 
1 ( R / t s C )  

a(R) = - 
1 - C(R)  3 [  -& coth (2)  - 1 1  

where 

r 
C(R) = 1 - I 

-I 
L 

LSCCeI(Lcl + R) 

L c , l ~ c [ ~ c - R c o t h ( - & ) ] [ l  +&+;)]I 
(30) 

When R - =J, a = (3(1 - C'))-l, where C is given by 

Note that C(R) depends on LcI and eel, and thus a (R)  is nor a 
property of the S C  only. The latter becomes approximately true 
if C(R)  << 1. In particular this happens if the potential drop 
between the center of the particle and the bulk of the electrolyte 
occurs mostly in the particle. In Table I we show results for CdS 
particles in Mv+/Mv2+ electrolyte solutions (parameters are the 
same as used in section 11: kc = 252 A, ce1 = cMV+ + cMVz+ = 
1 X 10'' ions/cm3, counterion charge = -2, T = 300 K).  For 
this system a(-) is 0.365. It is seen that for this system C(R) 
<< 1 holds quite well. 

The validity of eq 27 beyond the linear regime can be tested 
by calculating Qsc for a SC particle a t  equilibrium with the 
electrolytic redox system (as was done in section 11) and to plot 
log (1 ; Qs~/Qsc ,~ , , )  vs log (crd/c,,). The latter quantity is 
proportional to EFrl which is in turn equal to the equilibrium value 
of EF,sc. Such a plot is shown in Figure 6 for a CdS particle in 
Mv+/Mv2+ solution (with parameters for both systems as detailed 
above). The approximate linear relation between log (1  - 

0.0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 
-1 0 1 2 

~og(C,,,/C,,> 
Figure 7. Same as Figure 6, for R/& = IO, and for different electrolyte 
concentrations: dashed, full, and dotted lines correspond to ceI = cMv+ + 
cMvit = I O i 7 ,  and Io", respectively. Only the depletion region is 
shown here. 

Qsc/Qsc,m,,) and log (crd/cox) confirms the approximate validity 
of eq 27. At the point of zero charge, Qsc = 0, which for the 
present choice of parameters is obtained for cd/cox = 17 1.1, all 
the lines in Figure 6 meet. Near this point the linearized PB 
equation holds, and a(R)  calculated from eq 29 is indeed equal 
to a (R)  obtained from the slope of the lines in Figure 6 at  this 
point (see Table I).  (Note that if a is the slope of a line in Figure 
6, a(R) is obtained from a(R) = kc(Ra)-l.) Far from the linear 
regime (e.g., the values given in Table I for the case crd/c0, = 
1) the a(R) values are different, expressing the approximate nature 
of eq 27. 

In Figure 7 we again plot log (1 - Qsc/Qsc,m,,) against log 
(crd/cox) for R = l o k c  and for the same parameters as in Figure 
6,  but now for different values of Cel = C, + Cox. If the relation 
27 was independent of the electrolyte, these results should all fall 
on the same line. The small difference between the lines is another 
demonstration of the fact that the Fermi energy of the SC particle 
depends weakly on attributes of the electrolyte other than its redox 
potential. 

The dependence of the relation between the particle's Fermi 
energy and its charge (eq 27) on the particle's size is expressed 
by the function @(I?). This function is shown in Figure 8 for the 
system CdS/methylviologen, using the same parameters as in 
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In the chemical case the system variables are only the concen- 
trations, while in the present case the state of the semiconductor 
subsystem is determined by the concentration and the charge on 
the particles. When eqs 25 and 27 hold, this may be derived from 

1 \ 1 

0.8 1 '\ 

0 . 2 '  " " ' I ' I ' I  
0 2 4 6 8 10 

R A C  
Figure 8. Function a(R)  (Table I) plotted against R / k c  for CdS 
spheres in Mvt/Mv2+ solution. Parameters for the CdS and for the redox 
system are given in the text. Full line: from the linearized PB equation 
(eq 31). Dashed line: from Figure 6 and Table I, for crd/cOx = 1. 
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Figure 9. Equilibrium charge accumulated on a SC particle of size R 
= lo& as a function of the ratio between the particle concentration and 
the electrolyte C,,, = Cox t C, concentration. The initial concentrations 
of the redox components are taken equal. 

Figure 6 and in Table I. The full line represents the result based 
on the linear approximation, eq 29, and the dashed line corresponds 
to the a ( R )  values obtained from the slopes of the lines in Figure 
6 at  the point cd/cox = 1. Note that a ( R )  becomes constant as 
R - 03. This results from the fact that in this limit Qsc/Qx,max - 1 / R ,  and EFSC - G,sc becomes simply the difference between 
the Fermi energm of the bulk electrolyte and the free macroscopic 
semiconductor. Note also that for R - m, eq 28 is valid since 
Q/Qsc,mx << 1; however, a ( R )  is not necessarily given by eq 29 
as seen in Figure 8. 

So far we have studied a single SC particle in an infinite 
electrolyte solution. Next we consider a finite density of such 
particles. 

IV. Colloidal Semiconductor Particles at Finite Density 
Consider now a finite density csc of semiconductor particles, 

which for simplicity we take to be of uniform size, in equilibrium 
with an electrolyte redox system. We assume that the particle 
density is low enough so that direct interparticle interactions can 
be neglected. Therefore, the equilibrium state of each particle 
is determined by the surrounding electrolyte as was shown above. 
Unlike in the case of a single particle, the state of the electrolyte 
is now affected by the presence of the finite density of SC particles. 
In analogy to the equilibrium between chemical redox systems 
we may seek an "equilibrium constant" that will connect the system 
variables at equilibrium. Note that the analogy is not complete: 

kT cred + - In - + C = 
n cox 

R 
EoF,sc + -a (R)kT  In 1 - - 

4 C  [ Q E I a x ]  (32) 

(note that cox and crd represent in general products of concen- 
trations). Taking for simplicity n = 1 this leads to 

11 - Q S C / Q S C . ~ ~ ~ I ~ ~ ' ~ ) ' ~ ( C ~ ~ / C , ~ )  = K(T) (33) 

K(T) is the desired equilibrium constant. The dependence on Qsc 
may be eliminated by using the charge conservation condition 

(34) C r d  - 6'exi = ctx - cox = (Qsc/q)Csc 

Using this, eq 33 may be rewritten as 

I 
k ~ Q ~ ~ , m a x  J cred 

In view of the remarks made following eq 27, this relation holds 
only approximately. 

Finally, we note that eq 34 may be used to find the equilibrium 
values of Qsc, cox, and crd in an equilibrium system formed by 
putting together the initial concentrations ctx, and cX of redox 
components and S C  particles. This results from the fact that eq 
34, together with the procedure used in section I1 to evaluate Qx 
in terms of cox and cr4, constitute a closed set of equations for 
these variables. In Figure 9 we show the result of such a calcu- 
lation: Qsc is plotted against Csc/Celc, where C,,, = Cox + C, 
for the case Cx = e$. These results do not depend on the 
absolute values of Csc and Cele. 

V. Conclusions 
In this paper we have studied the equilibrium state in a solution 

containing an electrolytic redox pair and suspended colloidal SC 
particles. Similarities and differences between this and ordinary 
chemical equilibria are pointed out. Our calculations demonstrate 
the way in which the charging of the S C  particle and its redox 
potential depend on the particle size and on the electronic prop- 
erties of the bulk semiconductor. The charging changes its 
character from a volume effect to a surface effect as the particle 
size increases. The redox potential (Fermi energy) of the particle 
also depends on its size. We have obtained a useful, albeit ap- 
proximate, relation (eq 27) between EFsc and the particle radius 
R. Consequently, the equilibrium constant of this system (e.g., 
eq 35) also depends on R .  This size dependence can be strong 
for small particles and disappears as R - m. 

The model considered is simplified in many ways: The use of 
Poisson-Boltzmann statistics for the SC particles assumes both 
large enough particles, for which densities of impurities and 
carriers are meaningful concepts, and the unimportance of 
quantum effects. Also surface states on the S C  particles are 
disregarded. The procedure used here can be carried over to 
models for which some of the present approximations (e.g., the 
absence of surface states) are relaxed. 
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