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This paper describes the results of computer simulations of charge solvation dynamics in a 
Stockmayer solvent ( Lennard-Jones spheres with point dipoles at their centers). The solvent 
molecules are characterized by mass and moment of inertia which can be varied independently, 
thus providing the possibility to study the separate effects of the rotational and translational 
solvent motions on the solvation process. We focus on the role played by these degrees of 
freedom, and on the contributions of different solvation shells around the solute to the 
solvation process in order to check the validity of recently proposed theories of solvation 
dynamics. We find that even in this structureless solvent, as in the more structured solvents 
studied earlier, inertial effects dominate the solvation process, and dielectric solvation theories 
which do not take into account these effects cannot describe the observed dynamics. The 
dynamic mean spherical approximation and generalized diffusion theories cannot account for 
the observed dynamics even when solvent translations are frozen. 

I. INTRODUCTION 

Considerable attention has been focused lately on ques- 
tions related to the dynamics of charge (and charge distribu- 
tions) solvation in polar solvents.‘-3 Progress in fast-time 
experimental techniques has lead to a vast amount of new 
data on solvation processes in protic and nonprotic solvents, 
and recent theoretical investigations based on analytical ap- 
proximations,‘20 as well as numerical simulations,21-28 
have lead to new insight concerning the nature of the solva- 
tion process. The following issues (some of which are inter- 
related) have been repeatedly discussed. 

To what extent can the solvation process be described by 
continuum dielectric theory and what are the signatures of 
the solute and solvent structure in the deviation of the ob- 
served dynamics from that predicted by continuum dielec- 
tric theory? 

To what extent can the solvation dynamics be accounted 
for by the information contained in the long-wavelength di- 
electric function, E(W) =e( k = O,w), mainly by its Debye 
form, 

60 -EC&l 
E(W) =E, + _ _ 7 

1 + iwr, 

which is characterized by the relaxation times r. and 
rf- = (E,/EO)TD [e. =E(O), E, =e(co)]. 

How well can the solvation process be described by lin- 
ear response theory? How does dielectric saturation affect 
the solvation process? 

How does solvent “shell structure” about the solute 
molecule manifest itself in the solvation process? What is the 
role of cooperativity in the solvent response? How do differ- 
ent ranges of solute-solvent interaction affect the solvation 
dynamics, and can they be accounted for by the calculated 
wavelength dependent dielectric response? 

What are the relative roles played by different degrees of 
freedom of the solvent motion, in particular, rotation and 
translation, in the solvation process? 

How do inertial (as opposed to diJiisive) solvent mo- 
tions manifest themselves in the solvation process? 

Theoretical work of the past few years has attempted to 
answer these questions. The main approaches taken can be 
roughly divided into four categories: (i) the dynamical 
mean spherical approximation ( MSA ) ;&’ (ii ) generalized 
diffusion equations (GDE) based on the Vlasov-Smolu- 
chowski equation generalized to take into account both sol- 
vent translation and rotation and supplemented by informa- 
tion on the equilibrium solvent structure;‘G’3 (iii) a 
generalized Langevin equation (GLE) framework for cal- 
culating the time-dependent density correlation functions of 
the solvent, again supplemented by input (in the form of the 
static direct correlation function) about the pure solvent 
structure;” (iv) expressing the solvation energy in terms of 
E( k,w ) and using ad hoc assumptions and conjectures about 
the functional form of the latter.16 These are essentially lin- 
ear-response theories, and give, within their imposed limits, 
similar answers to the aforementioned questions. These the- 
ories predict a nonexponential decay of the solvation energy 
in contrast to the dielectric continuum model (DCM) 
which, for the Debye solvent [Eq. ( 1) 1, predicts an expo- 
nential relaxation with characteristic time rt. Neglecting 
translational motion of the solvent, the relaxation times ob- 
tained are between rr. and TV and the relaxation is faster and 
closer to the DCM prediction when solute/solvent size ratio 
increases. Incorporation of solvent translational motion can 
yield relaxation times even shorter then rL. 

Of particular interest is the relation of the different re- 
laxation times to the interaction range and to the solvent 
shell structure about the solute. Following an early remark 
made by Onsager that the shorter time scales are associat- 
ed mostly with solvent layers further away from the solute, 
and that the longer -rD times are associated with the indi- 
vidual response of solvent molecules nearest to the solute, 
attempts were made to substantiate this assertion by a rigor- 
ous calculation. Indeed, for purely rotational models, the 
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Onsager conjecture has been corroborated by the aforemen- 
tioned theories. However, Chandra and Bagchi have 
shown,12v13 within a GDE framework, that when transla- 
tional motion is important [D,/(ZD,a 2, 20.5, where D,, 
DR , and 0 are, respectively, the translational and rotational 
diffusion coefficients and the molecular diameter of the sol- 
vent], then the relaxation is affected by the different solvent 
shells in a manner opposite to that suggested by Onsager, 
namely, the fastest dynamics is associated with shells closest 
to the solute molecule. 

Available experimental data can be generally rationa- 
lized along these theoretical predictions. Energy shifts asso- 
ciated with solvation relax nonexponentially, with the aver- 
age relaxation time usually close to that predicted by the 
DCM ( rL for a Debye solvent). In several cases3’ the initial 
relaxation is observed to be faster, in contrast to the predic- 
tions of the theories which take into account only orienta- 
tional relaxation and determine rL to be the upper bound on 
the relaxation times (see, however, Refs. 12 and 13). It 
should also be kept in mind that the most sophisticated ex- 
periments are currently limited to time scales longer then 
100-200 fs, so faster relaxation components would not be 
seen. Obviously, issues concerning the correlation of time 
and length scales are not easily observable. Neither the On- 
sager “inverse snowball” behavior, nor the role played by 
different solvation shells or the relative importance of sol- 
vent rotational and translational motions, has thus far been 
directly verified. These issues have been discussed in the 
light of recent numerical simulation work.2.21-28 

Quite a few simulation studies of solvation dynamics 
and related phenomena have been published recently.292’-28 
Most of these studies21-26 were made on computer models of 
aqueous systems. Two remarkable outcomes of the latter 
group of simulations are, first, the close agreement between 
results obtained by different groups simulating different 
(rigid and nonrigid) water models, and, secondly, the strong 
disagreement between these simulation results and the pre- 
dictions of most analytical theories. In contrast to these the- 
ories, these simulations show that the relaxation proceeds on 
at least two time scales, the fastest one is of the order of 25 fs 
and accounts for 70%-80% of the solvation energy while 
the other is an order of magnitude slower. Furthermore, 
these simulations indicate that the fast relaxation is associat- 
ed with inertial librations of the H atoms, not accounted for 
in current theories. Naturally, the fact that water is unique in 
the degree of structure imposed by its H-bond network has 
been suggested as a cause for this behavior. Recently Maron- 
celli has performed simulations of solvation dynamics in a 
model acetonitrile, while Carter and Hynes27 have per- 
formed similar simulations in a diatomic model roughly rep- 
resenting CH, Cl. Surprisingly, the results of these simula- 
tions are qualitatively similar to the water simulations. In 
particular, Maroncelli2 considered the dynamics of charge 
solvation described by either the equilibrium response func- 
tion 

where hEso,” (t) is the solvent-solute interaction energy ob- 
served after a step function change in the solute charge, and 
found that both are characterized by a fast ( -0.05-O. 1 ps at 
room temperature) Gaussian initial relaxation which ac- 
counts for -80% of the relaxation followed by a much 
slower relaxation (OS-1 ps) which accounts for the remain- 
ing solvation. These time scales should be compared to the 
dielectric relaxation times for this computer solvent, 
rl) = 4.1 ps and rL = 0.12 ps. The observed response is thus 
closer to the DCM prediction then to the MSA result (e.g., 
(7MSA ) = 0.44 ps for this solvent while the observed (r) is 
0.17 ps); however, it differs from the DCM/Debye model 
(and from the prediction of the GDE, including translation) 
in its bimodal character. In addition, the results of Maron- 
celli exhibit oscillations with a period of -0.2 ps, resulting 
from inertial dynamics of solvent molecules close to the sol- 
ute. Thus, the fast solvation response is dominated by solva- 
tion shells closer to the solute and the dynamics proceeds 
from the inner region to the outside, namely in a “counter 
Onsager” manner. For the model considered by Maroncelli, 
roughly twice as much energy flows through the rotational 
energy channel than through the translational one. 

Many of the aforementioned features have also been ob- 
served in the study of Carter and Hynes,27 and appear to be 
general, at least for small molecule solvents. In particular, 
the qualitative similarity to simulation of solvation in water 
is striking. In the latter simulations the fast initial response, 
which also accounts for most of the solvation, is character- 
ized by a relaxation time of - 20-30 fs, about half of rL in the 
ST2 model used by Maroncelli and Fleming,22 and about 
0.15rL in the SPC simulations of Bader and Chandler.26 
Interestingly, the fast relaxation component appears very 
similar in these two models even though their dielectric re- 
laxation properties are so different. This observation sup- 
ports the conjecture that the fast relaxation component is 
associated with inertial (as opposed to diffusional) motions 
not accounted for in the Debye model of dielectric relaxation 
(and by simple extensions of it), and suggests that the simi- 
larity between the numerical values of rt and the fast relaxa- 
tion component seen in the acetonitrile simulations2 may be 
accidental. The strongest evidence for this and for the impor- 
tance of inertial motions in the fast relaxation component is 
provided by Maroncelli’s comparison* between the solva- 
tion dynamics in his acetonitrile simulations described ear- 
lier, and between his rigid cage simulations (where all but 
one solvent molecules are frozen) for the same model. A 
recent theoretical calculation by Chandra and Bagchi2’ also 
indicates that inertial effects can enhance the early stages of 
the solvation dynamics (see also Ref. 5 ) . On the experimen- 
tal side, clear evidence for the importance of inertial motion 
in the solvation dynamics in acetonitrile has been provided 
very recently by Rosenthal et aL3’ c(t) = @v(t)~mN) 

(SV2) ’ 
(2) 

where S V is the fluctuation in the electrical potential at the 
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The apparent generality of the observations described 
earlier is a somewhat surprising development following ini- 

solute position, or the nonequilibrium response function 

&s(t) = wd” (t) - hEso,” ( w 1 
AL (0) - A&v ( 00 1 ’ 

5434 E. Neria and A. Nitzan: Simulations of solvation dynamics 

(3) 

Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



tial expectations that this type of behavior was unique to 
water and possibly other highly structured H-bonded sol- 
vents. The general conceptual picture of the solvation pro- 
cess inferred from the simulations is substantially different 
from that inferred from the analytical theories mentioned 
earlier. In particular, with regard to the relative roles taken 
in the solvation process by diffusional and inertial motions, 
by translational and rotational motions, and by the different 
solvation shells. In this context it is of interest to scale down 
the solvent model and to examine these issues in computer 
solvents more similar to those assumed by the analytical the- 
ories. In this paper we study solvation dynamics in a Stock- 
mayer solvent: A fluid made of spherical particles interact- 
ing with each other and with the solute with Lennard-Jones 
interactions and with dipolar interactions associated with 
point dipoles located at the sphere centers.32 The solute is a 
spherical atom which (for the nonequilibrium simulation) 
becomes a singly charged ion at t = 0. The original choice of 
molecular parameters approximate those of the CH, Cl mol- 
ecule, however, the mass and moment of inertia of the sol- 
vent molecule have been varied in order to study the separate 
effects of rotational and translational degrees of freedom. A 
critical comparison of our results with the present analytical 
theories makes it possible to determine which aspects of the 
solvent structure and dynamics are still missing in the pres- 
ent forms of these theories. 

II. THE SIMULATION 

The simulated system is a Stockmayer liquid: 400 struc- 
tureless particles characterized by point dipoles p and Len- 
nard-Jones interactions, moving in a box (size L) with peri- 
odic boundary conditions. In addition, a solute atom A 
which can become an ion of charge q is imbedded in this 
solvent. The electrostatic potentials are handled within the 
effective dielectric environment scheme,33 whereupon the 
interaction between particles CT and p with R,, CR, is sup- 
plemented by an image potential arising from a continuum 
dielectric of dielectric constant E’ surrounding particle a at 
distance )R,. In our simulations we take R, = L /2. E’ is 
chosen to be self-consistent with the simulated system. The 
Lagrangian of the system is given by 

=+M,& ++-M$ I?;+$,&+; 
i= I 

-+i Vy(R,) - 2 Y,,k,‘, 
i=l 

k f., VDD(Ri,R,,PI,PJ 1 -- 
lfJ 

VAD(R,,Rt,pt 1 - 2 ni(p’ -p2), (4) 
i= 1 

where N is the number of solvent molecules of mass M, di- 
pole moment p, and moment of inertia I. R, and R, are 
positions of the impurity atom (that becomes an ion with 
charge q) and a solvent molecule, respectively, and R, is 
]R, - Rj]. Vu, YDD, and VAD are, respectively, Lennard- 

Jones, dipole-dipole, and charge-dipole potentials, given by 

Vy(R) = 46, [ (v,/R)‘* - (aD/Rj6] (5) 
( Vz is of the same form with a, and eA replacing o, and 
eD) and 

vDD(R, R, cL, p,j =  k’pj -3(n*k)(n*pj) 
I ,  J’ I ,  J  

2(E’ - 1) - (&I + l)R; pi’pj’ (6) 

where n = (Ri - R~)/I$, 

VAD(Ri,Pi,R,) 
1 

=’ 
2(E’ - 1) 

R:- (2&+l)R; > 
Pi(Ri -RA). (7) 

The electrostatic potentials YDD and VAD also include reac- 
tion field terms.33s34 The last term in Eq. (4) is included in 
the Lagrangian as a constraint, in order to preserve the mag- 
nitude of the dipole moments ( 1 Pi 1 = ,u) with a SHAKE like 
algorithm. 35 In this representation the mass M and the mo- 
ment of inertia I of the solvent molecules are independent 
parameters, which makes it possible to study the relative 
importance of translational and rotational motions in the 
solvation process without affecting other potentially rel- 
evant parameters such as the molecular size. The time evolu- 
tion is done using the velocity Verlet algorithm, with the 
value of il (t) determined as in the SHAKE algorithm, and 
with the Andersen36 thermalization used to keep the system 
at constant temperature. 

For the Stockmayer solvent, the molecular parameters 
were taken to approximate the CH, Cl molecule: oD = 4.2 
A, e. = 195 K, M= 50 amu, I = 33.54 amu A2, and 
p = 1.87 D. The parameters taken for the ion in the simula- 
tions described later were MA = 25 amu, a, = 3.675 A, and 
E, = 120 K. q is taken to be one electron charge e. The simu- 
lation was done at 240 K. The edge length of the cubic simu- 
lation cell was L = 33.2 A, corresponding to the density 
p = 1.09 x 10 - * A - ’ [the density of CH, Cl at this tempera- 
ture]. In reduced units we have p*=~a 2 = 0.81, 
/.L*~.~(E~u~)“~ = 1.32, T*-k,T/c, = 1.23, and 
I* =I/(Ma *) = 0.038. A simple switching function 

f(R) = (R -RI/(& - R,) 

I 

1 R<R, 
R, <R <R, (8) 

0 R>R, 
was used to smoothly cut off the electrostatic potential. In 
the present simulation we took R, = L /2 and R, = 0.95R,. 
Under these simulation conditions the pressure fluctuates in 
the range 500 f lOOAt. The dielectric constant E is comput- 
ed from pure solvent simulations, using the expression33 

(E- 1)(2e’+ 1) 
2E) + E 

= $-+ (P*P(R,)), (9) 
B C 

where 

P&Q (loa) 
i= 1 

and 

E. Neria and A. Nitzan: Simulations of solvation dynamics 5435 

J. Chem. Phys., Vol. 96, No. 7,1 April 1992 
Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5436 E. Neria and A. Nitzan: Simulations of solvation dynamics 

RR,) = + ,gl 
J 

k& pk, (lob) 

where the prime on the inner summation indicates the re- 
striction Rjk .c R,. The result for our solvent is ,- 17 
[ E( CH, Cl) = 12.6 at 253 K]. After evaluating E in this way 
and confirming that this is a self-consistent choice, we pro- 
ceeded with E’ = E. However, as discussed later our dynami- 
cal results are not sensitive to the magnitude of e’. 

The time evolution was carried out using a time step of 3 
fs, which gave energy conservation to within 10 -’ over 
w 80 ONI time steps. After equilibrating the system at 240 K, 
we have computed both the equilibrium correlation function 
C(f) from equilibrium trajectories with both a charged 
(q = e) and an uncharged (q = 0) impurity atom, and the 
nonequilibrium solvation function s(t) following a step 
function change from q = 0 to q = e. In addition to the 
CH, Cl solvent model characterized by the parameters giv- 
en, we have also carried out calculations for different values 
of the parameter15 

p’ = I/2lua = (11) 

which measures the relative importance of rotational and 
translational solvent motions. 

With the model described earlier we have conducted a 
series of solvation dynamics studies. Our results are de- 
scribed in Sec. III. 

III. RESULTS 
Figure 1 shows the equilibrium solvent induced electro- 

static potential Vat the position of the ion, as a function of 
the ion charge q. Clearly the solvent response is linear with q 
all the way up to q = e, the charge considered in this study. 
The slope of the straight line in Fig. 1 is 4.4. The correspond- 
ing slope from the Born solvation theory, if we take the ion 
radius to be a,, /2, is 7.4. The MSA theory predicts (using a, 
and a, for the diameters of the ion and the solvent, respec- 
tively) a slope of 4.6. 

FIG. 1. The electrostatic response potential (I’) induced by the solvent at 
the position of the solute ion, as a function of the solute charge. 

FIG. 2. The equilibrium relaxation functions C(f) [Eq. (2); dashed and 
dotted lines] andS( 1) [Eq. (3); solidline] obtained asdescribedin the text. 
In the nonequilibrium simulation the ion charge is switched on at t = 0. The 
dotted and dashed lines represent C(t) obtained from equilibrium simula- 
tions with uncharged and charged ion, respectively. 

Figure 2 shows the time evolution of the solvation func- 
tions C(t) [Eq. (2)] and,!?(t) [Eq. (3)]. The equilibrium 
results are evaluated from an equilibrium trajectory of 220 
ps for a system consisting of the solvent and a charged or 
uncharged atom. The nonequilibrium results are averages 
over 25 different trajectories, each starting from an initial 
configuration taken from an equilibrium run of an all-neu- 
tral system (at 65 ps intervals3’ ) following switching of the 
charge on the impurity atom from q = 0 to q = e. 

As observed before in other systems,2V27 there is a large 
degree of similarity between the equilibrium and nonequilib- 
rium results. Both consist of an initial, apparently inertial, 
part followed by a relatively slow residual relaxation. How- 
ever, the initial inertial part is more pronounced in C(t) . The 
latter is also characterized by stronger oscillations in the 
residual part of the relaxation. The inertial origin of these 
oscillations was recently discussed by Maroncelli.= 

In Fig. 3 we check the sensitivity of our results to the 

FIG. 3. The function S(t) obtained with e’ = 17.0 (solid line, same as in 
Fig. 2), together with the same function obtained with .k = 1.0 (dashed 
line). e’ is the continuum dielectric constant associated with our reaction 
field boundary conditions. 
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present choice of boundary conditions. We note that the use 
of reaction field boundary conditions as implemented here is 
strictly valid only for equilibrium simulations, since the a’~- 
namic response of the dielectric continuum at R > R, is not 
taken into account. One could argue that for the short-time 
phenomena considered here, E’ should have been taken 
smaller then the static dielectric constant of the system. Fig- 
ure 3 shows that on the relevant time scale our dynamical 
results do not change if we take e’ = 1 instead of e’ = E = 17. 
(The absolute solvation energy does depend on El, and re- 
placing r? = 17 by & = 1 changes it by r5%.) 

In the simulations described so far the solvent param- 
eters are given by the aforementioned data. For these, the 
dimensionless parameter p’, Eq. ( 11) is 0.019. In order to 
separate between the effects of the solvent translational and 
rotational degrees of freedom, we have also studied systems 
characterized by the p values 0,O. 125,0.25, and 03. Except 
forp’ = 0, these values were obtained by changing 1, keeping 
M = 50 amu. The value p’ = 0 was achieved by taking 
M = MA = CO and I = 33.54 amu A”. Note that the values 
p’ = 0 andp’ = CO correspond to models with frozen transla- 
tions and frozen rotations, respectively. 

!\ 
i’\ 

-x)- : ‘\ 
i’ ‘\ 
\I ‘< 

-m- i,\ ‘--.\ 
‘;lL.~\ 
I\ ..,.. 

.-._ ‘\ 
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TABLE I. Relaxation times r obtained from fitting the solvation energy at 
short time to the function E(t) = A {exp[ - (t/~)~] - 1). The fitting is 
done in the range S(t) >0.3. 

PI M  (mu) I(amllA2) 7 (ps) A 

0.0 
0.019 s”o 

33.54 0.206 48 
33.54 0.170 41 

0.125 50 220.5 0.347 36 
0.250 50 441.0 0.421 32 

Figures 4(a) and 4(b) show, respectively, the solvation 
energy Es,,, (t) and the nonequilibrium solvation function 
S(t) obtained for these different systems. The following 
points are observed. 

The asymptotic ( t-+ OD ) values of E,, [Fig. 4 (a) ] are 
different in the casesp’ = 0 (M = CO ) andp’ = 03 (I = cu ) 
then in the other cases because of the freezing of solvent 
translations and rotations, respectively. Note, however, that 
the I = CO curves converge very slowly (the solvent compen- 
sates for the lack of rotations by bringing into the neighbor- 
hood of the solute solvent molecules with the “correct” ori- 
entation) and probably did not reach its asymptotic value in 
Fig. 4(a). 

Except for the rotationless system (p’ = 03 ), all the oth- 
er systems exhibit a bimodal relaxation, with a fast relaxa- 
tion component which accounts for most of the solvation 
energy. 

The relaxation of the rotationless solvent is exponential 
[a fit to exp( - t/r) yields r = 2.2 ps]. 

-- 0 b 

0 ; 

GME PSI 

A A 

A closer look at the fast component in the finite p’ sys- 
tems shows a Gaussian behavior, a fit to exp [ - (f/r) “1 
yields the r values summarized in Table I. r increases with 
increasing solvent moment of inertia (recall that this is how 
p’ is changed for p’ > 0), still for the range of p’ studied, it 
stays distinct from the long component. Note that the system 
withp’ = 0 cannot be directly compared in this respect with 
the other systems because, in this case, the solvent mass was 
taken to be infinite. 

The inertial oscillations and the thermal noise seen in 
the relatively small slow relaxation component make it diffi- 
cult to estimate the long relaxation time. A fit for the 
p’ = 0.019 case yields 7~2.7 f 0.7 ps. The long-time com- 
ponents in the other systems relax on similar time scales. 

I I b I I 

(b) ’ 
2 6 8 

FIG. 4. The solvation energy E,, [Fig. 4(a) ] and the nonequilibrium sol- 
vation function S [Fig. 4(b) 1, plotted against time (after switching the ion 
charge from 0 toe) for different solvent models characterized by the param- 
eter p’ [ Eq. ( 11) 1. Solid double-dotted line, p’ = 0; solid line, p’ = 0.019; 
dotted line, p’ = 0.125; dashed line, p’ = 0.25; solid dotted line, p’ = m . 

The relative contributions of different solvation shells to 
the solvation process were obtained by considering solvent 
layers defined according to the minima observed in the sol- 
vent-solute radial distribution function. Distinct minima in 
the solvent density are observed at distances of 5.5 and 10.0 
A ( f 0.3 A) from the ion center, and these were used to 
detine the solvation shells. Averaging the number of solvent 
particles within these distances, we have defined the first 
solvation shell as that containing the eight solvent molecules 
nearest to the ion and the second solvation shell as that con- 
taining the next-nearest 26 molecules. The remaining sol- 
vent molecules constitute the third shell. 

Our results on the separate contributions of these shells 
to the solvation process are depicted in Figs. 5-7. The solva- 
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-1 ! I I # I I 

(b) ’ 
2 

irvlm 
6 8 

FIG. 5. (a) The solvation energy and (b) the function S( t) associated with 
the three solvation shells defined in the text, plotted against time after the 
ion charge is switched on, for the system withp’ = 0.019. Solid line, nearest 
shell; dotted line, second shell; dashed line, outer shell. 

tion shells were defined using the pair correlation function at 
t = 00 ; however, the assignment of atoms to the different 
shells were determined by their instantaneous positions. Fig- 
ures 5 (a) and 5 (b) show the time evolution of the solvation 
energies and of the functions S(t) associated with the differ- 
ent shells, for the original CH, Cl parameters (p’ = 0.019 ) . 
Figures 6 and 7 show similar results for the systems with 
frozen translations (p’ = 0.0) and inhibited rotations 
(p’ = 0.25). The behavior in all these cases is qualitatively 
similar. (a) The solvation energy is dominated by the first 
solvation shell. When both translations and rotations are 
active (Figs. 5 and 7) the first, second, and third shells con- 
tribute - 67%, 24%, and 9%, respectively, to the solvation 
energy. The fast, inertial relaxation component is seen in all 
three shells and altogether accounts for - 80% of the solva- 
tion energy. Inertial oscillations are seen in the long-time 
component of the time evolution. These oscillations, most 
pronounced in the S( t) functions, correspond to low ampli- 
tude librations about the final average orientations of the 
solvent molecules (see, e.g., Fig. 8). Interestingly, it appears 
that relaxation of inertial effects is faster near the ion, and is 
slowest (6-8 ps) for the molecules in the outer layers. This 
issue deserves further study. The nearest solvation shell ex- 
hibits a pronounced slow relaxation component, which is 
weaker or absent in the outer shells. 

-1 I 

0 1 i A 

(a) GME PSI 

g .::~ 
* 

j; 
\! 

’ 2 
(b) GME 

6 8 
0 

FIG. 6. Same as Fig. 5, for the translationless case (p’ = 0). 

Finally, the nature of the motion that gives rise to the 
fast relaxation component is seen in Fig. 8, where we plot as 
functions of time the average angles between the molecular 
dipoles in the different solvation shells and between the cor- 
responding radius vectors to the ion centers. These results 
are for thep’ = 0.019 system; the other systems withp’ < 00 
show qualitatively similar behavior. Generally, the angular 
time evolution is similar to that of the solvation energy. 
Typical to the present structureless system and in contrast to 
the observation in more structured solvents, the fast relaxa- 
tion component is associated with a large amplitude of the 
angular motion. 

IV. DISCUSSION AND CONCLUSION 

The present study was motivated by our desire to exam- 
ine a system that, while maintaining a relatively realistic 
character, is closer in nature to the theoretical models used 
in recent years to study solvation dynamics. Our results indi- 
cate that even in this simple system most of these theories 
still do not provide an adequate description. The inertial 
component, initially thought to characterize H-bonded sol- 
vents,22s23 and later associated with librational motion in 
structured solvents,= is seen to be very important also in the 
present case of structureless solvent. As seen in Fig. 8, this 
component arises in the present system from a large ampli- 
tude rotational motion. The average angle of molecules in 

J. Chem. Phys., Vol. 96, No. 7,1 April 1992 
Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



E. Neria and A. Nitzan: Simulations of solvation dynamics 

404 
0 2 4 0 8 

(a) 

1 

0.6 

-0.6 

-1 

lb) 

TIME0 

) ‘1 ,..; I. : , \’ t ;“i;;:v.l,~....‘” 
1,) ;” 1 *. ’ .--’ ,i! :: ,’ .!& :’ ; 

I 
Y,’ 

I 1 I I 
2 

iklE 0 
6 6 

FIG. 7. Same as Fig. 5, for p' = 0.25. 

the first solvation shell (for the p = 0.019 system) evolves 
from 90” to - 30” in about 0.15 ps. This should be contrasted 
with the simulation results in the more structured water and 
acetonitrile systems, where the fast relaxation component 
appears to be associated with small amplitude librations of 
the nearest-neighbor solvent molecules. The overall effect on 
the solvation process is however very similar. 

A close look at the short-time evolutions of the three 
solvation layers in Figs. 5 (a) and 8 reveals more details of 
this initial energy flow. It is seen that the response of the 
second shell is somewhat delayed relative to that of the first 
one and, similarly, the third shell follows somewhat after the 
second. The relaxation on this time scale clearly proceeds 
from the inside outwards. It is important to note that this 
behavior is seen also for the purely rotational (M = CO, 
p’=O) system [Fig. 6(a)]. 

The only feature in the present simulation results which 
is reminiscent of the predictions of the Onsager, MSA, or the 
GDE theories of solvation is the appearance of a long-time 
relaxation component associated with the first solvation 
shell. It is tempting to associate this component, which is 
weak or unresolved in the relaxation of the outer layers, with 
the recently popularized Onsager “inverse snowball” pic- 
ture. We note, however, that it accounts for only a small part 
( -20%) of the of the total solvation energy, and its pres- 
ence is equally pronounced in the translationless (p' = 0) 
system as in a system with a considerable translational mo- 
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FIG. 8. The time dependence of the average angle between the molecular 
dipoles and between the corresponding radius vectors to the ion center, as- 
sociated with molecules in the three different solvation shells defined in the 
text, plotted against time following the switching on of the ionic charge. 

tion (p' = 0.25). This suggests that the slow component in 
the relaxation of the first solvation shell is associated with 
residual diffusive energy flow out of this shell, as suggested 
by Maroncelli2 

Recent theoretical treatments of solvation dynamics, 
outlined in Sec. I, predict nonexponential relaxation of the 
solvation energy, with relaxation times ranging between the 
transversal and longitudinal dielectric relaxation time of the 
solvent. A rough estimate of the longitudinal relaxation time 
in ourp’ = 0.019 system yields a value - 1.5-2 shorter than 
the short-time Gaussian relaxation time (7 = 0.17 ps, cf. Ta- 
ble I) of this system. rr is a many-body macroscopic proper- 
ty of the dielectric solvent, and the features associated with 
the fast relaxation time as described earlier clearly indicate 
that there is no direct relationship between these quantities. 

In conclusion, solvation dynamics in the structureless 
Stockmayer liquid is qualitatively very similar to that ob- 
served in earlier studies of more structured polar solvents. 
This remains true even in the limit where translations are 
frozen, which was expected to be the closest in character to 
the original models used by the MSA and the GDE theories 
of solvation. The importance of inertial motions on the sub- 
picosecond time scale thus seems to be a general feature of 
the solvation process in small molecule solvents. While iner- 
tial motions are expected to affect the short-time response of 
such solvents, it is both surprising and significant that these 
motions dominate the solvation dynamics (and, therefore, 
related chemical processes in solution) in all solvent models 
studied so far. Since linear response provides a good approxi- 
mation for a large range of parameters (at least for 4 = e), it 
is expected that generalized dielectric theories should be able 
to approximately describe these phenomena, provided that 
inertial response is incorporated into the large k and w part 
of the solvent dielectric function. 

While this paper was being prepared for publication we 
learned of similar work by Berkowitz and co-workers.38 
They have also studied solvation dynamics in a Stockmayer 
fluid with a different choice of interaction parameters. Their 
observations are qualitatively similar to ours. 

J. Chem. Phys., Vol. 96, No. 7.1 April 1992 
Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5440 E. Neria and A. Nitzan: Simulations of solvation dynamics 

ACKNOWLEDGMENTS 
This work was supported by the Commission for Basic 

Research of the Israel Academy of Science, and by the 
U.S.A-Israel Binational Science Foundation. The work was 
initiated when both authors were visiting the School of Phys- 
ics at Georgia Institute of Technology. We thank Professor 
U. Landman and Dr. R. N. Barnett for many useful discus- 
sion and for technical help. A. N. also thanks Professor J. 
Ford for his assistance. 

’ B. Bagchi, Ann. Rev. Phys. Chem. 40,115 ( 1989), and references therein. 
2 M. Maroncelli, J. Chem. Phys. 94,2084 ( 199 1) , and references therein. 
3 W. Jarzeba, G. C. Walker, A. E. Johnson, and P. F. Barbara, Chem. Phys. 

152, 57 (1991), and references therein. 
4G. Van Der Zwan and J. T. Hynes, J. Chem. Phys. 784174 ( 1983). 
‘G. Van Der Zwan and J. T. Hynes, J. Phys. Chem. 89,418l (1985). 
6P. G. Wolynes, J. Chem. Phys. 86,5133 ( 1987). 
‘I. Rips, J. Klafter, and J. Jortner, J. Chem. Phys. 88, 3246 (1988). 
‘I. Rips, J. Klafter, and J. Jortner, J. Chem. Phys. 89, 4288 ( 1988). 
9A. L. Nichols III and D. F. Calef, J. Chem. Phys. 89, 3783 (1988). 
“D. F. Calef and P. G. Wolynes, J. Chem. Phys. 78,4145 (1983). 
” B. Bagchi and A. Chandra, J. Chem. Phys. 90,7338 (1989). 
“A. Chandra and B. Bagchi, J. Chem. Phys. 91,2594 (1989). 
13B Bagchi and A. Chandra, Chem. Phys. Lett. 151,47 ( 1988). 
l4 R. F. Loring and S. Mukamel, J. Chem. Phys. 87, 1272 ( 1987). 
Is L. E. Fried and S. Mukamel, J. Chem. Phys. 93,932 (1990). 
16A. A. Komyshev, A. M. Kuznetsov, D. K. Phelps, and M. J. Weaver, J. 

Chem. Phys. 91,7 159 ( 1989). 
“E. W. Castner, Jr., G. R. Fleming, B. Bagchi, and M. Maroncelli, J. 

Chem. Phys. 89,3519 (1988). 

‘*D. Wei and G. N. Patey, J. Chem. Phys. 91, 7113 (1989); 93, 7113 
(1990). 

I9 F. 0. Raineri, Y. Zhou, H. L. Friedman, and G. Stell, Chem. Phys. 152, 
201 (1991). 

“‘A. Chandra and B. Bagchi, J. Chem. Phys. 94,3177 (1991); Chem. Phys. 
156,323 ( 1991); Proc. Ind. Acad. Sci. 103,77 ( 1991). 

*IS. Engstrom, B. Jonsson, and R. W. Impey, J. Chem. Phys. 80, 5481 
(1984). 

**M. Maroncelli and G. R. Fleming, J. Chem. Phys. 89.5044 ( 1988). 
23R. N. Bamett, U. Landman, and A. Nitzan, J. Chem. Phys. 90, 4413 

(1990). 
24P. J. Rossky and J. Schnitker, J. Phys. Chem. 92,4277 (1988). 
z50. A. Karim, A. D. J. Haymet, M. J. Banet, and J. D. Simon, J. Phys. 

Chem. 92,3391 (1988). 
26J. S. Bader and D. Chandler, Chem. Phys. Lett. 157,501 ( 1989). 
27E. A. Carter and J. T. Hynes, J. Chem. Phys. 94,596l (1991). 
28T. Fonseca and B. M. Ladanyi, J. Phys. Chem. 95,2116 (1991). 
29 L. Onsager, Can J. Chem. 55, 18 19 ( 1977). 
“E. W. Castner, M. Maroncelli, and G. R. Fleming, J. Chem. Phys. 86, 

1090 (1987); M. Maroncelli and G. R. Fleming, ibid. 86,622l (1987). 
“S. J. Rosenthal, X. Xie, M. Du, and G. R. Fleming, J. Chem. Phys. 94, 

4715 (1991). 
32 For recent simulations on dielectric properties of Stockmayer fluids, see 

E. L. Pollock and B. J. Alder, Physica 102A, 1 ( 1980); Phys. Rev. Lett. 
46,950 ( 198 1); M. Neumann and 0. Steinhauser, Chem. Phys. Lett. 102, 
508 (1983); M. Neumann, 0. Steinhauser, and G. S. Pawley, Mol. Phys. 
52,97 (1984). 

33 J. W. de Leeuw, J. W. Perram, and E. R. Smith, Annu. Rev. Phys. Chem. 
37,245 (1986). 

34 C. J. F. Bijttcher and P. Bordewijc, Theory of Electric Polarization, 2nd 
ed. (Elsevier, Amsterdam, 1978), Vol. 2, Chap. 10. 

3s M. P. Allen and D. J. Tildesely, ComputerSimulation ofLiquids (Oxford, 
London, 1989). 

36H. C. Andersen, J. Chem. Phys. 72,2384 (1980). 
“Within these large time intervals, the first 50 ps where done with a time 

step of 15 fs, 5 times longer then our standard timestep. 
3* L Perera and M. Berkowitz, J. Chem. Phys. (to be published). 

J. Chem. Phys., Vol. 96, No. 7,1 April 1992 

Downloaded 10 Mar 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


