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The ionization potential I(R) of small metal spheres (of radius R) as well as the electronic 
chemical potential ,LL (R) in such particles are considered within a three-parameter variational 
local-density-functional calculation. The asymptotic (R + m ) deviations of I( R ) and ,U (R ) 
from their bulk values behave as C/R and CJR, respectively, where within the computational 
accuracy C + C, = 0.5. These results are quantitatively similar to those obtained from a 
recent variational calculation by Engel and Perdew (EP), and identify the origin of the 
deviation of C from its classical value of 0.5 in the size dependence of,u (R). While EP show 
that this size dependence originates from the gradient terms in the energy functional, we find 
that its magnitude results from a delicate balance between different contributions. The classical 
limit C = 0.5 is approached when both Z and R are large, where Z is the number of electrons 
involved in the transition. These results also lead to the resolution of an apparent paradox 
recently described by van Staveren et al. 

I. INTRODUCTION 

The size-dependent ionization potential of small metal 
clusters has been the focus of intensive research for more 
than a decade.* The average size dependence is found to 
obey asymptotically (R -+ CO ), 

I(R) = WF+ C/R. (1) 
WFis the bulk work function and C is a constant. Experi- 
ments on simple metal? have found Cin the range 0.33-0.40 
(in atomic units). The theoretical interpretation of this re- 
sult has been a matter of some controversy.‘-4 A simple cal- 
culation based on classical image theory leads4 to 
C= 3e2/8, where e is the elementary charge, in excellent 
agreement with experimental results. Several authors3 have 
pointed out that the correct classical result is C = e2/2, and 
that the observed deviation of the experimental results from 
this value has a quantum-mechanical origin. Perdew3’b’ 
suggested that C = C(R) -) l/2 as R -+ CO, and a similar 
trend appears to exist in the calculation of Makov, Nitzan, 
and Brus,3ca) who, however, did not carry out calculations 
beyond R = 100 a.u. Recent calculations by Seidl, Spina, 
and Brack,5 using a restricted variation of a local-density 
approximation energy functional for jellium spheres, have 
indicated that C- 0.40 rt 0.02 as R --t CO. Engel and Perdew 
(EP) have very recently performed an unrestricted vari- 
ation of this functional by solving directly the Euler equation 
in order to calculate the asymptotic size dependence of the 
chemical potential, ,u, 

p(R) =,uu(co) -?-CJR. (2) 
They propose that the size dependence of the ionization po- 
tential is related to that of the chemical potential by 

I(R) = -p(R) + +$. (3) 

Their calculation leads to C,, ~~0.08. Furthermore, they 

have identified the origin of this size dependence to be in the 
gradient terms of the kinetic-energy functional [ T2, Eq. (5f) 
below, as well as terms of higher order in Vn, where n is the 
electron density]. 

We note in passing that the difference between 
I(R) =E[n - l] -E[n] and p(R) =SE[n]/‘Gn is in a 
sense a quantum effect, resulting from the discreteness of the 
electron charge. These quantities are of course equal to each 
other in the limit R + 00. 

The EP calculation assumes that the origin of the devi- 
ation of C, Eq. ( 1 ), from the classical value of l/2 is in the- 
size dependence of the chemical potential, and it traces the 
quantum origin of this effect. It is of interest to check 
whether similar results are obtained from, the much simpler 
variational approach of our earlier work, using a three-pa- 
rameter variational expression for the electron density. In 
the present note we calculate the chemical potential within 
our restricted variational scheme and show that it leads to 
results similar to those of EP. We also confirm the validity of 
Eq. (3 ) by calculating independently both the ionization po- 
tential and the chemical potential. In contrast to EP we show 
that the magnitude of the effect is not always determined by 
the electronic kinetic energy. Finally, we discuss the classical 
limit of the cluster ionization process. In particular, we show 
that the classical charging energy W= (Ze)‘/2R, where Z 
is the number of electrons transferred, is obtained only in the 
limit of large Z, where the charging process is essentially 
continuous. 

II. VARIATIONAL DENSITY-FUNCTIONAL 
CALCULATION 

The model considered is a jellium sphere of radius R 
with the positive background given by 

n+ (r) =n,O(r- R) =--$ &r-R). (4) 
rs 
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r, is the radius of the Fermi sphere. The ground-state elec- 
tronic energy E is a functional of the electronic density n(r). 
For this functional we take the Thomas-Fermi-Dirac- 
Gombas Weizsacker expression including second-order gra- 
dient terms in the kinetic energy and the Wigner expression 
for the correlation energy.’ This functional, E[ n] , is the sum 
of the kinetic (T = T, + &; T, and higher-order gradient 
terms are neglected), exchange (E, >, correlation (EC ), and 
Coulombic ( U) terms: 
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In our present calculation n is restricted to be of a partic- 
ular form n(r,(P)) determined by the set of N parameters 
(p,} = fir ~3, ,...,pN. For this restricted form of n, J[n] be- 
comes a function J( @‘}) of the variational parameters and 
the variational equations are 

aJCco)> 
afii 

=O, i=1,2 ,..., N. (11) 

E= To + T, +& +Ec + v, 
where (in atomic units) 

(5a) These N equations together with Eq. (6) determine the 
N + 1 unknowns co) and p for a given net charge Q. The 

u =J -$- 
J 

n(r)qS(r)d3r, 

&-> =J-d3f n(f) -- n+ G-7 
IF=--J[ ’ 

T0 ==+ 
s 

d3r[3&n(r)]2’3n(r), 

T2 =+ 
J 

1VnC.r) I2 d)r------. 
n(r) 

(5b) 
ionization potential is determined from 

I=E(Q= 1) -E(Q=O), (12) 
(5c) and the electron affinity is 

A=E(Q= - 1) -E(Q=O). (13) 

This then yields the size dependence of I and A as well as the 
(5d) chemical potential ,u within this restricted variational ap- 

proximation. The calculation of I is similar to that of Ref. 

(5e) 3(a) (except that we now extend the calculation to larger 
cluster radii). The new element in the present calculation is 

(50 

The variational problem at hand is the minimization of 
E[ n] subject to the constraint 

Q=ld”r[n(r) -n+~(r)], (6) 

where Q is the net charge on the sphere. This leads to the 
functional 

J[n] =E[n] -p J d3rn(r) (7) 
for any Pi, i = l,...,N. Note that Eq. (15) can be replaced by 
the linear combination 

whose minimization yields n(r) and p. When this is done by 
unrestricted variation, the resultingp is the chemical poten- 
tial, since GJ/Sn = 0 leads to,u = SE /&. In this case,u can 
also be written as 

p = J d3rf(r) z 
Sn /J d “rf(r1 

a=$4o.~E(~})/Z~i~S(~}) (16) 
I I i 

for any set of weight coefficients A&. In analogy with Eq. 
(10) the most appealing choice for the parameters hp, is 

(8) 
A& =B,(Q=O, -Pi(Q= 1). 

As in our previous work,3(a) we consider a restricted 
variation over the trial family of densities 

with any functionflr). The choice off(r) makes no differ- 
ence to the value of,u itself; however, it affects the results for 
the different components of p [associated with the different 
components of E[ 121, Eq. (5a) 1. Engel and Perdew have 
calculated p and its components from Eq. (8)) using 

f(r) = -Lan(r) 
no aY’ (9) 

the evaluation, within the same model, of the chemical po- 
tential and its size dependence. Denoting 

E[n]=E(CP)), (d’rn(r)--S(@ll), 

Eq. (11) leads to 

- -b@m +a~, I 
-$ S(co)> i 

(14) 

(15) 

n(r) = (A/r)(ekr--ewkr) +n, (r<R), 
(B/r)e-“‘, (r> R). 

(17) 

The parameters A, B, ;2, and k are related by the continuity 
condition 

This choice off(r) is arbitrary and seems to lack physical 
motivation. A physically more appealing choice is 

f(r) =n(r;Q=O) -n(r;Q= 1). (10)~ 
For the choice ( lo), the incremental electron density used 
for calculating the first variation of the different components 
of E is taken to be proportional to the actual change in n(r) 
associated with the removal of one electron from the cluster. 

B = AdR(ekR - eckR) + Rn,dR. (18) 

This leaves us with three independent parameters to be de- 
termined by the variation under the constraint (6). Note 
that this trial density is the exact solution for the linearized 
Thomas-Fermi formulation of this problem, and that under 
the further restriction, k = ;1, it is the spherical generaliza- 
tion of the trial density used by Smith’ in calculating the 
work function of a planar jellium surface.* 
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bm*cd and ion’kation potentials of joIlium spheres 

, t , 1 I 1 I I 

0.25 050 0.75 1.00 L25 1.50 1.75 200 2.25 2.50 
Inverse duster radius (in lo-* au.) 

FIG. 1. The absolute magnitudes of the chemical and ionization potentials 
ofjellium spheres with r, = 4 plotted against the inverse cluster radius. The 
points are the results of the present variational calculation. 

111. RESULTS 

Using the procedure described in Sec. II, we have calcu- 
lated the ionization and the chemical potentials of jellium 
spheres with radii in the range 30-200 a.u. An example for 
r, = 4 is shown in Fig. 1. The results are represented very 
well by a straight line vs the inverse radius [as in Eq. ( 1) 1. 

We found the bulk work function and the bulk chemical 
potential from the intercepts, and their size-dependence pa- 
rameters Cand C, from the slopes. The results are summar- 
ized in Table I. The numerical uncertainty in the computed 
value of the chemical potential is ca. l%-2%. This estimate 
was obtained by comparing the calculations ofp by Eq. ( 16) 
with those obtained from Eq. ( 15). As expected, the magni- 
tudes of the bulk work function and of the chemical potential 
are equal within our numerical accuracy. In Table I we show 
also the results for ,u and Cfi obtained from the unrestricted 
variational calculation of EP,6 and the results for WFand C 
from the variational calculation of Seidl, Spina, and Brack.’ 
Our results compare well with those of Engel and Perdew, 
even though these authors included in the energy functional 
the T, term of the kinetic-energy gradient expansion. 

For the size-dependence parameter of the ionization po- 
tential, C, we find C = 0.42-0.44 and a decreasing trend in C 

as r, increases. The size-dependence parameter of the chemi- 
cal potential, C,, is found to be in the range 0.05-0.08 com- 
pared to approximately 0.08 found by EP.6 The sum of C 
and C, is 0.5 +_ 0.02 for all values of r, examined. This is in 
agreement with the proposition, Eq. (3), relating the non- 
classical size dependence of the ionization potential and of 
the chemical potential. 

Next, consider the contributions of the various terms in 
the energy functional to the chemical and ionization poten- 
tials, as described in Sec. II. The results of such a calculation 
for r, = 4 are presented in Table II. These results were ob- 
tained as before by fitting these individual contributions to 
straight lines vs the inverse cluster radius. The striking simi- 
larity between the contributions of the individual energy 
terms to the chemical and ionization potentials clearly indi- 
cates the validity of the Eq. (3) relating the two quantities. 
Note, however, the difference in the Coulombic energy con- 
tribution: The classical Coulomb energy, OSe”/R is ob- 
tained from second-order terms (an’) in the expansion of 
E[ n + Sn] in Sp1, and does not appear in the chemical poten- 
tial. The results of Table II also indicate that the magnitude 
of the deviation of I(R) from its classical value is not deter- 
mined by a single term in the energy functional as proposed 
by EP,6 but rather in a delicate balance between the various 
terms. The observation of these authors that the presence of 
the gradient terms in the kinetic energy is necessary for the 
existence of this effect is of course correct. 

The results of the present calculation [and of Ref. 3 (a) ] 
are close to that inferred from observed ionization potentials 
of alkali, copper, and silver clusters.’ Remaining deviations 
may be due to terms missing in the energy functional (5 ). 
This result is also close to that of image theory” which yields 
Eq. ( 1) with C = 3/8. This raises the question of whether 
the image theory result is just another manifestation of the 
quantum effects discussed above. This seems unlikely, as the 
image potential is a nonlocal exchange correlation phenome- 
non,’ whereas our calculation considered only local effects. 
Furthermore, as we have shown before,3’“’ the application 
of the image potential argument to the calculation of the 
ionization potential of a cluster characterized by a finite di- 
electric constant leads to diverging results. For these reasons 
we believe that agreement between the image theory result 
and the observed assymptotic behavior of the ionization po- 
tential in some clusters is probably accidental. 

Finally we discuss two other implications of the present 
results. 

TABLE I. Size dependence of the chemical and ionization potentials of jellium spheres (in a.u.). 

& WF P(oo) C CP WF” C” pU(CQP CFb 

2 0.118 -0.124 0.44 0.08 0.133 0.42 - 0.125 0.072 
4 0.098 - 0.098 0.43 0.05 q.106 0.40 - 0.099 0.082 
6 0.082 - 0.082 0.42 0.06 0.085 0.38 - d.079 0.075 

“Variational calculation for jellium spheres Ref. 5. 
‘Obtained from direct solution of the Euler equation (Ref. 6). 
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TABLE II. Contributions of different energy terms to the chemical and _ R) dependence of the ionization potential and the chemical 
ionization potentials and to their size dependence parameters Cand C, (in 
an.). 

G T2 EC u Total 

IP - 0.032 0.020 0.075 0.03 1 0.005 0.098 
c _. 0.12 - 0.08 0.11 0.01 0.50 0.43 

0.032 - - - 0.020 .- 0.075 - 0.031 0.002 0.098 
0.13 0.10 -0.13 - 0.02 - 0.05 0.05 

potential of spherical metal clusters. We have shown that a 
simple variational local-density-functional theory accounts 
semiquantitatively for the deviation of the ionization poten- 
tial from its classical limit. The classical limit is obtained for 
large R and large charge Q ( Q /es 1) . The agreement of the 
image theory result with the quantum correction discussed 
here, and with theexperimental results, is probably acciden- 
tal. 

(a) Classical electrostatic theory yields the following 
expression for the charging energy of a metal sphere: 

~~~‘e’ 
2 R’ 

(19) 

where Q = Ze is the charge. This may seem incompatible 
with Bq. ( 1) if C # l/2. Tosee how the classical hmit ( 19) is 
obtained rewrite Bq. ( 1) in the form 

I(R) - TVF+AE, ++$= -P+$$ (20) 

where AE, = (C - OS)e’/R represents the deviation from 
the classical behavior due to the quantum effects discussed 
above. Equation (20) corresponds to Z = 1. The energy 
needed to remove Z electrons from the spherical particle is 
accordingly 

W(R) L -zp+g. (21) 

For large Z the last term dominates and we obtain the classi- 
cal charging energy ( 19). Thus the classical limit is not ob- 
tained solely by considering a macroscopically sized sample 
but also by considering a macroscopic charge, i.e., Z> 1. 

(b) van Staveren etal. lo have obtained an expression for 
the grand canonical ensemble average of the net charge AN 
on a cluster of radius R, 

AN=% (WF- AE, +,u). 
e2 (??? 

These authors assumed that the chemical potential is size 
independent and equal to’ - W8, and have pointed out that 
Bq. (22) leads to th e peculiar result that at equilibrium the 
particles carry a net average charge of - e/8. However, if 
we accept that C + CP -= 0.5, as argued above, we get 
WF + AEq + p = 0 for all cluster sizes, thus resolving the 
apparent paradox. 

In summary, we have considered the asymptotic (large 
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