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The radiative lifetime of molecules solvated in finite size clusters and particles is studied as a 
function of size. Four regimes of behavior are indicated by our present and previous theoretical 
results and by the available experimental data: The microscopic regime (up to a few tens of 
solvent molecules), where the lifetime is sensitive to microscopic structural details of the 
cluster; the electrostatic regime (up to sizes -0.1/2, where /z is the radiation wavelength in the 
cluster), where the lifetime follows the predictions of classical electrostatics of dielectric 
environments; the electromagnetic regime (sizes of the order of /2), where the behavior is 
dominated by electromagnetic resonances in the particles; and the bulk regime (sizes much 
larger than /2). In the last three regimes the radiative lifetime may be approximated as a 
product of a cavity factor and a solvent factor. The first depends on the shape of the 
microscopic cavity surrounding the molecule and the second depends on the shape and size of 
the solvent particle. For spherical particles and for spherical or mildly spheroidal cavities, the 
lifetime changes from being longer than that of the free molecule in the electrostatic regime to 
being shorter in the bulk regime, in agreement with recent experimental results. The transition 
region occurs in the electrodynamic size regime. In the “bulk regime” (very large particles) 
molecules near the particle surface (within - one wavelength) are strongly affected by 
electromagnetic Mie resonances and show strong size-dependent deviation from the bulk 
behavior which characterizes molecules in the interior. The size dependence of the radiative 
lifetime stands in marked qualitative contrast to the size dependence of the solvent induced 
frequency shift, which approaches its bulk limit much earlier-when the cluster size becomes 
much larger than the microscopic cavity size. Finally, the ratio between the integrated 
absorption profile and the radiative decay rate does not depend on the cluster size. 

I. INTRODUCTION 

The effect of solvent on the photophysical properties of 
solvated molecules has been under study for a long time.’ 
Similar effects in small clusters are of interest both because 
of the growing number of optical studies of molecular clus- 
ters formed in supersonic beams and because of the charac- 
teristic size effects expected in such systems. In two recent 
articles2 we and collaborators have presented experimental 
results on the lifetimes and frequency shifts of 9, lo-dichlor- 
oanthracene embedded in rare gas clusters, (DCA.X,; 
X = Ar, Kr, Xe; prepared by a supersonic free jet expansion 
of the molecule with the rare gas), and have discussed these 
results using simple electrostatic theory. An analogous 
quantum mechanical treatment was recently given by Shalev 
et aL3 The experimental observations relevant to the present 
discussion can be summarized as follows: 

(a) For small (few atom) clusters the pure radiative 
lifetime rR increases with the number of rare gas atoms, and 
is then reversed upon adding the next few atoms. A local 
minimum in rR is observed for clusters of 26 Ar atoms. 

(b) After these initial changes, the lifetime of clusters of 
more than about 50 atoms becomes insensitive to further 

” On leave from Tel Aviv University, Tel Aviv, Israel. 

cluster growth, up to the maximal size obtained in this exper- 
iment ( - 1000 atoms). The lifetime at this ‘saturation’ is 
approximately 12% longer than that of the isolated molecule 
(the latter is 23.3 ns). This should be contrasted with the 
lifetime observed in bulk ( cyclohexane4 ) which is about half 
that of the free molecule, in accord with expectations based 
on dielectric theories. 

(c) The attachment of rare gas atoms to the dichlor- 
oanthracene molecule is accompanied by a red shift which 
increases monotonically with the cluster size. This depend- 
ence saturates at sizes of - 50 atoms, at a value of - 590 
cm - * (in Ar), close to that expected for the bulk value. 

(d) Both the clustering effects on the lifetime and on the 
frequency shift correlate with the rare gas polarizability. 
This correlation is linear for at least the first two attached 
atoms. 

These experimental results have been rationalized2’b’ in 
terms of a simple electrostatic model which uses available 
computed data and some reasonable assumptions for the 
structure of a few atom clusters, and which takes as a model 
for the larger clusters a molecule embedded in a dielectric 
sphere with the dielectric constant of the bulk rare gas. In 
particular, the initial increase of the radiative lifetime with 
the first few added atoms was shown to be caused by the 
polarization induced on atoms occupying the six positions 
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above and below the rings planes, whose direction from the 
molecular center is essentially perpendicular to the molecu- 
lar transition dipole. The following decrease in lifetime is 
associated with atoms seated close to the molecular plane, 
above and below the rings, whose distance from the molecu- 
lar center has a large component parallel to the molecular 
transition dipole. The minimum observed for 7R at n = 26 
( Ar) was interpreted as associated with the completion of a 
full first solvation layer of Ar atoms around the molecule, 
and the further increase in ~~ is associated with the start of 
the buildup of the second layer. The saturation of both life- 
time and frequency redshift with cluster sizes of n>50 is 
associated with an approximate continuum dielectric behav- 
ior, and agrees semiquantitatively2’b’ with the predictions 
based on a model of a point dipole embedded in a dielectric 
sphere with dielectric constant e. Denoting by rR and lY’L 
the emission rates for the solvated and the free molecule, 
respectively, and defining 

‘,f -.f -= , (1) 
IR 

a simple electrostatic calculation based on continuum dielec- 
tric theory leads to 

f = (--&)9 (2) 

independent of the sphere size and of the location of the 
dipole in the sphere. The electrostatic limit is valid for 
a (/z = 2&n@, where a is the particle radius, w is the radi- 
ation frequency, c is the speed of light in vacuum and n = & 
is the refractive index. For Ar (E = 1.63) Eq. (2) yields 
f = 0.68, giving the correct trend but overestimating the ex- 
perimentally observed factor z 1.12 for the increase in the 
radiative emission time. 

A possible reason for this discrepancy is the neglect, in 
Eq. (2) of cavity effects. If, for example, we replace Eq. (2) 
by 

where f, is given by the right-hand side of (2) and f, is the 
cavity correction factor obtained by assuming that the mole- 
cule is in a spherical cavity of radius r<a, 

(4) 

We get (with E = 1.63) f - ’ = 1.11, in remarkable agree- 
ment with the experimental observation. The actual result 
for the cavity effect is however sensitive to the nature of the 
cavity, its shape and its size (relative to the particle). 

While no experimental results are available for the clus- 
ter size dependence of the fluorescence line shift and lifetime 
of molecules embedded in larger dielectric clusters 
(n) 1000)) much work has been done on the effect of bulk 
dielectric solvent on the spectral shifts, oscillator strength 
and fluorescence lifetimes of solvated molecules.5-‘5 There is 
a diversity of both experimental and theoretical results, prin- 
cipally related to the fact that the effect of a dielectric medi- 
um on the optical properties of an embedded molecule is 
very sensitive to both short range (cavity structure) and 
long range [e.g., crystal structure) effects. Thus, relatively 

straightforward continuum theories’ are corrected in im- 
portant ways when a cavity is assumed to exist around the 
molecule (e.g., Refs. 5 and 10) and further corrections are 
obtained when the discrete nature of the full solvent matrix is 
taken into account.’ Here we limit ourselves to continuum 
dielectric theory. For a molecule in a bulk solvent this yields 
Eq. (3)) wheref, again depends on the nature of the cavity 
whilef, is given by16 

A=&. (5) 
Equations (3)-( 5) with E = 1.63 yieldf - ’ = 0.6. This pre- 
diction overestimates the solvent effect on the radiative life- 
time in comparison to recent experimental results of C&pin 
and Tramer” on the DCA/bulk argon system which give 
f - ’ - 0.70. The fact remains that in small and intermediate 
size clusters the radiative lifetime is longer, while in the bulk 
solvent it is shorter, than that of the free molecule. Obviously 
a crossover from the small particle to the bulk result is ex- 
pected as the particle size increases. 

The aim of the present paper is to examine several 
aspects of the optical behavior of molecules embedded in 
spherical particles. In particular we focus on intermediate 
size and large (relative to /2) particles and examine, within 
classical electromagnetic theory, the transition from the 
small particle (electrostatic) limit to the bulk limit. In addi- 
tion we discuss several models for the cavity correction fac- 
tor. Together with our previous work on small (few atom) 
clusters our theoretical results account semiquantitatively 
for the cluster size dependence of guest molecules. 

Section II of this paper reviews the general results for 
the lifetime of a molecule embedded in a spherical particle 
for the continuum dielectric model. In Sec. III we examine 
different results for the cavity correction factor. Section IV 
includes numerical results and discussion. We conclude in 
Sec. V. 

II. RADIATIVE EMISSION RATES OF A MOLECULE IN A 
DIELECTRIC SPHERE 

The solution of the Maxwell equations with spherical 
boundary conditions has been carried out by Mie.18 Appli- 
cation to the problem of a point dipole embedded in a spheri- 
cal particle (or outside it) was presented by Van der Pol and 
Bremmer, I9 Kerker and co-workers, 2o Ruppin, 21 Chew,22 
and Leung and George. 23 An equivalent quantum mechani- 
cal treatment was carried out by Ching ef aZ.24 However, 
while general expressions were long available, their implica- 
tion for our present problem was not studied in detail. In 
what follows we review the theory that yields the factorf, of 
Eq. ( 1 ), focusing on particular averages (over molecular 
orientations and locations) which are the subjects of our 
discussion. 

Consider a dielectric sphere of radius a and dielectric 
constant e (the magnetic permeability is taken to be 1) in 
which a single molecule is located at position R. The mole- 
cule is represented by a classical point dipolep, oscillating at 
frequency o. The case E = 1 corresponds to the molecule in 
free space, while a+ 03 is the bulk limit. In this section the 
molecule is taken to be immersed in the dielectric environ- 
ment, Modifications of this model by assuming the existence 
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of a local cavity about the molecule are considered in Sec. 
III. 

Consider first the bulk dielectric limit. In the Lorentz 
gauge the outgoing solution for the vector potential at a dis- 
tance r from an oscillating point dipole is” 

ikr 
A= -%, 

cr (6) 

where c is the speed of light in vacuum and k = w&/c. The 
scalar potential 4, the electric field is E and the magnetic 
field B are given by 

4 = ( - ic/eti)V*A, 
E = - Vc++ + (iw/c)A, (7) 
B=VXA. 

The total outgoing flux P is calculated by integrating the 
surface normal component of the Poynting vector 
S = (C/8n)EX B* over a surface surrounding the dipole. 
This leads to 

ps s.&dg. s (8) 

This is the total power (energy per unit time) radiated by the 
dipole. As such, this is proportional to the molecule emission 
rate, which is thus proportional to & in this model. The 
same result is also obtained from a quantum mechanical cal- 
culation.* We conclude that for a molecule in a continuum 
bulk dielectric 

L=&. (9) 
Returning to the finite sphere model, we have to calcu- 

late the total outgoing power by integrating the Poynting 
vector over a spherical surface surrounding the sphere. The 
problem is that of finding the electromagnetic field outside 
the sphere given an oscillating dipole inside. The general 
theory is provided in Refs. 19-23 and we only outline the 
solution procedure and list the results which are needed 
here. The electric and magnetic fields outside the sphere are 
written as expansions in vector spherical harmonics 

JL(r) = 
FL 

L4,(Z,rn)VX 
m 4 

[h ;“(qrm,,] 

+A,(Im)h;“(qr)x , I lm f (loa) 

B,,, (r) = C (A” (I,m)h j”(qr)X,, 
Im 

-~A,U,~PX [hI”wLl]), (lob) 

where q = w/c, k = q&, X, are vector spherical harmonics 
(X,,(f) = [Z(Z+ 1)]-“2LY,,(F), where F=(~,Q)), L is 
the angular momentum operator and j, and h j ‘) are, respec- 
tively, spherical Bessel and spherical Hankel functions of the 
first kind. The coefficients A, (2,m) and A, (Z,m) determine 
the electric and magnetic multipole contributions of order 
l,m to the radiated power25’“’ 

p=- 4iq2z [IAE(Lm)12+ l&(Lm)12]. (11) 

These coefficients are found in the forms 
&(Lm) = 4 (I)& (Am), (12a) 
6 (&ml = & (h-L (Lm), (12b) 

where 

D, (0 = il 

x2[&(x)h !“‘(y) -j;(xM!“(y) + Cd& - l/x)j,(x)h I”(y)] ’ 
(134 

D,(Z) =I & 
X2 jl(x)h j"'(y) - &j:(x)h j')(y) ' 

(13b) 

and where x = ka and y = qa. Primes denote derivatives. 
The coefficients dE (Z,m) and dM (Z,m) are obtained in terms 
of the source charge and current densitiesp( r) and .I( r) [ c.f. 
Ref. 25(a), Eqs. (16.91)-(92), modified for e# l] 

4 U,m) = i~~lrlry:,(~)[~~~r)$(rj,(kr)) 

(1W 

dM (Z,m) = 4Tk2 
id- s 

dr Yk (F) 

Xj,!lr)V*(F), (14b) 

(here ?= (8,~) ) . For a point dipole at r = R oscillating with 
frequency w 

I 

J = - iwp&(r - R), 
p = - p*VS(r - R). 

Using Bqs. ( 14) and ( 15) tinally lead to 

4rk 2 dE (Z,m) = - 
i$R ’ 

p*RmYL &)j,(z) 

+ ip*RXXT, (2) $ (16d 

k(I,rn) = 
4?rik 3 
E P-X% (i)j,(z), (16b) 

wherez = kR. Equation (12), (13), and (16) constitute the 
final results for the coefficients A, (Zm) and A k (Zm) for the 
electromagnetic field outside the sphere [ Eq. ( 10) 1. Insert- 
ing these into Eq. ( 11) lead to 
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P= --& [T I&U>I”~ l&(W2 
m 

+T I&(O12~ IdMUm)12 . I (17) 

Considerable simplificatio; is achieved by averaging over all 
molecular orientations and over the angular part of the mo- 
lecular position, thus replacing 2, ldE (l,m) I2 and 
T,,Id,U,m)12 by W+ l>(ldE(4m)12) and 
W+ l)(ldM(~,m)12), respectively, (the averages do not 
depend on m ). Using the identities 

((p-1 (p*b)), = &‘a*b, (18) 

(IY,,W12)p = &,A%*%J%)ii. =-&, (19) 

we get 

(IdEU,m)12) =$$$ (1(1+ 1)(jr(~))2 

+ [-$ czh~z))]2), 
(f,)z3G 

(2Oa) 

---&, (a+ 1,(14co12fG +$ lPMcnl’~,). 
. 

(27) 

(ldM(I,m)12) =T ti,w2. (2Ob) 

The averaged Eqs. ( 17) and Eqs. (20) now lead to the fol- 
lowing expression for the averaged radiating power for a 
molecule (represented by an oscillating point dipole) locat- 
ed at a distance R from the sphere center 

(P> =F,$, t21+ l)(f lDz(Z)12 

x[($%(zq+z(z+ l)(i,(z))‘] 

t-1. Ihi (Z) 12WW) =P(z). (21) E 
yote that the averages in Eqs. (20) and (21) are over j.? and 
R, namely, over the molecular orientations and over a 
spherical shell of radius R about the sphere center. If we 
assume an homogeneous distribution, with density n, ofmol- 
ecules in the sphere, the total emitted power is obtained from 

Pt“‘=Fj-‘dz2P(z), (22) 
0 

where x = ka. This integral may be performed analytically, 
yielding 

Ptot = $- mcp2k ,$, (ID, U>12K, + $ ID, (0 121,], 

(23) 

K, = x2j,(x)j;(x) + xi:(x) 

+c [j,(x) -A-,(x)j,+,(x)], (24a) 

I, = f [ii(x) -j,- , (x)j,+, (xl]. (24b) 

Finally, the emitted power from a free molecule is given 
by [cf. Eq. (8) with E = l] 

(25) 
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Thus the ratio of the radiative emission rates may be ob- 
tained from l?(z)/I-, = P(z)/P, and 
(r)/IYo = P““/( (4mz3/3)nPo). Note however that be- 
cause cavity corrections are not included in the present dis- 
cussion these ratios correspond to thef, terms only. We get 
(letting z = kR ) 

f,(z) =+z 2 c2z+ l)(fl&(Z)j2 
I= 1 

X[($ (ti,Cdl)2+Z(Z+ l)(ir(z))2] 

+ $ I44 (0 I’U, (z) 12], 
and (letting y = qu) 

(26) 

Equation (26) gives the ratio of radiative decay rate (rela- 
tive to the free molecule, averaged over molecular orienta- 
tions and without cavity corrections) for a molecule located 
at a distance R from the center of a sphere of radius a and a 
dielectric constant (at the molecular frequency o) E. Equa- 
tion (27) is the average of this ratio over all R between 0 and 
a. 

To end this section we note that in the small sphere limit 
x,y < 1, Eq. (26) may be shown to yield the electrostatic 
result (2). This electrostatic limit is obtained when 
ku = &qa <c 1, namely, when the particle size a is small rela- 
tive to the radiation wavelength in theparticle. Also we note 
that for E = 1 Eqs. ( 13) become 

ID, I2 = I& (2 = 1. 
We have verified numerically that in this limit&, Eq. (26), 
and (f,), Eq. (27), both become 1 as expected. 

Ill. CAVITY CORRECTIONS 

In the previous section we have modeled a fluorescing 
molecule in a dielectric solvent as a point dipole embedded in 
a continuous dielectric environment. This model completely 
ignores the molecular structure of the solvent. In this section 
we follow a common practice in rectifying this point by as- 
suming that the molecule is enclosed in a cavity of size char- 
acteristic of the distance between the molecule and its near- 
est solvent neighbors. The value of e inside the cavity is taken 
to be 1. 

In the absence of evidence to the contrary, it is natural to 
assume that large atomic (e.g., rare gas and metal) clusters 
are approximately spherical. On the other hand, while most 
treatments of cavity models have considered spherical cav- 
ities, the shape of the cavity is actually determined by the 
embedded molecule. Mayers and Birge” have made the im- 
portant observation that the orientation of the molecular 
transition dipole with respect to a nonspherical cavity is cru- 
cial in determining the fluorescence lifetime. They have con- 
sidered cylindrical cavities and have shown that when the 
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molecular transition dipole is parallel to the cylinder axis the in an infinite medium of dielectric constant E, . For e3 = 1 
fluorescence lifetime is longer than that of the free molecule, and e2 = E, = E this corresponds to a point dipole inside a 
while the opposite is true if the transition dipole is perpendic- spherical cavity in an infinite dielectric medium. For 
ular to this axis. e3 = E, = 1 and eZ = E this corresponds to a similar situa- 

To account for possible similar effects we will consider tion in a finite dielectric sphere. In the electrostatic limit 
later cavities of spheroidal shapes. Also, we assume that the (a (;2) the radiative emission rate can be obtained by calcu- 
cavity size is much smaller than the cluster size. (Obviously lating the effective total dipole of the system. To do this we 
it is much smaller than the radiation wavelength so an elec- calculate (Appendix A) the electrostatic potential induced 
trostatic treatment of the cavity is always possible.) To see by the dipolep at large distance from the center of the system 
the significance of this assumption consider first (Fig. 1) the in Fig. 1. This potential should be given by pee *r/?, giving 
case of a molecule (represented by a point dipole IL) at the per in the form pFlee = f “2,u, where f is the factor relating 
center of a spherical cavity (radius r,, dielectric constant the actual emission rate with the emission rate associated 
e3 ), which is in turn located at the center of a small spherical with the bare dipole. The result of this calculation (see Ap- 
particle (radius a and dielectric constant e2 ), all embedded pendix A) is 

J 

96162 2 

f= 
(E3 +262)(E2 +2E,) +%E3 -622)(E2 -E~)b’o/a)~ ’ 

(28) 

The case of a dipole in a small sphere in the continuum limit 
(no cavity) is obtained by taking e3 = l 2 = E and e1 = 1. 
This leads to 

(29) 

as before (Eq. 2). The cavity factor is obtained by taking 
e2 = E, = E and l 3 = 1. In this limit 

f=f,=(-&T. (30) 

Physically, a model which accounts for the atomic nature of 
the solvent by considering a cavity in a continuum dielectric 
makes sense only if r, 4~. In this limit and for e3 = e1 = 1; 
l 2 = E Eq. (28) becomes 

A simple interpretation of Eq. (3 1) is obtained by real- 

FIG. 1. A model for a spherical cluster with a spherical molecular cavity. In 
the present application E, = E) = 1 and 4 = B is the cluster dielectric con- 
stant. 

izing (Appendix A) that the effective dipole associated with 
a dipole ~1 in a small spherical cavity inside a bulk dielectric 
solvent is pee = f A” IJ (namely, the far field outside the 
cavity is that of a dipole IL=~ ). In fact, in the limit r, <a this is 
true for any cavity shape, and the factor f, depends only on 
the cavity and not on the size and shape of the particle. To an 
observer far away from the cavity, the cavity containing the 
molecular dipole appears as such an effective point dipole. 
The radiative decay rate associated with this effective dipole 
is -f, 1~~~ 1’. We conclude that in the limit r, gu the calcula- 
tion off can be separated into the calculation of the factorf, 
which depends only on the cavity, and the factorf, which 
depends only on the particle. This is the theoretical basis for 
Eq. (3). It should be stressed however that the result (30) is 
obtained by assuming that the molecular dipole is enclosed 
in a real cavity inside the dielectric continuum. If instead the 
molecule occupies a substitutional site of the solvent lattice 
the result is (for a cubic lattice) 15*26 

f, = (q2. (32) 

For the experimental system considered here (DCA in Ar) a 
real cavity model seems more appropriate. Note that if Eqs. 
(29) and ( 32) are adopted, Eq. (3 1) yields f = 1, in contrast 
to the experimental observation. 

To account for cavity shape dependence we next calcu- 
late cavity correction factors for spheroidal cavities. We con- 
sider a point dipolep located in such a cavity (Fig. 2), where 
the dielectric constants are 1 inside and e outside the cavity. 
An electrostatic calculation of the potential at large distance 
should yield again pea ‘r/r), leading to an expression for f, 
from 

L = ‘y 
2 eff -. 

2 (33) 

Details of this calculation for both prolate and oblate2’ 
spheroidal cavities are described in Appendix B. Remark- 
ably the results do not depend (in the electrostatic limit) on 
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I-L 42 
X 

prolate ablate 

FIG. 2. A spheroidal cavity obtained by rotating the ellipse about the taxis. 

the cavity size and on the location of the dipole inside the 
cavity. They do depend however on the cavity shape (i.e., the 
aspect ratio and the oblate and prolate symmetry) and on 
the orientation of the molecule relative to the spheroid axes. 
Let z be the symmetry axis (long and short axis for prolate 
and oblate spheroids, respectively) and take the molecular 
dipole to lie in the xz plane, namely, p = (pX ,O,p, ) . Then 

ie=ftx/=Px; PU:“=E2A. (34) 
For a prolate spheroid defined in prolate spheroidal coordi- 
nates (l,;rl&) by g = & (namely, the aspect ratioZS is 
p = (6: - 1)“2/&,; l0 = 1,...,00) the results are 

fJ:’ = 
~~Wdh,Qt (6:) - (6: - l,Q:‘(&,o,, 

(35) 
and 

fy = I 
(~5: - l)((l/~)Q’:Gob) -CoQ:‘Gob)) - 

(36) 

In these equations Qy and Q ) are the Legendre functions 

(37a) Q’f(Z) =+Zlog 

Q;(Z) = (Z2- 1)“2 

(3%) 

and Q ‘(Z) = dQ( Z)/dZ. For an oblate spheroid defined by 
5 = 6-o in oblate spheroidal coordinates (aspect ratio 
p = &‘o/(~~ + 1)“2; co = O,...,OO) the results are 

fy = 2 
(1- l/E)[{i --&(Cg + l)arctg(c;‘)] +2 ’ 

(38) 
and 

1 
frf/2= (l-l/E,(g;+l,[& arctg(c;‘) - l] + 1 * 

(39) 
Numerical results based on Eqs. (35)-(36) and (38)-(39) 
are given in Sec. IV. The sphere limit is obtained by taking 

60 + * in any of these equations. Using in this limit 
Q%b)-43~~)-‘, Qt GobX3C:) -’ and 
arctg(l;‘)+l/&, - 1/(3Sz) + *.*leadstoEq. (30). 

IV. NUMERICAL RESULTS AND DISCUSSION 

The radiative lifetime (and the associated oscillator 
strength) of excited molecules embedded in condensed envi- 
ronments has long been known to depend on the solvent and 
on the nature of the molecule solvent interaction. In this 
paper and in the previous papers of this series’ we have fo- 
cused on solvents of finite size, and have undertaken to eluci- 
date within classical electrodynamics the cluster size depend- 
ence of this phenomenon. 

Notwithstanding specific molecular interactions that 
will undoubtedly be found in particular systems, we have 
found that the cluster size dependence on the radiative life- 
time of solute molecules behave differently in four different 
regimes: 

(a) The microscopic regime (from 1 to a few tens of 
solvent molecules). For such cluster sizes the radiative life- 
time depends strongly and specifically on the number of sol- 
vent atoms and on their specific positions (i.e., on the cluster 
structure) .* 

(b) The electrostatic regime (from - lo2 solvent mole- 
cules up to cluster sizes of - 0.1;1, where ;Z is the wavelength 
of the emitted light). For such clusters a model involving a 
point dipole (representing the molecular transition dipole) 
in a dielectric cluster seems to account for the gross features 
of the observed behavior. For spherical and spheroidal clus- 
ters this model predicts that the effective radiative decay rate 
does not depend on the cluster size (in accord with experi- 
mental observationszCb’ ) and on the location of the molecule 
within the cluster. 

(c) The electrodynamic regime (particles larger than 
-0. lil) where the radiative lifetime is again dependent on 
the particle size as well as on the molecular location and 
orientation. 

(d) The bulk regime is realized for solvent particles 
much larger than il. The radiative lifetime of molecules em- 
bedded in such particles is the same as in bulk, provided that 
the molecule is not too close to the particle surface. 

This paper deals with the transition from the electrostat- 
ic to the bulk regime as obtained from classical electrostatics 
for spherical solvent particles. Our results are summarized 
in Figs. 3-6 which display the results obtained in Sec. II. It 
should be noted that these results are obtained in Sec. II in a 
model of a point dipole embedded in a dielectric solvent 
without any microscopic cavity. These are therefore just the 
f, factors defined in Sec. I, namely, the relative radiative 
emission rates without cavity corrections. Model results for 
the cavity correction factors are presented later. 

Figure 3 shows the f, factor for a molecule represented 
by a point dipole located in the center of a dielectric sphere, 
as a function of the sphere size. We have chosen E = 1.63, the 
dielectric constant of bulk Ar. Figure 3(a) shows this de- 
pendence on a linear scale while Fig. 3(b) shows the same 
results on a logarithmic scale. Figure 3(b) clearly exhibits 
the transition between the electrostatic and the electromag- 
netic regimes. In the former f, is < 0.7 and independent of 
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FIG. 3. The cluster contributionf, tof= T,/r~ for a spherical cluster as a 
function of the cluster radius (in units of q - ’ 1. The molecule is at the sphere 
center. E = 1.63 (Ar). (a) Linear, (b) logarithmic scale. 

cluster size. In the latter f, oscillates as a function of the 
radius about the bulk value (m = 1.28) with a period 
n/k (k = q&). Note thatf, does not go to the bulk value for 
this special geometry, but oscillates about it. 

A simple expression for f, in this situation may be ob- 
tained from Eq. (26)) but more physical insight is gained by 
considering the following derivation: Starting from Eq, (6), 
assume that the point dipole is in the middle of a sphere of 
radius a and dielectric constant E. The vector potential just 
out of the sphere may be written as 

A = iwpeika ( T + ReZik”T + R 2e4ih T+ *..I 
ca - 

, 

iwpeik” T = -- 
ca 1 - Rezik” ’ (4) 

where c is the speed of light and where R and T are the 
reflection and transmission coefficients, respectively, at the 
sphere boundary. Since the wave is spherical, E and B are 
parallel to the spherical interface, so R and Tare given by the 
standard expressions for a beam normal to a planar interface 

T=2J;, 
1-i-J; 

(41) 

&l-G -. 
1+J; 

The vector potential for r > a may also be written in terms of 
the effective dipole ,Q 

A= -%!,rprpd, 
c r 

(42) 

from which we get 
el(k - ‘,)“T 

lQ=p l-@iqa’ 

Using Eq. (41) this leads to 

(43) 

2 eff 
L = ‘yp, ’ 

2 
-= 1 + l/e + (1 - l/E)cos(2ka) * 2 (4) 

Note that from (24~‘.f;“d9(1 -zcos8)-’ 
= ( 1 - 2) - lR it follows that the average of this result over 

a is indeed 6. 
Figures 4 display the f, factor averaged over a uniform 

distribution of molecules in the sphere and over a uniform 
distribution of molecular orientations [ Eq. (27) 1, as a func- 
tion of the sphere radius. In Fig. 4(a) (solid line) this is 
shown for E = 1.63, while Figs. 4(b) and 4(c) display simi- 
lar results for E = 3, using linear and logarithmic scales, re- 
spectively. It is seen that the averaged emission rate associat- 
ed with such a uniform distribution of molecules is 
characterized by a strong resonance structure as a function 
of sphere size. We note in passing that in any real experiment 
the resonance structure seen in Figs. 4 and 5 should be aver- 
aged over a distribution of cluster sizes and shapes. This 
will have the effect of reducing or eliminating the structure. 
This is shown in Fig. 4(a) which also displays results aver- 
aged over a Gaussian distribution of sphere sizes (namely, 
the size distribution about a is taken P(a’;a) 
- exp [ - (a’ - a) 2/A2] ). The structure is seen to be largely 
eliminated when A is of order 0.59 - ‘, as may have been 
expected. 

To understand the origin of this resonance structure we 
show in Figs. 5 the dependence offs on the radial distance of 
the molecule from the sphere center. These results are ob- 
tained by averaging over a uniform distribution of molecules 
in a spherical shell of radius R (R <a ) about the sphere cen- 
ter, and over all molecular orientations [cf. Eq. (26) 1. The 
dependence off, on z = qR is shown in Figs. 5 (a>-5 (c) for 
three different sphere radii: In Fig. 5(a) E = 1.63 and 
qa = 19.54. For this E, this choice of qa corresponds to the 
M21 resonance, namely, in Eq. (27) the term containing 
DM(21)dominates.InFig.5(b)~=3andqa= 19.75.,cor- 
responding to the E 24 resonance [the term containing 
DE (24) dominates in Eq. (27)]. Finally in Fig. 5(c) 
E = 1.63 and qa = 19.22, which is an off resonance situation. 

These figures show the sense in which the bulk limit is 
approached when the cluster size increases: Figs. 5 clearly 
show that this limit is quickly approached as the sphere radi- 
us becomes larger than the radiation wavelength-for mole- 
cules not in the surface region. Surface molecules strongly 
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interact with Mie resonancesr8 of the electromagnetic field 
in the sphere. For large I values these resonances are essen- 
tially surface waves, associated with a standing wave struc- 
ture within the circumference of the sphere (for example a 
ray forming a polygon due to total internal reflection from 
the spherical interface). When the sphere radius supports 
such a resonance (at the given frequency and for the given 
l ) , molecules at the surface region interact strongly with this 
resonance and this gives rise to the enhanced radiative emis- 
sion rate observed in Figs. 5 (a) and 5 (b). Away from reso- 
nance the surface field is weaker than in the bulk of the clus- 
ter because surface modes are not supported and radial 
modes suffer from partial destructive interference with 
waves reflected from the sphere surface. This gives rise to the 
lower surface emission rate seen in Fig. 5 (c) . 

It is interesting to compare the Mie resonance structure 
seen in Fig. 4 for the emission rate from a uniform distribu- 
tion of excited molecules inside the sphere, with correspond- 
ing structure of standard Mie scattering, namely, the light 
scattering cross section as a function of the sphere radius or 
of the inverse wavelength of the radiation field. Expressions 
for Mie scattering cross sections are available in, e.g., Refs. 
18 and 24(a). The total scattering cross section is given by 

I 1 
10-l 

I 
loo 

I 
10’ 

w 

FIG. 4. Same as Fig. 3, only nowA is averaged over molecules distributed in 
theentirevolumeofthesphere. (a) E= 1.63, (b) E= 3.0, (c) sameas (b). 
In Fig. 4(a) f, is also averaged over a Gaussian distribution of sphere sizes 
(see text) centered about a and characterized by widths A (in units of q- ’ ) 
= 0 (full line), 0.25 (dotted line), and 0.5 (dashed line). 

[cf. Ref. 24(a), Eq. (16.144)] 

a*, =+7 t21+ l)(laU)lZ+ lPm(*), 

a(Z) = Y(Oj,(kU) - 2j,hPa) 
h,(qa) ’ 

P(Z) = 
&Oj,(ka) - 2j,(q4 

h,(qa) ’ 
where 

y(Z) 2 qu [(-$ (Yhl(Y)))y~qjdku) -h(w) 

x -$-W,(x)) ( > 1 -1 , 
x = ka 

6(Z) = z 
K 

Jc 
w dy 

(Yh,(Y) 1 
> 

iI 
Y=P 

-$ (xir(x)) > 1 -1 , 
x = ka 

(45) 

(46a) 

(46b) 

(47a) 

(47b) 

(notethatfore= l,k=q,y=S=2anda=p=O).Fig- 
ures 6 display the Mie scattering cross section [ Eq. (45) ] as 
a function of qu, for spheres with 6 = 1.63 [Fig. 6(a) ] and 
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E = 3 [Fig. 6(b) 1. It is seen that the resonance structure of 
the Mie cross section is very different from that seen above 
for the radiative emission rate, the latter being much more 
structured. The origin of this difference lies in the fact that 
an .incident electromagnetic field couples differently to the 
sphere eigenmodes than does an internal radiating dipole. 
For example those eigenmodes which in the limit of ray op- 
tics would appear as closed polygons due to total internal 
reflection from the sphere surface can not couple to an inci- 
dent field but do couple to the internal dipole. 

To complete the presentation of our results, we show in 
Figs. 7 the cavity correction factor f, as a function of the 
aspect ratio p for spheroidal cavities. Figures 7(a) and 7 (b) 
give results for prolate and oblate spheroidal shapes, respec- 
tively. z denotes the direction of the symmetry axis (long 
axis for a prolate spheroid, short axis for an oblate shape), 
and f, and f, correspond to molecules whose transition 
dipoles (represented by oscillating point dipoles) are in the x 
and z directions, respectively. It is interesting to note that in 
contrast to the results of Myers and Birge” (who studied 
the case of a cylindrical cavity), f, for spheroidal cavities 
always remains larger than 1. 

ment with experimental results for dichloroanthracene 
(DCA) in Ar,* as noted before. This agreement may be for- 
tuitous though because, as seen from Figs. 7 f, is sensitive to 
the cavity shape, and for a nonspherical cavity-to the mole- 
cule orientation within the cavity. For DCA, an oblate 
spheroidal cavity with the transition dipole in the x direction 
seems the best choice of the shapes considered here. We see 
from Fig. 7(b) that for this geometry f, depends relatively 
weakly on the aspect ratio p. For p = 0.5 we get [Fig. 7 (b) ] 
f, r 1.2, and f = 0.82, still in very close agreement with the 
results of Ref. 2 (b) . 

A quantity closely related to the radiative emission rate 
of an excited molecule is the oscillator strength associated 
with the same molecular transition. The discussion of this 
subject in the literature is somewhat obscured by disagree- 
ments on the proper way to define the oscillator strength for 
a molecule interacting with its solvent environment. With- 
out getting involved in these issues we limit ourselves to the 
following question: Does the ratio r between the observed 
radiative decay rate and between the observed integrated ab- 
sorption line shape associated with the same molecular tran- 
sition depend on cluster size? In our previous work2’b’ we 
have found that in the electrostatic limit the answer is no. 
This result was obtained by observing that the cluster size 
dependence of the radiative emission rate is obtained from 

Forp = 1 (spherical cavity) and e = 1.63 (solid argon) 
f, [Eq. (30) ] is 1.32, and with the electrostatic result forf, 
[Eq. (2)] = 0.68, yield f = ff, = 0.9, in very close agree- 
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FIG. 5. f. for a molecule in a spherical cluster (averaged over molecular 
orientation) as a function of the molecule’s distance from the center (in 
units of q-‘, z=qR). (a) E= 1.63 and qa= 19.54; (b) e=3.0 and 
qa = 19.75; (c) E = 3.0 and qa = 19.22. 
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FIG. 6. Mie scattering cross section (in units ofa2) for a dielectric sphere as 
afunctionofsize(inunitsofq-‘).(a)E=1.63;(b)E=3.0. 

the ratio r, = ( 1~~~ 1 /Ip ( )’ while the cluster size dependence 
of the integrated absorption line shape is associated with the 

ratio r, = (I&, I/IEi”, 1)2, where E,,, is the incident field 
and E,, is the local field at the position of the molecular 
transition dipole (represented byp). In the electrostatic lim- 
it we have found that r, = r, , thus r = rl /r, is independent 
ofcluster size. In the present electrodynamic calculation, the 
local field associated with a given incident electromagnetic 
field is obtained during the evaluation of the cross section for 
Mie scattering.‘* It can be shown that also in this general 
case r, /r2 is cluster size independent. Thus the relation be- 
tween the radiative emission rate and the integrated absorp- 
tion line shape is cluster size independentfor spherical clusters 
of arbitrary sizes. 

This paper has focused on the cluster size dependence of 
the radiative emission rate of an embedded molecule. Obvi- 
ously a related subject of interest is the cluster size depend- 
ence of the level shift induced by the solvent environment. 
Experiment2’b’ shows that in contrast to the radiative emis- 
sion rate, the level shift approaches its bulk solvent limit 
already for clusters of - 50-100 solvent molecules, about the 
beginning of the electrostatic regime. This behavior can be 
easily rationalized within classical electrostatic theory: Sol- 
vent induced shifts are associated either with electrostatic 
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FIG. 7. Cavity corrections factors for a molecule in a spheroidal cavity. The 
dielectric constant of the environment is E = 1.63. f, corresponds to a mol- 
ecule whose transient dipole is perpendicular to the symmetry axis of the 
spheroid.f, is for transition dipole parallel to the symmetry axis. (a) Pro- 
late spheroid; (b) oblate spheroid. 

solvation energies, when the electronic states involved are 
associated with different permanent charge distributions, or 
with dispersion energies related to the molecular polarizabi- 
lities associated with these electronic states. We shall now 
show that both effects saturate at relatively small cluster 
sizes. 

Consider first the solvation energy of a point charge q or 
a point dipole ,u located at the center of a spherical cavity of 
radius r,, . In a bulk solvent characterized by a dielectric con- 
stant E, the Born solvation energy is 

WC-$ l-L, 
0 ( > E 

for a point charge, and 

w= -2 E-1 
rZ,z$ 

(48) 

(49) 

for a point dipole. These results are easily obtained using the 
electrostatic relation for polarization energy 

W= -$ d3rP*Eo, 
s V 

(50) 
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where E, is the bare (in the absence of the dielectric) field 
resulting from the given charge distribution, and where P is 
the polarization, related to the actual local field E by 
P = [(E - 1)/4~]E. The integral is over the entire space. 
Equation (50) can be also used to obtain the solvation ener- 
gy in a finite size dielectric particle. For the model of Fig. 1, 
using the local field calculated in Appendix A we get (for 
E3 = E, = 1, E2 = E) 

w= -$(+2)(1-f) (51) 

and 

w= - P2(E- 1) 
2E+ l+ [%(E- 1)‘/a3(e+2)] 

x-$-L, 
( > 

(52) 
o a 

for a point charge and a point dipole, respectively. It is seen 
that the bulk limit of these expressions is obtained for a$ r, . 
For the more relevant case of a solvated dipole the bulk limit 
is obtained for (a/ro)391, namely, a>10 - 15 b; (a few 
tens of small solvent molecules) if r, - 5A ‘. 

Consider now the dispersion energy. This part of the 
level shift, which may be dominant if the electronic states 
involved are not associated with permanent dipoles, arises 
from correlated polarization fluctuations in the molecule 
and the solvent. Its calculation is related to, and is as intri- 
cate as the calculation of van der Waals forces.” A simple 
derivation for a two level molecule can be obtained using the 
Drude model, representing the molecular transition dipole 
by a classical oscillating (with the transition frequency w ) 
dipole p, interacting with the polarizable solvent.2,29,30 This 
leads3’v3’ to the following result for the frequency shift Aw: 
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cule. When the size of this cavity is far smaller then the size 
of the host cluster the radiative emission rate is multiplied by 
a factor f = fJ,, itself a product of the solvent factor f, and 
the cavity factor f,. This paper discusses both effects. We 
have extended previous calculations of the cavity factor 
(which does not depend on the size and shape of the host 
cluster), to include spheroidal cavity shapes. f, can be larger 
or smaller then 1, depending on the cavity shape and on the 
molecule orientation in the cavity. Remarkably, f, does not 
depend on the molecule location within the cavity in the 
physically relevant electrostatic limit. Also, for spheroidal 
geometryf, was found to be always larger than 1. 

For the solvent factorf, we have identified four regimes 
of cluster size: The microscopic regime (up to a few tens of 
solvent molecules) in which f, is sensitive to details of the 
cluster structure; the electrostatic regime (size much smaller 
than the wavelength R in the cluster) wheref, follows the 
predictions of classical electrostatics, is independent of clus- 
ter size, and is smaller than unity; the elctrodynamic regime 
(size -/2) wheref, is dominated by electromagnetic (Mie) 
resonances in the particle and the bulk regime (size );1) 
where molecules in the interior of the cluster behave as in 
infinite bulk [however molecules close (within distance /2) 
to the surface are still strongly affected by surface electro- 
magnetic resonances]. 

This cluster size dependence of the radiative decay rate 
is in marked contrast to the size dependence of the shift in the 
transition frequency. Both shifts originated from solvation 
of permanent charge distributions, or with dispersion ener- 
gy, approach the bulk limit when the cluster size becomes 
large relative to characteristic molecular size (which deter- 
mine the cavity size). 

A@ -= -$Re(E,), 
a0 

where o. is the bare (isolated molecule) transition frequen- 
cy, a is the molecular polarizability and ER is the reaction 
field from the polarized solvent. (Note that ER is propor- 
tional to y.) For the model of Fig. 1 ER can be calculated 
from the formalism of Appendix A. This leads to (for 
E, = 853 = 1, E, = E) 

1 

Finally, the ratio between the observed integrated ab- 
sorption lineshape (“oscillator strength”) and the radiative 
decay rate is predicted not to depend on cluster size. 

The results of this work has immediate implications for 
recent experimental work. The radiative lifetime of dichlor- 
oanthracene in intermediate size Ar cluster is in close agree- 
ment with the result of the present model, based on a spheri- 
cal cluster and assuming that the molecule is surrounded by 
a small spheroidal cavity. It should be kept in mind however 
that the cavity model is only a simplified way of taking into 
account the discrete nature of the host, and that the choice of 
its shape is based on qualitative arguments. 

1 - (ro/a)3 
’ 1 -2(ro/a)3[(E- 1)2/(E+2)(2E+ 111 * 

We see also here that the bulk limit is approached for a) r, . 
Note that the factor in square brackets is the bulk (a -+ 03 ) 
limit of this red shift. Thus the second factor determines the 
approach to this limit. 

For molecules imbedded in large dielectric particles, the 
observation that Mie resonances affect mainly molecules 
near the particle surface suggests a connection to the experi- 
mental observation by Chang and co-workers3’ that nonlin- 
ear optical effects involving dye molecules in small dielectric 
droplets are enhanced, and that the enhanced response is 
associated again with surface molecules. As already pointed 
out, this results from the large amplitude of the Mie reson- 
ances at the surface of large spherical particles. 

V. CONCLUSIONS 
The radiative emission by an excited molecule imbed- 

ded in a dielectric environment is modified by the solvent 
host in a way which depends on the host dielectric response 
and on the shape and orientation (relative to the molecular 
transition dipole) of the small cavity surrounding the mole- 
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APPENDIX A: A SPHERICAL CAVITY IN A SPHERICAL 
CLUSTER 

For the model of Fig. 1, the electrostatic potential in 
regions I, II, and III can be written by expanding the solu- 
tion of the Laplace equation in spherical coordinates, taking 
into account that the potential in region I should vanish at 
infinite distance, and that the homogeneous part of the po- 
tential in region III has to be analytic at the origin. The 
nonhomogeneous part of the potential in region III arises 
from the point dipole at the center. 
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T& (J(z+a)2+x2+y -J(z-a)Z+x2+y2), 
a 

@lb) 
q5 = arctg(y/x). (Blc) 
The inverse transformation is 

x=jaJ(g2- I)(1 --~7’)cos$, (B2a) 

y=JaJ(c’- l)(l -v2)sinf$, (B2b) 
z = tall. 032~) 

6 varies between 1 and + 00, r] - between - 1 and 1 and 4 
between 0 and 277. We consider a cavity defined by 6 = lo. 
This corresponds to an aspect ratio b,/b, = (6 2 - 1) “‘/lo. 

Let the point dipole be located at coordinates 
rd = (&,r~,,$~) inside the cavity. The Coulomb potential 
due to this dipole at {, & <[<lo, is 

The general solution of the Laplace equation in spheri- 
cal coordinates is 

Q = 2 [A,,JY,, (9-,$, + B,,r- (‘+ “Yh CS,$,]. 
I=Om= -I 

(Al) 

The effective dipole peR of this system is determined by the 
requirement that in the limit r+ CO the potential is 

@ -+per *r/13. (A21 
We take the dipole to be in the z direction. It is therefore 
sufficient to consider the I = 1, m = 0 terms in the continu- 
ity conditions. We thus take 

cp 
I 

= A cos 9- 
-, 

e,r2 
(A31 

X~"(rl)~"(~>~"(~>Q"(~~, (B4) 
where P ; and Q r are Legendre functions of the first and 
second kind, respectively, and where e. = 1 and E, = 2 for 
m> 1. The potentials ain ({<go ) and +‘,,t (l>go > are writ- 
ten in the forms 

* II = Bcos9 +Crcos7? 
r2 

9 t-44) 

Cp 111 = pcos8 +Drcosd. 
e3r2 

(A51 

The coefficients A&C, and D are obtained from the electro- 
static continuity conditions at the boundaries r = CI (be- 
tween regions I and II), and r = r, (between regions II and 
III). In particular, the result for the coefficient A is the de- 
sired expression for the effective dipole. We get pUeR = f “2,u, 
withfgiven by Eq. (28). The gradient of @tr is used (after B 
and Care found) as the local field E needed to calculate the 
polarization P used in Eq. (50). The coefficient D is related 
to the reaction field at the molecule, needed for the calcula- 
tion of the dispersion shift, Eq. (53). 

APPENDIX 6: SPHEROIDAL CAVITIES 

Here we outline the derivation of Eqs. (35)-( 39). Con- 
sider first prolate spheroidal cavity (E = 1) in an infinite 
dielectric medium with dielectric constant E. The coordinate 
system is chosen so that the z axis is the symmetry axis of the 
spheroid which is in this case also the direction of the long 
axis. The center of the spheroid is at the origin and the focal 
points are located at equal distancesf = 0.5~ from it. Prolate 
spheroidal coordinates (g,v,d) are defined by 

@d “/L.Vd - 
,,A,, ’ (B3) 

where V, is the gradient with respect to the dipole coordi- 
nates. The Greens function of the Laplace equation in pro- 
late spheroidal coordinates is3* 

Xcos[m($ - 4d)] 

*in = *d + 2 i Ccnm cos(m6) 
n=o m=O 

+&, sin(m#)>PXq)PX9, 035) 

qout = 2 i (Y,, cos(m#) + onm sin(4) 1 
n=o m=o 

xPy(l7>Q:(g). (I361 

Because of the orthogonality of the P 7 functions with differ- 
ent n or m, and because we are interested in the behavior of 
the potential as g+ 00 where only n = 1 terms are expected 
to contribute, it is enough to consider only such terms. The 
expressions for n = 1 Legendre functions are33 
P?(Z) =z, W’a) 

P; (Z) = 
i 

Ji-x?, Z<l, 
-it/FZ, Z>l, 

(B7b) 

It is also useful to consider the asymptotic (Z- co ) behavior 
of the Q functions: 
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y=aJ(c’+ l)(l -772sinf$, (B17b) 

z = 477, (B17c) 
g=o,...,co,~= - I,..., 1 and 4 = O,.. .,2rr. z is the symmetry 
axis of the spheroid. In the present case this is also the direc- 
tion of the short axis of the spheroid. The Green’s function in 
these coordinates is (for 6 > & ) 
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Q:(Z)-(3Z2)-‘, Q;(Z)+2(3Z2)-‘. WI 
The continuity equations [@in(Job) = ~,,,Gob), 

@i@" GO 1 = @x", 650 I] written for n = 1 and m = 0,l are 

~~.V,[P~(~~)P~(~~)]Q~(~o, +C,oP’:G,o) 

=r,oQ:Gob), @a) 

fp.V,[P~(.rli)P~(~~)]Q~‘($) +C,oP’?Gob) 

= ~r,oQ~‘(~o 1, Wb) 

+‘,[cW%V’; (rld)Pi (&d,]Q; ({ob) + C,,P; (&,I 

=r,,Qt Gob), (BlOa) 

$~~~dcW?b)~: (~1iV’; (Ld]Qt’G,b) + C,,Pf’(&b) 

=vllQt’Gob)- (Blob) 
The equations for S, 1 and (TV, are identical to those [ Eq. 
(B 10) I for Cl 1 and y, , . These equations are simplified by 
using the following identities: 

P’vd[~wLf)~~(fd)] =+, (Bll) 

ru.V,[cos(~,)Pf(rld)P:(~~i)] = -iF. (B12) 

Equations (B7)-(BIO) lead to the following results for ylo 
andy,,: 

3Pz f”:(Cob)Q?Gob) -P%5,b)Q~(.,Cob) 
‘lo = Ef2 P:Gob,Q:‘G,b) - (l/~)P;‘(~~o>Q(:(~~b, ’ 

(B13) 

4% Pt (tCob)Q;‘(lob) -P;‘(&,b)Q: (gob) 

‘I1 = kf2 J’;(loO)Qt’&b) - (l/~)P;‘(~~b)Q;([~b, ’ 
0314) 

XP3v)PZYiL)QEYY). (B18) 
The oblate spheroid is defined by 6 = lo, implying an aspect 
ratio b,/b, = gob/(gz + 1) “2. The potential in and out of 
the cavity is given by an expansion similar to Eqs. (B5)- 
(B6), where @, is given by Eqs. (B3) and (B18). Here we 
encounter Legendre functions of imaginary argument. In 
particular, the functions of the second kind are easily shown 
to satisfy 

Qg (iZ) = - i arctg( l/Z), 
Qy(iZ) =Zarctg(l/Z) - 1, (B19) 

Qt (iz) = (Z2 + 1)“2 Z ~ - arctg( l/Z) 
z2+1 > 

. 

These functions, and the corresponding P functions are the 
only ones needed for the present analysis because the desired 
potential for ,cJ-+ 00 is dominated, as before, by n = 1 terms. 
Repeating a procedure similar to that described for the pro- 
late spheroid case, we finally arrive at Eqs. (38)-( 39). 
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