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Abstract

A semi-microscopic description of ionic transport in polyethylene oxide (PEO)-type electrolytes is presented, which is based

on discrete stochastic moves of individual molecular units. Diffusion coefficients for ions and for the center of mass motion of

chains are calculated by Monte Carlo simulation as a function of various model parameters, with emphasis on the incorporation

of pressure effects. Within an even more coarse-grained description of diffusion in an athermal system of pointlike particles and

chains we provide a quantitative verification of the concept of dynamic percolation (DP). D 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Within the ongoing search for polymer electrolytes

with electrical and mechanical properties suitable for

electrochemical devices, materials with increasing

complexity in their chemical structure are being devel-

oped. Yet there is a need for improving our under-

standing of ionic transport mechanisms in simple

model systems. Here we shall present two versions

of a simplified, coarse-grained model that is based on

discrete, stochastic motions of lattice chains (poly-

mers) and pointlike particles representing the ions. The

first model involves microscopic interaction parame-

ters, the main ingredient being an effective attraction

between cations and polar groups in polyethylene

oxide (PEO)-type systems. Using dynamic Monte

Carlo simulations, it is shown that this model qual-

itatively reproduces several experimental trends in

ionic and chain diffusion constants as a function of

temperature, salt content and pressure.

In a second, even more coarse-grained description,

we shall employ dynamic percolation (DP) theory.

This concept has been proposed long ago in the

context of polymer electrolytes [1], but to our knowl-

edge it has not been tested with respect to its quanti-

tative validity for ion diffusion through a fluctuating

host of chain molecules. We propose a mapping of

that problem onto DP-theory and show that the

correlation factor for self-diffusion of pointlike par-

ticles can be reproduced quantitatively by this theory.
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2. Lattice model of a polymer electrolyte and

equation of state

In our first model, chain molecules are represented

by beads occupying a sequence of nearest-neighbour

points on a simple cubic lattice of spacing a. To

account for the chemical heterogeneity of PEO-like

chains, we distinguish between C-beads and X-beads

in sequences C(XCC)n, where X corresponds to an

oxygen atom. The total length of a chain is r = 3n + 1.

In order to include the possibility of a transition from

the fluid to a glassy state, we assume a common

nearest-neighbour repulsion e > 0 among all beads of

the chain. Furthermore, since we are interested only in

the cation motion and in effects due to their specific

interactions with the chain, we take into account only

one species of ions, which attract X-beads with

strength � e0>0 [2]. In order to reduce the number

of free parameters in our model, we simply assume

that e0 = e. Cations move via nearest neighbor-jumps

while elementary moves of the chains follow the

generalised Verdier–Stockmayer algorithm [3,4].

Transition probabilities in our dynamic Monte Carlo

simulation are given by the Metropolis algorithm, and

periodic boundary conditions are employed. Equili-

bration steps are carried out independently with the

help of the configurational bias method [5]. A section

of this model is illustrated in Fig. 1. A similar model

with mobile cations and anions has been studied

previously with respect to ion solvation, dissociation

and diffusion properties [6,7].

Of primary interest in this work are diffusion

properties of ions and chains under varying temper-

ature, salt content and pressure. Dynamic simulations,

however, are normally carried out for a fixed volume

of the system, while in experiment, the pressure p is

kept constant. Because of the lack of efficient algo-

rithms for dynamical properties in a lattice system

under constant pressure [8], we perform constant

volume simulations but choose the volume V for

given T and p from the equation of state (EOS). The

EOS on the other hand, can be obtained with reason-

able accuracy from the quasi-chemical (QCA) approx-

imation in the version by Barker [9] for systems

involving heterogeneous chains. Details are deferred

to a forthcoming publication so that we proceed

directly to our results.

3. Results for chain and ion diffusion

Diffusion coefficients for chains and ions are

deduced from their mean-square displacements in

the long-time limit. Calculations are carried out for

a system with NP= 31 chains of length r= 13 and

with varying concentration x of ions. Here x is

defined as the ratio between the number of ions and

the number of X-beads in the system. For a given

pressure p and temperature T we first calculate the

volume V( p,T ) from the QCA approximation. A

nearly cubic simulation box is then chosen, with size

a3(L1� L2� L3) = V( p,T ), and periodic boundary

conditions are imployed in all three directions. For

example, if p = 0.35e/a3, x = 0.16 and kBT/eg0.915

we find V= 1100a3 so that we can choose L1 = 10,

L2 = 10, L3 = 11.
1

Fig. 2 shows the T-dependence of the diffusion

coefficients for chains and ions at a given pressure

p = 0.35 e/a3 for various ionic concentrations [2]. In

Fig. 1. Section of our lattice model, illustrating a lattice-chain of

type C(XCC)n and pointlike particles.

1 In fact, values for p are taken such that this procedure yields

integers L1, L2 and L3 which are close to each other.
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the Arrhenius plots of Fig. 2, the data points show a

downward curvature and can well be represented by

the Vogel–Tammann–Fulcher law,

DðaÞðT , xÞ ¼ DðaÞ
l exp � EðaÞðxÞ

T � T ðaÞðxÞ

� �
ð1Þ

where a distinguishes polymer chains (a =P) and ions

(a=+). The quantities Dl
(a) denote the diffusion coef-

ficients at infinite temperature, Dl
(+) =D0 being the

diffusion coefficient of free monomer particles and

Dl
( P)/D0g10� 2. Ea(x) is an energetic parameter and

Ta(x) the VTF-temperature. One important observa-

tion is that both D(+) and D(P) are reduced when we

increase the amount of ions. This is to be expected

from the assumptions of our model, since an ion

which binds to an X-bead of the chains will reduce

the chain mobility. As a consequence, we observe that

VTF-temperatures T (a)(x) increase with x, as dis-

played in Fig. 3. Generally, the VTF-temperature

represents a lower bound to the glass transition

temperature Tg. Our simulations with respect to the

diffusion of chains are therefore consistent with the

experimentally observed increase in Tg with the ion

content [10,11]. Yet one has to be aware of the fact

that experimentally the difference between both tem-

peratures, Tg� T (a), may not remain constant during

the variation of system parameters [12]. Interestingly,

for weakly doped polymers with xb1 the VTF-

temperatures T (P) and T (+) roughly coincide, indicat-

ing a strong coupling between ions and chains. How-

ever, as the number of ions becomes comparable to or

larger than the number of X-beads (xk1), ion and

Fig. 3. VTF-temperatures for chains and ions versus ion concen-

tration x at fixed pressure p= 0.35e/a3. The inset shows the variation
of T0

(+) with pressure at x= 0.16.

Fig. 2. Arrhenius representation of normalised diffusion coefficients

at fixed pressure p= 0.35e/a3 of (a) the center of mass motion of

chains and (b) of ions for different ion concentrations x. Data in (b)

have been multiplied by x and thus reflect the conductivity.

Continuous lines are fits to the VTF-Eq. (1).
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chain motions get decoupled (for a review see Ref.

[13]), as seen from Fig. 3. The corresponding VTF-

temperatures saturate for large x, with T (+) < T (P),

which means that for temperatures Tf T ( P) the ions

maintain a certain mobility while the system of chains

gets frozen. These results correctly describe experi-

mental trends in the glass transition temperature of

PEO-based electrolytes.

Fig. 4 displays the pressure-dependence of ionic

diffusion constants for various temperatures in a

semilogarithmic representation. Over the major part

of the pressure range considered, we find an expo-

nential decrease of D(+) with growing p,

D~e�p=p0ðTÞ ð2Þ

again in qualitative agreement with several experi-

mental observations [14,15]. Note that the pressure

e/a3 corresponds to a physical pressure roughly of

the order of 1 kbar. This estimate is obtained by

noting that kBTgf kBT
(p)f 0.2e, see Fig. 3, and by

using experimental values Tgg200 K for short

chains and a bond length ag2 Å. On the other

hand, the steep rise of D with decreasing pressure

for small p( p]0.1e/a3) seen in Fig. 4 seems to be an

artefact of our model, which contains only repulsive

interactions among the chains. This causes an unre-

alistic volume expansion for small p so that the

density falls below reasonable melt densities.

Comparing in Fig. 4 different isotherms for the

diffusion coefficient, we observe that the character-

istic pressure p0(T ) significantly increases as temper-

ature is lowered. This is to be expected from the T-

dependence contained in the VTF-law (1). For a

further analysis of Eq. (1) in combination with Eq.

(2), we first note that in our model T + ( p) is a weak

function of pressure, see the inset of Fig. 3. Assuming

T + ( p) independent of p [14,15], compatibility of both

Eqs. (1) and (2) requires that

EðþÞ ¼ E0 þ Ap; ð p0ðTÞÞ�1 ¼ A

T � T0
þ B ð3Þ

where E0, A and B are constants.2 Our calculations for

D as a function of p are, however, limited to TkT (+)

so that Eq. (3) cannot be verified explicitly from the

present data for p0(T ).

4. Mapping of ion diffusion onto dynamic

percolation theory

In a polymer electrolyte, the ions undergo hindered

diffusion in a dynamically disordered environment

where pathways continually rearrange due to the

segmental motion of polymer chains. To account for

this general aspect, several authors [1,16–18] have

developed a dynamic percolation (DP) model. In con-

trast to the familiar problem of a random walk on a

lattice in the presence of static percolative disorder

[19], DP-theory is based on temporal renewals of dis-

order configurations. This means that the property of

lattice bonds either to be open (allowing a step of the

walker) or to be blocked will be reassigned in time

according to stochastic rules. The most common as-

sumption are global, instantaneous renewals charac-

terized by some waiting time distribution w(t) [16].

One central result of this theory is the following ex-

pression for the long-time diffusion coefficient of the

walker in a 3-dimensional lattice

D ¼ 1

6

Z l

0

dtwðtÞhr2ðtÞi0Z l

0

dttwðtÞ
ð4Þ

where hr2(t)i0 denotes the mean-square displacement

for frozen disorder. In the special case of Poisson

Fig. 4. Ionic diffusion coefficient D(+) on a logarithmic scale versus

pressure for different temperatures. 2 The analysis of Ref. [15] amounts to B= 0.
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renewal processes, we have w(t) = ke� kt, and Eq. (4)

reduces to the zero-frequency limit of the analytic

continuation rule discussed in Ref. [1].

In this section, we perform a test of DP-theory in

the case of an athermal model for diffusion of point-

like particles and lattice chains, where only hard-core

(excluded volume) interactions are taken into account.

Clearly the quantity hr2(t)i0 can be obtained in a

straightforward manner from simulations of particle

diffusion in the frozen network. To determine w(t), we
propose to consider a site i adjacent to some fixed

position of the walker and to analyse the occupational

fluctuations hni(t)ni(0)i due to the motion of chain

segments. These fluctuations reflect the opening and

closing statistics of the bond connecting the walker

with site i. Let us introduce, for tz 0, the probability

U(t) that no renewal takes place within the time

interval [0,t] after a previous renewal at an arbitrary

time t0 < 0. The joint probability hni(t)ni(0)i that the

lattice point i is occupied both at t= 0 and at some t >0

(not necessarily by the same particle) consists of two

distinct contributions. The first one is the probability

that site i is occupied at t= 0 and that no renewal

occurs until time t, which is given by cU(t), where c is

the mean occupation of a site. The second contribu-

tion describes the situation where one or more renew-

als have taken place until time t. The corresponding

probability is given by c2(1�U(t)). Hence,

hniðtÞnið0Þi ¼ cUðtÞ þ c2ð1� UðtÞÞ ð5Þ

According to Ref. [16],

wðtÞ ¼ 1

k̄
UWðtÞ ð6Þ

where k̄�1 ¼ ml0 twðtÞdt denotes the mean renewal

time.

Simulations for the local correlation function

hni(t)ni(0)i can be carried out quite efficiently. Using

Eq. (5) we obtain U(t) whose decay is clearly non-

exponential and slows down when chains get longer

(see Fig. 5a). Eq. (6) then yields the waiting time

distribution w(t) which we insert into Eq. (4) to obtain

the DP-approximation for D. To discuss its depend-

ence on the concentration c, we introduce the corre-

lation factor

f ðcÞ ¼ DðcÞ=ð1� cÞ ð7Þ

As seen from Fig. 5b, f (c) as a function of c nicely

agrees with simulation results for the complete system

dynamics. It turns out that a single-exponential

approximation for U(t), which would reflect Poisson-

distributed renewals, is not sufficient to obtain accu-

rate correlation factors. Indeed, setting U(t)ge� kt

with k determined either from the actual initial slope,

k=UV(0) or from the average relaxation time k�1 ¼
ml0 UðtÞdt, one would obtain correlation factors quite

close to the hard-core lattice gas result (r = 1), which

is also shown in Fig. 5b for comparison. Temporal

correlations in the renewal steps therefore have to be

taken into account and their importance increases with

growing chain length r.

Fig. 5. (a) Probability U(t) (see text) versus time for varying chain

lengths (c= 0.4), illustrating the non-Poisson character of renewal

events. (b) Comparison of concentration dependent correlation

factors f (c) for different chain lengths from DP-theory (data points)

and from full simulations (lines). The case r = 1 corresponds to

tracer diffusion in the hard core lattice gas.
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5. Summary and conclusions

We have shown that a coarse-grained model of

lattice-chains and pointlike particles based on simpli-

fied chemical interactions can account for several

diffusion properties characteristic to PEO-type elec-

trolytes. This includes VTF-behaviour of diffusion

constants for chains and ions, an increase of VTF-

temperatures with the ion content x and decoupling

between ion and chain motions for large x. Thereby

we focused on controlling the pressure p in our

algorithm. By this we were able to deduce also an

exponential decrease of ion diffusion constants with

increasing p. On a qualitative level, these results

compare favorably with several experiments.

Aiming at an even more coarse-grained descrip-

tion of ion transport in polymer electrolytes, we

proposed a mapping of the coupled problem of ions

and lattice chains onto DP-theory. Explicit calcu-

lations were carried out for an athermal system,

suggesting that DP-theory yields a quantitative

description of diffusion, provided the non-Poisson

character of renewal events originating from the

dynamics of chain molecules is properly taken into

account.
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