J. Phys. Chem. B000,104,3817-3829 3817

Electron Transfer Rates in Bridged Molecular Systems 2. A Steady-State Analysis of
Coherent Tunneling and Thermal Transitions'

Dvira Segal and Abraham Nitzan*
School of Chemistry, The Sackler Faculty of Science, Tal Bniversity, Tel Aiv, 69978 Israel

William B. Davis,* Michael R. Wasielewski€ and Mark A. Ratner *

Department of Chemistry, Northwestern Waiisity, 2145 North Sheridan Roady&nston, lllinois 60208-3113,
and Chemistry Diision, Argonne National Laboratory, Argonne, lllinois 60439-4831

Receied: September 14, 1999

The effect of dephasing and relaxation on electron transfer in bridged molecular systems is investigated using
a simple molecular model. The interaction between the molecular system and the thermal environment is
described on the level of the Redfield theory, modified when needed for the description of steady-state situations.
Noting that transient as well as steady-state measurements are possible in such system, we discuss the
relationship between the rates obtained from these different types of experiments and, in particular, the
conditions under which these rates are the same. Also, a formal relation betwestratig-state ratéor

electron transfer across a molecular bridge andciheductanceof this bridge when placed between two

metal contacts is established. The effect of dephasing and relaxation on the electron transfer is investigated,
and new observations are made with regard to the transition from the superexchange to the thermal (hopping
through bridge) regime of the transfer process. In particular, the rate is temperature-independent in the
superexchange regime, and its dependence on the bridge I8 dgrekponential, exp{SN). The rate behaves

like (oiz + 0oN) ™t exp(—AE/ksT) beyond a crossover value bf whereAE is the energy gap between the
donor/acceptor and the bridge levels, and whereind a, are characteristic times for activation onto the
bridge and diffusion in the bridge, respectively. We find that, in typical cases> o, and therefore, a

region of very weakN dependence is expected before the Ohmic behaMot, is established for large
enoughN. In addition, a relatively weak exponential dependence,-eap), is expected for long bridges if
competing processes capture electrons away from the bridge sites. Finally, we consider ways to distinguish
experimentally between the thermal and the tunneling routes.

1. Introduction ket = A(T) exp(—FRya) (1)

Coupling to solvent is a major factor in electron-transfer (ET)
reactions. Standard thedijinvokes solvent nuclear motion as

a necessary prerequisite for creating configurations in which accepted that the value gfis mostly sensitive to the structure

electron t_ransfer can t_ake place_without violating energy of the bridging medi&,with highly conjugated organic bridges
conservation. The coupling of the ET reactant and product to having the smallest values (0.2-0.6 A-1)7.9-18 and with free

gtr;\ilrelecg]onhcstates o(;‘ten dortnlnates 'ghe e_ll_leq(?trpn|c cotuplllngl space being characterized bySavalue of ~2.0 A13 Lying

etween the donor and acceptor Species. ThiS IS Most Clearly, oy, een these two regimes are many motifs, both synthetic and
exemplified by long-range electron transfer in bridged molecular natural, including cytochromes and docked protda:
sy.stem§.‘6 For example, in going from a saturated organic DNA,Z\’;32 and saturated organic molecufés?” Each displag/s
bridge to an u_nsaturated one, the_rates of ET from a porphyrin its own characteristic range gfvalues and, hence, its own time
donor to a quinone acceptor can increase by several orders o cales and distance dependencies of E"I' '

magnitude, even though the dor@cceptor distance, driving The exponential dependence, eq 1, of the ET rat

force, and relative geometry do not vary much in the two ) . -
donor-bridge—acceptor (DBA) ET systemsSuch results bring has_been der_lved using many different m,ethodoloﬁe”é,the .
A earliest of which dates back to McConnell’s use of perturbation

out three key features that determine ET rates in DB th o d ibe elect h tes | .
systems: the bridge chemical structure, the DBA energy gap, eory 20 escribe electron exchange rates in organlcecom-
and the bridge length or the donremcceptor distance. In plegg?‘.‘.Thlrs; feg'tm‘? OLEJ |strl]<novxgn as sup?rexchaﬁ@é,l i
particular, it is often assumed that the dependence of the grand it Is characterized by the absence of any population
rate ker) on the donoracceptor distanceRba) is of the form physma!ly residing on the bridge during Fhe ET process. In terms
of the simple dynamical scheme for bridged charge separation
. A tR-A o NERA- ) )

T Part of the special issue “Harvey Scher Festschrift”. refc'ﬂons, DBA D™B~A D BA”, the !ntermedlate state

* Northwestern University. D*B~A is a virtual state that is not physically populated. In

8 Argonne National Laboratory. the opposite regime, the electron actually occupies the bridge,
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where A(T) is a temperature-dependent prefactor @i a
constant characterizing the bridge and DA pair. It is currently
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that is, the state ©B~A is physically occupied, and diffusion ~ we use a simpler, two-level rather than harmonic-oscillator
or sequential hopping of the electron between bridge sites maymodel for the relaxation within the bridge sites. We then use
become rate-limiting. In this limit, the distance dependence of this model to investigate the effect of thermal relaxation on the
the electron-transfer process is characterized by Ohm’s law, nature of the ET process. In addition, we address several other
specifically issues: First, we investigate the correspondence between steady-
state and transient phenomena, in particular the relation between
ker O 1 @) the steady-state rate and the rate obtained from transient
TN measurements. Second, we study the transition from coherent
tunneling via the superexchange mechanism to incoherent
whereN is the number of bridge sites between the donor and hopping for increasing thermal relaxation and increasing bridge
the acceptor. We have recently pointed “6uhat, in the  |ength. The nature of the intermediate regime in which the
intermediate regime between the behaviors described by eqs lcomputed flux appears to be bridge-length-independent is
and 2, the rate may appear to be independeri @f some  elucidated, and the possible consequences of the existence of
range. Plausible, but inconclusive, experimental evidence for such a regime are discussed. The steady-state formulation of
the existence of this regime has recently been obtained for athe ET problem is directly applicable to steady-state experi-
series of molecules based on organic donors and acceptorsments, such as current vs voltage (i.e. conductance) measure-
bridged by short chain oligomers of the conducting polymer ments. We have recently shofrihat the Landauer formuia
poly(p-phenylenevinylenef? that connects the conductance of a junction to its transmission
Itis important to realize that, because the dynamics describedproperties can be generalized to situations involving thermal
by eq 2 correspond to the electron physically residing on the relaxation in the barrier. We use this generalization to estimate
bridge, the corresponding rate should be thermally activated, the relationship between the electron-transfer rate associated with
that is,ker ~ N~ exp[—(keT) AE], whereAE is the (positive)  a given bridge and its conductance. Finally, we discuss possible
D—B energy gap. In the opposite case wheE < 0, that is, experimental methods for determining the route (thermal or
when the donor level is higher in energy than the lowest bridge nonthermal) by which the process of electron transmission takes
level, the bridge can become populated without thermal activa- place.
tion. Phase loss leading to sequential migration may take place |n the next section, we describe the model used in the present
in this case because of the irregular character of the coupling discussion of bridge-mediated electron transfer with thermal
between different vibronic levels in the D, B, and A entitfés.  yg|axation. Following this, in section 3, we derive approximate
The transition between the superexchange (tunneling) and thegquations of motion for the reduced density matrix of the
sequential hopping regimes has attracted some attention remolecular system and formally solve them for the steady-state
cently>>5t In particular, Felts, Pollard, and Frieskiehave rate. The procedure used and the resulting equations are similar
investigated this issue in the framework of the Redfield density tg the Redfield theory; however, we repeat the derivation in
matrix theory;® and Mukamel and collaborators have advanced order to emphasize some subtle issues associated with the
a more .elaboratg density matrix formalism using high.er-order application of this type of theory to steady-state nonresonant
correlation functions for the systefthermal bath coupling processes. Section 4 discusses the relationship between the
Other potentially useful formulations of reduced equations of steady-state rate and its counterpart obtained from the transient
motion for a quantum system in a thermal environment have process following a pulse preparation of the donor level.
been developed recently;*® although they have not been  Numerical results for some model systems and a discussion of
applied to problems of the type considered here. These the dependence of the computed rate on our model parameters
investigations focus on the time-dependent process representedre provided in section 5. Section 6 discusses the implication
as an initial value problem: The electron is on the dondr=at  of these results for the conductance of a junction constructed
0, and the subsequent time evolution is followed. We have ity a given molecular bridge between two metal contacts. In
recently presented a simpler phenomenological analysis of thesection 7, we discuss possible ways of distinguishing experi-
steady-state problefi. Our approach also starts from the mentally between the thermal and the tunneling routes in bridge-

Liouville equation for the reduced density matrix of the DBA  mediated ET processes. Some concluding remarks are made in
system, but it focuses on the steady-state flux as the principalsection 8.

observable. Physically, this situation corresponds to molecular
junctions between two metal contacts, where the steady-state; 1 Molecular Model
current is monitored as a function of applied voltage. Other
approaches to dephasing effects on electron transmission have In the present discussion, we limit ourselves to a minimal
been used in the nano-junction physics literaf3r®. model that can describe the physical process under discussion,
The purpose of the present paper is to extend the steady-specifically, bridge-mediated electron transfer between given
state density matrix approach to the DBA ET problem in several donor and acceptor levels and the factors that affect it: electronic
directions. First, we replace the phenomenological density matrix coupling; thermal interactions that lead to dephasing within the
equations of ref 47, where the thermal relaxation rates were bridge and between bridge and the donor/acceptor levels;
introduced as phenomenological constants, by a form in which thermal relaxation between occupied bridge levels; possible
the thermal rates are given by microscopic expressions involving losses to competing channels; and, when relevant, initial and
Fourier transforms of bath correlation functions. This modifica- final electron reservoirs that correspond to metal contacts. We
tion makes it possible to account correctly for the order of bear in mind that the donor and acceptor “levels” are, in reality,
magnitude of these rates and their dependence on the energynanifolds of vibronic levels associated with donor and acceptor
gap and the temperature. Second, we take into account theelectronic states and that, similarly, each bridge site corresponds
possibility of thermal relaxation on the bridge by assigning more to an intermediate electronic state with its own vibronic
than one level to each bridge site. The resulting model for the manifolds. This important aspect of the problem is simplified
steady-state theory described here becomes equivalent to thain our model (Figure 1). Panel a depicts the simplest superex-
used in the time-dependent theories of refs 52 and 54, althoughchange model that consists of a single donor level, a single
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. ) N H=H,+tHg+F 3)
whereHsg is the Hamiltonian of the free thermal environment
(or bath).Hy is the molecular Hamiltonian, which is further
separated according to
0=Dr NH=A
Hy=Hy+V (4)
1 . . .
‘ whereHy contains the local Hamiltonian for the donor, acceptor,
. o . and bridge molecular units
471 K . Pl N 2
1.1
“ e o H, = Ep|DIID| + E4|ADA| + ZZ E, /nadha| (5)
0=D v VVNH:A e
and whereV is the molecular coupling responsible for the ET
process in the isolated system. For this interaction, we assume
Ib . the usual nearest-neighbors coupling form
Figure 1. Schematic representation of the models A (upper panel)
and B (lower panel) that are discussed in the text. D and A represent 2

donor and acceptor levels (also marked O bBindl 1). The other levels V= Z‘[V0 1o/00o| + Vi, ol 1ad0] + Vi, naq /NN +
correspond to the bridge. Double arrows represent electronic coupling & ' ' ’

(the wavy double arrows in model B represent thermal relaxation). The N-12 2

continua on the left and right correspond to the source that maintains
the population in the donor and the sink that removes population from 11+ Vs ol N - 10Nod ] + ;;(}ZJVWWMD@maDMﬂ +

the acceptor. In a metamolecular layermetal junction, these continua
are quasi-free electron states in the metal. In this case, D and A may o[ + V(n+1)a’,n(x|(n + L)ohat|] (6)
denote the positions of the corresponding Fermi energies.

Finally, the molecule-bath couplingHvs takes the form
acceptor level, and a single intermediate level for each bridge
site; it will be referred to as model A. The continuous manifolds N2 Z2
on the two sides of this figure correspond to electronic states F= ZZ z (F)ng e INool| (7
of metal contacts if the model is to describe a metablecule- n=la=lo=1
metal jqnct!on. In (ef 47, we analyzed the effect of agldmonal .where the molecular matrix elementsfofare operators in the
dephasing interactions on the charge-transfer dynamics assOCIp 4 coordinates
ated with this model. We, as well as othé?#§4 have found The model ju.st described, model B, has already been
that, " th|s_case, a thermal cha_mnel for elgctron tra_nsport maysimplified by taking a tight-binding form for the interaction and
open, in which the electron physically occupies the bridge. When b

thi hani L tant " t for th | y limiting the number of bridge levels to two per site. We
IS mechanism 1S important, we must account for thermar o6 450 disregarded the vibronic structure of the donor (D)
transitions between bridge levels, as well as for thermal

. . .and acceptor (A) electronic states. In realistic applications, the
dephasing on the bridge. In most cases, the strongest eIemmn"f’esult should be averaged over a distribution of donor states.

coupling bgtween o_lonor (acceptor.) and brldgg levels, as well On the opposite side of the system, we will ensure irreversibility
as elgctromc coupling betvv_een bridge Ievels_, '”V_O'Ves h_|gher by assigning a widtl'a to the acceptor level'a signifies that

V|brat|9nal levels of these_snes. When the bridge is physically IAD actually represents a continuum of states: either the
occupied, thermal relaxation between these levels may affect,;p ationa| quasi-continuum of the acceptor and the solvent in

the e_Iectron transport processes. .TO account for this _effectz Wey regular ET process or a continuum of quasi-free electron states
consider the model of Figure 1b with two levels per bridge site, i, 3se of a metal contact. Finally, the form of eq 7 implies

which we will call model B. The levels marked by bold 5 the thermal bath does not couple different electronic states
horizontal lines are those that appear in Figure 1a. The levels;ny hat it induces relaxation and dephasing only within the
marked by thin horizontal lines are lower vibrational levels of 5.4 site. Given this assumption, we may exclude, without
the bridge that are assumed to couple relatively weakly t0 the frher oss of generality, the donor and acceptor levels from
donor/acceptor levels and also among themselves. Note thathe sum in eq 7, as was done above.

models used by other workéf$* also consider higher vibra- Given the Hamiltonian in eqs-37, we will consider the time
tional levels both in the doneracceptor sites and in the bridge  oyoution of the reduced density operator of the molecular

sites. Our minimal model is sufficient for a qualitative discussion systemg(t) = Trep(t), wherep(t) is the density operator of the
of the effect of thermal relaxation on bridge-mediated electron gyerall molecule-bath system and where Jis a trace over

transfer, and its simplicity makes it possible to elucidate the || path states.
nature of the effects observed. At the same time, the formulation  Assuming that
given below may be generalized to more sophisticated models
if desired. [Fl3 = Tr(pgF) =0 (8)

In the discussion that follows, we use Latin indices to denote
donor, acceptor, and bridge sites and Greek indices to denotewhere pg = (Trge HekeT)~le"He/ksT is the density operator of
vibrational levels within each site. The donor level is denoted the thermal environment, standard theory (see section 3) leads
by D orn = 0, the acceptor level is denoted by Aror= N + to equations of motion for the matrix elementsyofith thermal
1, and the bridge sites are denotad= 1, 2, ...,N. The relaxation coefficients expressed as Foutlegiplace transforms
Hamiltonian for the overall system is of bath correlation functions. The latter are of the form
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Cnal,naz,n’a3,n’a4(t) = mﬁ(t))nal,naz(li(o))n'as,n’%l% (9)

where F(f) = é&HstFeiHet. We will make the additional
assumption that no correlations exist between systeath

interactions associated with different sites, that is, only terms

with n = n' contribute in eq 9. The rationale for this model
assumption lies in the local nature of the staited/e essentially

Segal et al.
0= —iwyoy — [Vl =
(o f; GlIF O () + )y O] ~
Ty Aol (2)F i (O)& " —
Gim./;mdrtg:ml(o)ﬁ|k(f)@ﬂw"'r} (15)

assume that the perturbations induced in the bath when the

electron resides in sitesandn’ (n = n') are associated with
different, uncorrelated, bath degrees of freedom.
Next we derive approximate equations of motion for the

Equation 15 is obviously different from the steady-state limit
of eq 14; however, eq 14 will yield the correct steady-state
solution in the common case where this steady state is

reduced density matrix of the molecular system and show how characterized by zero nondiagonal elementscofin the

the steady-state rate can be computed from these equations.

3. Reduced Equations of Motion

Starting with the Liouville equation for the density operator
p of the overall moleculebath system (working with units for
whichh = 1)

p = —i[H,p] (10)

with H given by eqs 37, we proceed as usual to derive the
corresponding equation of motion for the reduced molecular
density operatos = Trgp. Standard approximations, which rely
on the assumptions that and F are small relative to the

examples discussed in section 5 below, we typically find that,
at steady stateyij|oj|4/Yi0i? < 1072, implying that results
based on egs 14 and 15 are practically identical.

It has been noticeff, but not widely recognized, that eq 14
(and eq 15) does not yield the correct long-time limit, that is,
a Boltzmann population distribution, in a model of a closed
system (no damping terms added to egs 11, 14, and 15) that is
characterized by diagonal coupling to the thermal environment
(Fik = Fjoy) if the molecular coupling/ is non-zerd’3

This result is an artifact of the low-order approximation used
in Redfield-type theories and can be avoided if we stick to the
representation that diagonalizEl, in eq 4, that is, if we use
eq 14 or 15 for the casé = 0.54 For this reason, we will also

characteristic energy spacing of the molecular system and thatuse the molecular basis with egs 14 and 15, that is, we will use

p is approximated well by the produgio(t), lead® to the
Redfield-type equation

f;dt'z{ By (t — t)F(O) Vg (1) —
m
F W O)F; (t — 1) gy (1) —
[F(t — O)F; 0)e "o, (1) +
F o (O)F,(t — 1) oy (1)} (11)
where
|~:(t) — eiHstFe*iHBI (12)

and wherdTIdenotes an average over a thermal distribution of

these equations wittf = 0 and withw;; defined as the difference
between eigenvalues ¢fy. However, because our boundary
conditions and assumptions about the correlation properties of
Fi are given in the local basis (eigenfunctionsHa), we must
transform back and forth between these representations. In this
process, we use the transformation equations summarized in
Appendix A. Our procedure, therefore, proceeds along the
following steps:

(1) The model is defined in terms of the local basis, as
presented in section 2.

(2) The Hamiltonian is rewritten in the molecular basis
representation (see Appendix A), that is, we replace the
representation in eq Al by the form in eq A2 using eqgs A5 and
A7. All thermal operatorsF,, in this representation (see
Appendix A) will now be non-zero and mutually correlated.

(3) The reduced equations of motion are derived in this
molecular basis representation, leading to equations of the forms

the bath. We will later supplement this equation with phenom- i egs 14 and (for steady state) 15 with= 0. These equations
enological damping terms that are associated with the decay ofare of the general form of eq A4 (with = 0 in the steady-
the acceptor level, as discussed above. Equation 11 is furtherstate case).

simplified if the bath correlation functions are assumed to decay

quickly, so that' is close ta. The standard Redfield equatiéhs
are obtained by substituting
o (t) = oy (e (13)

in all terms in the integral of eq 11 and then setting the upper
integration limit to infinity. This substitution leads to

Oj = _iwjkajk - i[V,O’]jk +
Z{Glm(t) ‘/;mdf[[ﬁ:mlxo)li“(r)@—iwmkf +
[F o (0)F (0) ] — o) [ ey (1)F, (O) & —
Gim(t)j(;de[g:m|(o)l~:lk(T)@ﬂw"‘ﬂ} (14)

Alternatively, at steady stateo is time independent. Equation
11 then becomes

(4) The resulting equations of motion for the molecular
density matrix in the molecular basis representation are trans-
formed back to the local basis representation using eqgs A5, A6,
and A8, leading to equations of the form of eq A3 (with= 0
in steady state). It is important to note that the resulting equations
are different from those that would be obtained by applying
the Redfield procedure to the original Hamiltonian (eq Al),
because the procedures for transforming between the molecular
and local bases and for reducing the density matrix equations
of motion do not commute with each other.

(5) After step 4 has been executed, we obtain the equations
of motion for the molecular density matrix in the local
representation in the form (using the notation of Appendix A)

do,y

dt

= w0,y — i[V0],y + zzﬁznrfnlnzo'nln2 (16)

n n;

where the elements & are linear combinations of the integrals
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appearing in eq 14, and the corresponding steady-state equationdepending on the details of the source and sink processes.
~ Similarly, the “long-time rate” associated with a transient
—iw, oy — I[V,0ly + zanﬂnsznmz =J,, (A7) experiment described by the same model depends on the details
N of the initially prepared state and of the monitored signal. For
B definiteness, we will focus on the model of Figure 1a and will
where the elements &t are the same linear combinations, but consider the steady-state rate given by eq 19 or 20, which is
of the corresponding integrals appearing in eq 15, and where associated with a given population in the donor state and a given
the termsJyy define our boundary conditions. Note that the decay rate of the acceptor state. The corresponding transient

indicesn in eq 17 stand for the combinationd() that defines  experiment is associated with the initial conditiopo(t = 0)
the vibronic states in the model described in section 2. In the = 1 oi(t = 0) = 0 (i and/orj = D). We use a vectermatrix

present work, we study the steady state associated with thenotation for the rate equations
following boundary conditions:

dC _
Jop = —J E_AC (21)
Jap =1'a0
AR ATAA where the element€ [k = O, ..., (N + 1)?] correspond to
3 = ;F P - ;F o (18) elements;; of the molecular density matrix, and the elements
Ao ATAM A 9T ATRA of A are the corresponding energy differences and relaxation/

dephasing rates. In particular, we taRe= opp andC+12 =

oaa. Let the set of right and left eigenvectors Adfbe |vi[Jand

Vx| with the corresponding eigenvalugg all with negative
real parts, and lefivs(lbe the eigenvector corresponding to the
eigenvalueys with the smallest absolute real part. In the
discussion that follows, we assume that this eigenvalue is real.
Therefore,

Jyyw=0forn,n=A

whereld is the steady-state flux, and where we assume that the
population in the acceptor state A decays with a givenIraté

With this J, eq 17 constitutes a set dfl(+ 2) x (N + 2) (for
model A) or (N + 2) x (2N + 2) (for model B) linear algebraic
equation that yield albny in terms ofJ and the molecular and
thermal parameters. In particular, g, at steady state i3T,, ko =— (22)
and theopp resulting from this calculation is used to calculate T Vs

the steady-state rate according to . . .
y g Consider now the steady-state rate associated with the

k= Jlopp (19) boundary conditions defined above and given explicitly in eq
18. The corresponding elements ©fs can be obtained from
An alternative procedure that yields the same result is to

disregard the equation associated witl, impose a constant AC,t+J=0 (23)

opp and the damping terms associated with on the other

equations, and solve the resulting set of equationssfgrin where the vectod is given by

terms of the giveropp. In particular, we find the steady-state

value ofoas. The steady-state rate is then Ji=Jbyg (24)

k= LISV (20) Jis the steady-state flux through the system. We obtain

® Opp 1 1

4. Steady-State vs Transient Dynamics Cos=— JZ;'VJ ;= — ;'VSDNSUD (25)

i s

The steady-state ratgs defined by eq 20 corresponds to a
measurement of the current in the molecular junction where The last approximation is valid ifs is considerably smaller
the donor-bridge—acceptor model defined in section 2 connects than all other eigenvalues @f. The steady-state rate is
two electron reservoirs, that is, metal contacts. The reservoir
associated with the “donor” keeps the populatimsp of the _J _
latter constant, while the reservoir associated with the acceptor Kes= C_ss_ —ysDIvI IO (26)
provides the damping mechanism represented by theltate 0
A different, common experimental situation corresponds to the
initial value problem in which the donor state is preparetl at
= 0 (usually by an optical excitation). In this transient mode,
the long-time evolution of the signal (for example, donor

where|l Dis the transpose of (1, 0, ..., 0), that is, the ve@¢tr
= 0). Equations 22 and 26 imply th&ts = k1 provided that

fluorescence) is fitted to an exponential exj(tt) to yield the 1
rate k.r. Theoretically, this rate is assigned to the lowest C..~ VI~ O (27)
eigenvalue of the tetradic matrix that describes the time s s ;
evolution, including relaxation, of the reduced density matrix 0

of the system. It is interesting to compare the rates computed
in these different ways and, in particular, to ask if and under namely, provided that at steady staig) =~ 1 ando; < 1 for
what conditions they can be equal to each other. (ij) = (DD). Note that, in the transient experiment, this is also

It is important to realize that a given dynamic model, such the condition thak r is a meaningful rate of the process. For
as a set of coupled molecular levels subject to thermal relaxationthis to be true, a quasi-steady state must be reached while most
and dephasing interactions, can describe different steady-statef the population is still in the donor state. This condition is
processes depending on the boundary conditions, that is,often satisfied in a donetbridge—acceptor system provided
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that the energy separation between the donor and bridge is not
too small. Some examples are shown in the next section.

5. Numerical Results and Discussion

The numerical results presented below are intended to § N,
illustrate the general phenomenology associated with the = \
competition between the coherent tunneling and the incoherent #10° .
hopping mechanisms that, in principle, coexist in bridge- toTmmmmmmt
mediated electron transfer in condensed environments. We focus . ~
on the dependencies on the energy gap, the bridge length, the 10
temperature, and the strength of the thermal interaction. In 2 4 6 8 10
addition, we study some theoretical issues, including the effect N
of the finite bath correlation time and the similarity between Figure 2. Steady-state ratdes as a function of the bridge lengtt
the ratesk t andkss as defined in section 4. for model A (see text). Solid lineAE = 1500 cm* andz, = 0. Dotted
In the discussion that follows, all non-zero bath correlation “r(l)%o ?Eﬂ‘a nl(foo C?;:Qﬁezéiéo:tezol?ngg D;;gggn"rfl‘z rﬁjE =
Tc Tc
functions that appeazr in egs 14 and }5 are assigned the Gaussm?’l 600 cnT™. The temperature is 300 K in all cases.
form (rc\/_ ) e U? wheret, = y. 1 is the bath correlation
time and« measures the associated relaxation or dephasing rate. 10"
The detailed-balance property of the quantum correlation
functions is incorporated, so that

-~

IR RN R NN

e @zl w=0 10

S dte” F(O)F (D) 0= (28) 8

|w\/kBTKe—(1/21Cw)2; w <0

In reality, the parameter may have different magnitudes for ~
different correlation functions, and the dependence in eq 28 ‘v‘.._
can be better represented by a function other than a Gau8sian. . N oo
However, the present model contains the basic features affecting 10

the process, the magnitude and the spectrum of the relevant 2 4 6 8 10
correlation functions. N

; ; Figure 3. Same as Figure 2, now comparing results for models A and
Thlnfthe_{_ollowu;g Iprese_n:_atlonf, we lljse tlwo n;o_léeculag{ mlc:)_dels. B for the casers ! = 600 cn®. Solid line: model B,T = 400 K.
e familiar model consisting of one level per bridge site (Figure Dotted line: model AT = 400 K. Dashed line: model B, = 300 K.

1a), referred to as model A, is used because of the prominentpashed-dotted line (identical to same line in Figure 2): model 4,

role it has played in describing bridge-assisted electron transfer.300 K.

Thermal relaxation effects appear in this model as dephasing

of the bridge levels. When the system is close to resonance,= Vi1 o = Va1 = Vaaner =0 foralln,n =1, 2, ...,Nand
and/or when the bridge may be thermally populated, the vibronic o, o = 1, 2). This choice of coupling implies that the electron
level structure of the donor, acceptor, and bridge sites may havecan be transferred only along the upper bridge levels. It is an
an essential effect on the dynamics. As described in section 2,enhancement of the common situation, where vibronic coupling
we represent this situation (model B, Figure 1b) by two vibronic between different sites is maximized at some excess vibrational
levels per bridge site. Here, thermal relaxation in the bridge energy (for which the corresponding electronic potential surfaces
can cause both dephasing and population relaxation, but in thecross). Again, none of the qualitative conclusions reached below
results shown below, only population relaxation between bridge depends on these details.

levels (on the same site) was taken, using the same parameters Figure 2 shows the steady-state r&ig,as a function of the

x andt. as in the dephasing interactions in model A. Note that, bridge lengthN for model A. Shown are results f&kE = 3000

as already emphasized in section 3, the assignment of thermahnd 1500 cm? for the fast thermal bath limitr¢ = 0) and for
interaction terms as corresponding to dephasing or populationa finite bath response time,"* = 600 cnt™. All results are
relaxation depends on the representation used, and the aboveharacterized by the same qualitative behavior, showing a
statements refer to the local representation. We also emphasizéransition from exponential dependence on the bridge length
that none of the qualitative aspects of the observations describedkss~ (V/AE)2N], which characterizes the tunneling mechanism,

below depend on these particular details of the model. to almost no dependence on this length at some crossover value
Unless otherwise stated, the following set of parameters is of N (see discussion below). In addition, taking into account

used for model A:Eq (=Ep) = En+1 (=Ea), AE=E, — Ep = the finite time of the bath response strongly reduces the effect

3000 cmtt (n =1, 2, .., N), Vyne1 = 300 cn1t, Ta = 400 of thermal relaxation, inhibits the onset of the incoherent

cm1, 771 = 600 cnT?, x = 100 cn7l, and T = 300 K. For hopping mechanism, and reduces the rate for l&gas could

model B, each bridge levelis replaced by two levelsf), n be anticipated from eq 28.

=1,2,..N;a=1, 2. The same parameters as in model Aare  Figure 3 compares results of similar calculations done with

used for the donor, the acceptor, and tipper bridge levels, models A and B. Here, results are shown Ad¥ = 3000 cnr?!

while each lower bridge leveht) is placed 500 cmit below for two temperaturesT = 300 and 400 K. Note that the

the corresponding higher levei?), that is, 2500 cm! above dependence of the parametarsand z.~! on temperature is

the donor and acceptor levels. In addition, each lower bridge disregarded in making this comparison, although, in reality, both
level is coupled thermally to the level above it via the term are expected to increase within this range. We see that, at
Fran2|n10H2| + h.c. in the Hamiltonian. The molecular coupling  the same temperature, the rate associated with model B is about
involving these lower levels is assumed to vanish (tha¥isa an order of magnitude larger than the corresponding rate of



Electron Transfer Rates in Bridged Molecular Systems J. Phys. Chem. B, Vol. 104, No. 16, 2008823

8

10

3
T
2 —10°

x [
T2 8
[4) ~
]
~ [}

3 <0 N
4

1 .

‘.
Dl I
2 6 10 10°
KIAE 4 6 8 10

N
Figure 4. Steady-state ratdss as a function of the dephasing rate . . .
for model A, for bridge Ieng?hsN = 6 (solid line),N = 7 (dashed Figure 5. Steady-state ratée, as a function of bridge lengtN for
line), andN = 8 (dotted line)kssis plotted against the ratio between model B (solid line) and for the same model modified by adding a

the dephasi teand th E for AE = 3000 cnt! and damping termT’s = 2 cn* to the dynamics of the lower bridge level
rci :e%oaosg%:a and the energy gapE for em-an (dashed line). See text for details.

model A, even though, with our choice of coupling in the local
representation, the lower bridge levels in model B should not
carry flux. This finding may seem odd at first, as one might
have expected that, because electron transition via the lower
bridge levels is blocked by our choice of coupling scheme, these
levels could function as traps that slow the transfer rate.
However, such trapping does not occur at steady state because,
by definition, the rates for population and depopulation of these
levels are equal in this situation. The strength of the system
environment coupling (expressed by the parameteq 28) is
not an easily controlled parametéhowever, it has played an
important role in other contexts, such as discussions of barrier
e ooy oo o v o, Fure 6 Sty st ratk e agasl 1 3 e f

’ > . . o lengthN = 5. Solid line: model A. Dashed line: model B. Dotted
N above the crossover to hopping. In this regimélpé familiar line: model B modified by assigning damping teriiis= 2 cn* to
dependence is observedss increases withe for small « and the lower bridge levels.
decreases with in the “overdamped”, large limit.77” Note
that, in the “underdamped limit’s < AE, the rate is almost  weaker than that found in the coherent tunneling (superex-
independent oN. We return to this observation later. change) regime of eq 1. It has apparently been seen experi-

One could infer from the results shown above that thermal mentally in hole-transfer processes in DNA.

population of the bridge is always advantageous in promoting The temperature dependence of the steady-state rate is
long-range energy transfer. As a word of caution, we note that, depicted in Figure 6. Shown are Arrhenius pldtgys T2, for
although tunneling is associated with very short bridge traversal model A, model B, and model B modified by adding the loss
times (and consequently, with low relative yields of competitive termTg = 2 cnv! to the dynamics of the lower bridge levels,
processes), physical occupation of the bridge by the transmittingas described above. We see the characteristic transition from
electron can increase competition from other channels that mighttemperature-independent behavior at [dywwhere the process
reduce the yield of electron transmission. The most important is dominated by tunneling, to Arrhenius behavior at higfihe
effect may be a deflection of an incoming electron from the activation energies characterizing the Arrhenius behavior are
bridge region by the repulsive interaction with another electron found to be approximately 2600 crhfor model A and 2500
that already occupies the bridge. The present one-electron modetm~* for model B. The lowering of the activation energy relative
cannot describe this Coulomb blockade effect. Instead, we to the zero order gap\E, is associated with the presence of
consider in Figure 5 the effect of associating, in model B, a the electronic couplingv, which will make the actual gap
small loss term with the time evolution of the lower bridge levels smaller for some of the states that diagonalig (eq 4).

T(K") x10®

[specifically, we add-Tgom m, —2I'g0jn1, and #2I'gom; (| Finally, Figure 7 compares the steady-state and the transient-
= nl) to the equations of motion fobnn, Gjn1, and om;, long-time rateskssandkt, plotted as a function d¥, for model
respectively]. Such a loss term may result, for example, from A, model B, and the modified model B defined abokg; is

the presence of other carrier acceptors in the sy§tdfigure obtained by solving the dynamical eq 14 and fitting the long-

5 shows the resulting plot d&svs N for model B, comparing time part of the time evolution of the donor population to an
the cased’s = 0 to I's = 2 cnrl. Obviously, the effect of exponential function expfk tt). For the parameters chosen, the
adding this damping channel is to reduce the rate associatedwo rates are very similar; however, larger deviations are seen
with the hopping regime, and this reduction becomes more with the modified model B for largeN, as expected. Note that
pronounced for longer chains. In fact, if such a constant loss all of the results are practically identical in the tunneling regime,
term is associated with each bridge site, we expect an where the bridge is not physically occupied. It is also interesting
exponential falloff of the transmission rate with chain length to note that, for the modified model B¢ appears to be
(see Appendix B), as indeed seen in Figure 5 (dashed line).dominated by the upper bridge levels, wherkass very close
This loss is usually expected to be small, so the associatedto the rate associated with the unmodified B modg] € 0).
exponential decay with chain length is expected to be much To end this section, we comment on the obsenid
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TABLE 1: Bridge-length Dependence of the Transmission
Rate

Figure 7. kss and k.t plotted against the bridge lengti (a) Solid
line: model A. Bothkss and k.t fall on the same line within the
numerical resolution of this figure. Dotted line: model B. Agdig,
andkt fall on the same line. Dashed linézsin model B modified by
adding damping termEg = 2 cn* to the dynamics of the lower bridge
levels. This line lies almost on top of the lines that correspond to model
A. In contrast, the results fdqr in the modified B model (not shown)

lie on top of those obtained for the unmodified B model. (b). The
quantity kss — kur)/kss plotted againsN. The results for models A and

B (solid line) are indistinguishable on this plot. Dashed line represents
the results for the modified model B.
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Figure 8. (a) kes andkss* plotted as functions oN. Solid line (left
axis): kss Dotted line (right axis):kss *. (b) kss * vs N shown above
the crossover value dff on an expanded scale.

bridge-
length (N)
physical process dependence
super exchange e N B =2In(VIAE)
(small N, largeAE/V,
large AE/kgT)
steady-state hopping N7
(large N, smallAE/V,
small AE/ksT)
nondirectional hopping N2

(large N, smallAE/V,
small AE/ksT)
intermediate range
(intermediate N,
smallAE/V)
steady-state hopping
competing loss at
every bridge site

(Kup =+ Kaitt 7 IN) ™ kup ~ (VE/AE?)e AEksT
kdiff ~ (4\ﬂ/K)e_AEkBT
(Markovian case)
o= /Tg(Tg + )2V
(Markovian case)

e oN

existence of several relaxation rates. The qualitative behavior
is, however, the same: The very wedklependence seen above
some crossover bridge length in Figures 2 and 3 is a manifesta-
tion of the existence of a range &f for which the electron
transfer is dominated by the rate for thermally occupying the
bridge. Such a range exists provided tkgt < Kqirr, which, in

the Markovian case, implies thatE > « (cf. eqs 30 and 31).

In all cases, whemN — o, we find ks ~ N~1. This result
should be contrasted with the mean first passage time for
unbiased diffusion. In that case, the mean time for a diffusing
particle starting at one end of a 1-dimensional path to reach,
for the first time, the other end scales lik&.4968 The mean
first passage time is, therefore, not a good measure for the
steady-state rate and the associated conduction, but it may

dependence of the transfer rate. As discussed above, theepresent the intermediate-time behavior in transient experi-
sequential hopping process that dominates the electron-transfements.

process above the crossover valudafppears to be practically
independent ofN. This seems, at first sight, contradictory to

To summarize the results of the above discussion, Table 1
shows the different cases encountered in bridge-mediated

expectation, as this mode of transfer is usually associated withelectron transfer and the expectédependence associated with

“Ohmic behavior” k ~ N~1. We have recentf} explained this

behavior by noting that, above the crossover region, the steady-

state rate satisfies

kss_l = kup_1 + kdiff_lN

wherek,, is the rate of population of the bridge akg is the

(29)

each of them.

The experimentally observed dependence is exponential,
corresponding to the coherent tunneling mechanism described
by eq 1, in many systems with sufficiently shoxt and
sufficiently largeAE. As N increases, the overall rate constant
is expected to be a sum of coherent and incoherent contribu-
tions#” Incoherent tranfer dominates because the coherent

rate associated with diffusion through the bridge (see Figure contribution decays exponentially wit. The length depen-

8). In the Markovian limit, where all relaxation rates are equal

to k, we have suggested the following approximate expressions:

V2 AEkeT
kup ~ Eke 8 (30)
and
2
Kair ~ %G_AEkBT (31)

dence of the incoherent process can be quite complicated (Table
1), depending on the nature of the measurement and the effects
of other parameters in both the system Hamiltonian and the bath
environment. We emphasize again that, also in this limit, the
rate may depend exponentially dhif other channels compete

for the electron on the briddg.

One simple electron-transfer system for which the two
different limits have been observed is the phenylenevinylene-
bridged tetracene/imide system of ref 48. At very short lengths
this system behaves coherently, because the gap energy
substantially exceeds the thermal energy, and nuclear tunneling

These expressions yield, with the parameters chosen for models important; the decay with distance is then quite rapid, as

A, kp= 1.1x 10° st andkgir = 3.8 x 10° s™%. A numerical
fit of results obtained for a model that is identical to model A
but with 7. = 0 in eq 29 givesqp = 1.7 x 10° st andkgir =
5.4 x 1 s71, in reasonable agreement with the theoretical

suggested by eq 1. As the bridge becomes longer, the gap
becomes smaller (both because of site interactions and because
of etheric functionalization of the bridge), and when the gap
becomes small enougN(= 3), activated transfer can occur.

estimates. Note that the non-Markovian case considered aboveThe case with the longer bridge exhibits only very weak length
is more complicated because the occurrence of several energydependence. Although this experimental system does, indeed,

spacings in the diagonalized molecular Hamiltonian implies the

show the transition from coherent superexchange to incoherent
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hopping behavior, oversimplification can be dangerous: the L m

temperature dependence of the motion in these systems exhibits PE) =5 2n/ B (35)
gating-type behavior, as a result of internal rotations around F

the r-bonds in the bridge and the breakdown of the Condon \yherem is the electron mass, we obtain

approximation. The transition from coherent to incoherent

behavior that accompanies changes in length and temperature & m
is probably better illustrated in excitonic systems than in true g= %IMKSS /f (36)
F

electron-transfer structures.

6. Relation to Conduct A comparison of eq 36 to eq 32 yields a definition for an
- refation fo Lonductance effective transmission coefficient

In section 4, we focused on a steady-state formulation of the
electron-transfer rate problem, and we saw that, under certain T = m 37
conditions, the computekis provides a good estimate of the eft = ks 2E; (37)
rate associated with the long-time tail of the transfer process
following a sudden excitation. Alternatively, steady-state experi- Using, for exampleEr = 3 eV andly = 5 A leads to
ments can be carried out, usually yielding current vs imposed
electrostatic voltage data. In this section, we comment on the Ter ~ (2.5 x 10 %) x k(s H (38)
relationship between thies associated with a given molecular
bridge and the conductance of a junction based on the sameand
molecule. In the latter case, the “donor” and “acceptor” levels
(IDOand |ALin Figure 1) should be thought of as the Fermi gQ )~ 10 x k(s (39)
energies for the metal junctions on the two sides of the molecular
bridge. The well-known Landauer form@farovides a relation With a current detector sensitive to picoampekesnust exceed
between the transmission coefficiehtfor a free particle that 10° s71 before measurable current can be observed at a 1-V
enters the junction from the left, say, to emerge on the right voltage across such a junction.
and the junction conductancég

7. Coherent vs Incoherent Transfer

g= ﬁ T(E,) (32) How can we decide whether an observed electron-transfer
ah v F process proceeds by coherent tunneling or by sequential
hopping? In the experiment of ref 48, which uses poly(
where Eg is the Fermi energy of the metal junction at zero phenylenevinylene) chains of varying length as bridges between
voltage bias. This result was derived under the assumption thatorganic donors and acceptors, the fast decrease of the electron-
possible dephasing processes involve only quasi-elastic scattransfer rate with bridge length for=22 bridge units, followed
tering, that is, they involve no energy relaxation. We have by weak dependence on length for3 bridge units, can be
recently showft that this result can be generalized, under fairly interpreted as a transition from tunneling to hopping, as seen
general conditions, to situations involving activated transport, in Figures 2 and 3. However, this interpretation cannot be made
such as encountered in the present work. Focusing on a formunequivocally, because the energy g&p between the donor/
equivalent to eq 32 acceptor and the bridge in these compounds decreases with
increasing bridge length. For a given positive value\&, we
9= ek (E)p(Ep) (33) expect that temperature-independent coherent tunneling at very
low temperatures will become thermally activated hopping
transport at some higher temperature, as seen in Figure 6. This
behavior has been observed in certain bridge-mediated electron-
transfer processes, such as the chemically modified B-vinyl(A)

where p; is the density of states in the initial metal manifold
andk <{Ef) is the steady-state transfer rate associated with an

;mtlal meta_l statel_z;t _th(therml energy,fwe thavte ;otund thz_at t.h's reaction cente?? however, it has not yet been seen in molecular
orm remains vaiid in the presence ot activated ransmission ;o Note that, ifAE is very small or negative (that is, if the

;ﬂié@%gﬁ?ﬁﬁérﬁi};‘?& trg?issI?iﬁgmgsb?eer?tila(s?;aez“fhzzl?hisdonor level is close to or higher than the ground vibronic bridge
rate is different from a “sténdard" electron-trrjansfer it Ievgl), .the hopping route is also activationless, and thermal
. . ; . " activation will not be seen. Furthermore, when the donor level
Apart from dlffere_n_ces associated W'th deta|I§ of the electronic is substantially higher than the ground bridge energy, incoherent
structure of specific systems, there is one important general sequential hopping may result from the irregular nature of the

ashrgzgs -{:eelgt)tre”r]?sr trf?;etrg]r\\/;grersati g:ls%?gf:(? U;ﬁtzln S’?ttgl coupling between states belonging to vibronic manifolds on
w ! ! Wi It neighboring bridge sites, even without thermal depha&ing.

state localized on a donor molecule. The difference enters in An interesting way to distinguish between the coherent

Fh.e. relationship betwgen th? matrix elemer.lts connecting thesetunneling and sequential hopping modes of electron transfer has
initial states to '5126 nelghbo_rlng brlt_jge state: The." ratio should been suggested by Grozema et%bh their analysis of electron
scalel “k?j (N!/L)h ' vr\]/hereL IS _the_saeforl: tf(]je (1-d|menS|or_1aI)" transfer in donor DNA —acceptor systems. These authors have
tmheta. an '}" is t elc allractirlstl(c:: size of t etI onor state, typically pointed out that, for a bridge of adeninthymine (AT) base
€ siz€ of a molecular site. Lonsequently, pairs, the exchange of an AT base pair by a guangyosine
(GC) base pair, which corresponds to a lower energy of this
K = ksl—M (34) “impurity” bridge site, increases the electron-transfer Fate.
ss SL They argue that this observation agrees with a prediction based
on coherent tunneling and stands in contrast to expectations
Using also based on the sequential hopping model. We note that the validity
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Figure 9. Rates associated with model fsee text) in the classical ~ Figure 10. Steady-state ratéss plotted against the bridge lenghh
limit, as functions ofAE". Solid line: ke Dashed line:k.r. for the quantum models A (solid line) and fdashed line).

of the time-dependent self-consistent field approach used in thepecomes higher when one bridge level (and, therefore, the band
calculation of the coupled vibrationaklectronic motion in the of diagonalized molecular states) is lowered. We expect that,
model used in ref 70 is questionafleWe show below that,  for much longer bridges, for which the overall rate is determined
although our model reproduces some of the qualitative aspectspy the classical hopping dynamics, the trend will reflect the
of that study, the overall effect of substituting an impurity site gpservation made in the classical limit.
on the bridge is considerably more involved. We conclude that the effect of inserting an impurity site into
Consider first the completely classical model, where the the bridge can, indeed, distinguish between coherent tunneling
transfer proceeds by a hopping between levels according to  and incoherent transfer; however, this distinction depends on

dP the mode (such as transient or steady-state) of the experiment
_n_ and on details of the measurement. It should be noted that the
dt above analysis cannot be applied to the m¥dal which

—(K—1n T K1) Pr + Kine1Preq T K1 Pogs (40) incoherent hopping is associated with irregular vibronic coupling
between bridge sites in a system Wi > Eprigge In this model,
whereP; is the population at site and where the effect of lowering the electronic origin of one bridge site
on the overall transfer rate depends on details of the energy-

k, exp — By~ En E>E dependent density of states and the FrarCkndon factors that
Knm = kg T non (41) control coupling between bridge sites.
Ko otherwise We end this discussion by noting that there is, in principle,

one more way to distinguish between coherent and incoherent
Using this kinetic scheme, we compare the rates associated withmodes of electron transfer. If we could devise a system with
the energy levels defined by model A (section 5) and by a model two pathways (for example, two molecular bridges) connecting
(denoted A) that is derived from model A by lowering the the donor and the acceptor, coherent transfer should show
energy of the siten = 2 by AE'. An important observation is interference between these routes, whereas the single pathway
that, for this model, the steady-state ré¢g, does not depend  rates will combine additively in the incoherent case. To test

on AE' (see Appendix C). We obtain, for this case, this idea, a system constructed for this purpose should have the
ARk capability of switching off any one pathway in order to study
= Cpkee 77 42) the way in which the pathways combine.
=

—AEKgT
ke +(N+ 10, 8. Concluding Remarks

In contrast, the raté r, which is derived from the long-time Transfer of charge from an initial, localized donor state to a
tail of the donor survival probability, does depend AR'. In final, localized acceptor state through a structured linking bridge
particular, for the original model AXE' = 0), k.t is very close is a very common motif in synthetic and biological molecular
to kss however k.t decreases with increasimg=', as noted in structures. Extensive experimental and theoretical analysis has
ref 70. This is seen in Figure 9, which displaysandk .t as been devoted to this problem, often in the limit where the
functions of AE'. excitation gap between the donor states and the bridge states is

Next, consider the time evolution described by the quantum so large that only coherent tunneling processes (in which the
scheme used in sections-3. In the following calculations, we  bridge is never actually occupied) can contribute to the rate
take AE' = AE, so thatEp = Ea = E, whereas the values of  process.

E, — Ep, n=1, 3,4, ...N, remain constant at 3000 ch as Several recent studies, experimental and theoretical, have
before. Figure 10 shows the steady-state rate as a function ofconsidered the situation in which occupation of the bridge levels
bridge lengthN, as computed for models A and.ADbviously, can occur and, therefore, incoherent processes can be seen. Our

the rate in the superexchange regime of modes&onsiderably  current analysis considers various aspects of this rich and
larger than the corresponding rate in model A. Perhaps surpris-important problem. We observe several different regimes of
ingly, rates observed foX beyond the crossover region also distance dependence, ranging from fairly rapid exponential
show the same trend, specificalkg‘;) < kg:), unlike the result decrease in the coherent superexchange regime to an inverse
that could be inferred from ref 70. We recall that, for the length dependence in the incoherent diffusive limit (or very weak
intermediate range df shown here, the steady-state rate in the exponential decay in the case of a “leaky” bridge) to a nearly
hopping regime is dominated by the rate for populating the distance-independent behavior in the intermediate regime. The
bridge, not by that for hopping through the bridge, and this rate variations among these regimes depend intimately on the role
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of the environment in acting as a sink and source of energy InC= ZT WoOT =T1 (A5)
and as a dephasing medidfin addition to the distance v

dependence, different regimes of temperature dependence are

observed: tunneling transport occurs at low temperatures andThen

activated passage over barriers takes place at higher tempera-

tures. I_:w’ = Z ZTnv-r:kl’v’FnH (AG)
Thus, we expect different modes of behavior depending on non

the energetics, the temperature, the bridge length, the strength F = TT.E A7

of the systemrbath interactions, and the existence of competing n ZVZ L (A7)

channels. Furthermore, different results may be obtained for B . .

steady-state and transient situations. R, = ZzzZT“VTnlvlTnszTn'V’Rn”nlnz (A8)
Recent experiments on DNA, the photosynthetic reaction noA

center, proteins, and synthetic doataridge—acceptor systems _ x x -

indicate explicitly that these different regimes of charge transport Rnrfnln2 - z Z z ZTannlvlTnzvan'v'va'vlvz (A9)

v v vy v

have indeed been observed. The current analysis presents energy

criteria for the observation of the different regimes, as well as

the corresponding distance and temperature dependencies.
The analogy between conductance measurements in molecular

circuits and rate measurements in donbridge—acceptor Appendix B

compounds suggests that the Landauer formula can be extended ) ] ) ) )

not only to deal with coherent and elastic dephasing situations The problem of classical 1-dimensional hopping with a

but also to characterize activated transport in molecular circuitry. Constant loss term at each site is represented by the following

This conductivity/rate correspondence suggests that severalMaster equation (see also ref 68):

experimental means exist that can distinguish between coherent . .

and incoherent modes of charge transfer. These include substitu- Pn= (2K + Tp)Py + kg(Pry Py y): 0<n <N

tion of impurities on the bridge, examination of interference Py=—(ks+ T, +Tx)Py+ kP ;n=N (B1)

between two bridge pathways, and careful measurement of the

temperature dependence of the transmission rate or yield.  wherekg is the hopping rate between bridge sitBs(assumed

) ) to be much smaller thaks) is the loss rate at each site, afg
Acknowledgment. This research was supported in part by 5 the escape rate at the last sMe At steady state, the flux
the USA-Israel Binational Science Foundation (A.N.) and the pajance at site is ka(Py_1 — Pr) — Ks(Pn — Pni1) = TPy, OF
Chemistry Divisions of the DOE, the NSF, and the ONR and

are the prescriptions to transform between the two representa-

also by the DOD/MURI program (M.A.R.). D.S. and A.N. thank Kg(Pp_y + Poyy — 2P, = T'5P, (B2)
Philipp Maass, David Tannor, and Eitan Geva for helpful
discussions. Looking for a solution of the forn, = x", we find, to lowest

order inT'g/Kg,
Appendix A

In the discussion that follows, we denote fy} the local x=1+yTelkg (B3)

basis (eigenstates i) and by{v} the basis of molecular

eigenstates (eigenstates iy = Ho + V). The Hamiltonian An approximate form for the solution that satisfieg= 1 is

can be written generally as P = Aexpl m nl+ (1— A) exp[m i (B4)
H=Hg+ zEﬂlnl + z sz|n'| + ZZF”””‘" and A can be determined by the other boundary condition,
n e n (A1) which is the steady-state version of the second line of eq B1,
Pn = ka(ks + T'a + I's)"*Pn-1. The (intuitively obvious) result
or is A= 1, so theN dependence of the transmitted flukN) =
T'aAPn, is
H=H;+ ZEVWEHM + zz F, v  (A2) IN) ~ exp— /Tolkg N) (B5)

) ] ) ) Consider now the equivalent quantum mechanical problem:
The reduced equation of motion for the molecular density matrix A quantum particle moves on a 1-dimensional lattice, with all

is written in these two representations as follows: site energies equal and with nearest-neighbor couplirthe
. amplitude at siten satisfies
O = —i0p 00y — I[V,0] 0y + RonnC (A3) . _
) e " nznz Mol ¢, = —iV(C, ; + C,,y) — (1/2TsC,; n= O,N
and Cy=—iIVQy_; — (1/2){Ts + T2)Cy (B6)

B Solving for a steady state wity = 1 leads, for largeN, to
va' = _iwvv'gw’ + z z RW’Vlvzovlvz (A4)
J=T,|Cy> ~ & 2N (B7)

Let T be the unitary transformation from the molecular to the We note in passing that a comparison of eqs B7 and B5 leads
local basis. to an effective hopping rate for the quantum case



3828 J. Phys. Chem. B, Vol. 104, No. 16, 2000
ke = 4Vl (B8)

which is the same form as eq 31, althodghreplacesc as the

characteristic relaxation time. When both damping and dephas-

ing occur on the bridge, we expect

kg = 4VI([g + ) (B9)
and using this expression in eq B5 yields
J(N) ~ e—[\/ T'g(l's + «)/2V]N (BlO)

We have verified numerically that, for largé the same result
holds also whem\E = 0.

Appendix C

Consider the following classical kinetic scheme for electron
migration in a nearest-neighbor coupling model:

I.30 = —K;oPo t ko1Py
I.31 = —(koy T Ka)Py + Ky oPg + ki P,
P2 = — (ko + K3 Py + Ky Py + kogP3

Py= ~(kn—on Tt K Pt Kun-aPres T KuneaPrs

PN+1 = _kN,N+1PN+1 + kN+1,NPN - FAPN+1 (C1)

wherePy = oy is the polupation in levek. In our models A
and A,

Kio = Ky vty = koe_AFJkBT
Ki-1n = Kor1n = kg =" (n-impurity level)  (C2)

and all other rates equig. We consider a steady state imposed

by settingP, = 1 and disregarding the equation fBg in eq

C1. Summing all of the other steady-state equations yields
0= kyoPo = ko1P1 = TaPyys (C3)

whereas summing the last— n + 1 equationsr{=1, 2, ...,
N) leads to

0=Kqy1nPn = Kynt1Prs = TaPria (C4)
Summing all of theN + 1 equations generated by egs C3 and

C4, using the fact tha,—1n = Kn+1p foralln = 0, N + 1,
leads to

0=1kKioPy — kynt1Prnizs = (N+ Py, (C5)
whence

Pri1 = KioPo/[kynes + (N + 1)1, (C6)
and

Kss= TaPn+1/Po = 1OFA/[kN,N+1 +(N+ 1), (C7)

Segal et al.
Using eq C2 in eq C7 then yields eq 42.
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