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The effect of dephasing and relaxation on electron transfer in bridged molecular systems is investigated using
a simple molecular model. The interaction between the molecular system and the thermal environment is
described on the level of the Redfield theory, modified when needed for the description of steady-state situations.
Noting that transient as well as steady-state measurements are possible in such system, we discuss the
relationship between the rates obtained from these different types of experiments and, in particular, the
conditions under which these rates are the same. Also, a formal relation between thesteady-state ratefor
electron transfer across a molecular bridge and theconductanceof this bridge when placed between two
metal contacts is established. The effect of dephasing and relaxation on the electron transfer is investigated,
and new observations are made with regard to the transition from the superexchange to the thermal (hopping
through bridge) regime of the transfer process. In particular, the rate is temperature-independent in the
superexchange regime, and its dependence on the bridge length (N) is exponential, exp(-âN). The rate behaves
like (R1 + R2N)-1 exp(-∆E/kBT) beyond a crossover value ofN, where∆E is the energy gap between the
donor/acceptor and the bridge levels, and whereR1 and R2 are characteristic times for activation onto the
bridge and diffusion in the bridge, respectively. We find that, in typical cases,R1 . R2, and therefore, a
region of very weakN dependence is expected before the Ohmic behavior,N-1, is established for large
enoughN. In addition, a relatively weak exponential dependence, exp(-RN), is expected for long bridges if
competing processes capture electrons away from the bridge sites. Finally, we consider ways to distinguish
experimentally between the thermal and the tunneling routes.

1. Introduction

Coupling to solvent is a major factor in electron-transfer (ET)
reactions. Standard theory1,2 invokes solvent nuclear motion as
a necessary prerequisite for creating configurations in which
electron transfer can take place without violating energy
conservation. The coupling of the ET reactant and product to
otherelectronicstates often dominates the electronic coupling
between the donor and acceptor species. This is most clearly
exemplified by long-range electron transfer in bridged molecular
systems.3-6 For example, in going from a saturated organic
bridge to an unsaturated one, the rates of ET from a porphyrin
donor to a quinone acceptor can increase by several orders of
magnitude, even though the donor-acceptor distance, driving
force, and relative geometry do not vary much in the two
donor-bridge-acceptor (DBA) ET systems.7 Such results bring
out three key features that determine ET rates in DBA
systems: the bridge chemical structure, the DBA energy gap,
and the bridge length or the donor-acceptor distance. In
particular, it is often assumed that the dependence of the ET
rate (kET) on the donor-acceptor distance (RDA) is of the form

where A(T) is a temperature-dependent prefactor andâ is a
constant characterizing the bridge and DA pair. It is currently
accepted that the value ofâ is mostly sensitive to the structure
of the bridging media,8 with highly conjugated organic bridges
having the smallestâ values (0.2-0.6 Å-1)7,9-18 and with free
space being characterized by aâ value of ∼2.0 A-1.3 Lying
between these two regimes are many motifs, both synthetic and
natural, including cytochromes and docked proteins,19-24

DNA,25-32 and saturated organic molecules.33-37 Each displays
its own characteristic range ofâ values and, hence, its own time
scales and distance dependencies of ET.

The exponential dependence, eq 1, of the ET rate onRDA

has been derived using many different methodologies,38-41 the
earliest of which dates back to McConnell’s use of perturbation
theory to describe electron exchange rates in organic com-
plexes.42 This regime of ET is known as superexchange,43-46

and it is characterized by the absence of any population
physically residing on the bridge during the ET process. In terms
of the simple dynamical scheme for bridged charge separation
reactions, DBAf D+B-A f D+BA-, the intermediate state
D+B-A is a virtual state that is not physically populated. In
the opposite regime, the electron actually occupies the bridge,
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kET ) A(T) exp(-âRDA) (1)
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that is, the state D+B-A is physically occupied, and diffusion
or sequential hopping of the electron between bridge sites may
become rate-limiting. In this limit, the distance dependence of
the electron-transfer process is characterized by Ohm’s law,
specifically

whereN is the number of bridge sites between the donor and
the acceptor. We have recently pointed out47 that, in the
intermediate regime between the behaviors described by eqs 1
and 2, the rate may appear to be independent ofN in some
range. Plausible, but inconclusive, experimental evidence for
the existence of this regime has recently been obtained for a
series of molecules based on organic donors and acceptors
bridged by short chain oligomers of the conducting polymer
poly(p-phenylenevinylene).48

It is important to realize that, because the dynamics described
by eq 2 correspond to the electron physically residing on the
bridge, the corresponding rate should be thermally activated,
that is,kET ∼ N-1 exp[-(kBT)-1∆E], where∆E is the (positive)
D-B energy gap. In the opposite case when∆E e 0, that is,
when the donor level is higher in energy than the lowest bridge
level, the bridge can become populated without thermal activa-
tion. Phase loss leading to sequential migration may take place
in this case because of the irregular character of the coupling
between different vibronic levels in the D, B, and A entities.49

The transition between the superexchange (tunneling) and the
sequential hopping regimes has attracted some attention re-
cently.50,51 In particular, Felts, Pollard, and Friesner52 have
investigated this issue in the framework of the Redfield density
matrix theory,53 and Mukamel and collaborators have advanced
a more elaborate density matrix formalism using higher-order
correlation functions for the system-thermal bath coupling.54

Other potentially useful formulations of reduced equations of
motion for a quantum system in a thermal environment have
been developed recently,55-58 although they have not been
applied to problems of the type considered here. These
investigations focus on the time-dependent process represented
as an initial value problem: The electron is on the donor att )
0, and the subsequent time evolution is followed. We have
recently presented a simpler phenomenological analysis of the
steady-state problem.47 Our approach also starts from the
Liouville equation for the reduced density matrix of the DBA
system, but it focuses on the steady-state flux as the principal
observable. Physically, this situation corresponds to molecular
junctions between two metal contacts, where the steady-state
current is monitored as a function of applied voltage. Other
approaches to dephasing effects on electron transmission have
been used in the nano-junction physics literature.59,60

The purpose of the present paper is to extend the steady-
state density matrix approach to the DBA ET problem in several
directions. First, we replace the phenomenological density matrix
equations of ref 47, where the thermal relaxation rates were
introduced as phenomenological constants, by a form in which
the thermal rates are given by microscopic expressions involving
Fourier transforms of bath correlation functions. This modifica-
tion makes it possible to account correctly for the order of
magnitude of these rates and their dependence on the energy
gap and the temperature. Second, we take into account the
possibility of thermal relaxation on the bridge by assigning more
than one level to each bridge site. The resulting model for the
steady-state theory described here becomes equivalent to that
used in the time-dependent theories of refs 52 and 54, although

we use a simpler, two-level rather than harmonic-oscillator
model for the relaxation within the bridge sites. We then use
this model to investigate the effect of thermal relaxation on the
nature of the ET process. In addition, we address several other
issues: First, we investigate the correspondence between steady-
state and transient phenomena, in particular the relation between
the steady-state rate and the rate obtained from transient
measurements. Second, we study the transition from coherent
tunneling via the superexchange mechanism to incoherent
hopping for increasing thermal relaxation and increasing bridge
length. The nature of the intermediate regime in which the
computed flux appears to be bridge-length-independent is
elucidated, and the possible consequences of the existence of
such a regime are discussed. The steady-state formulation of
the ET problem is directly applicable to steady-state experi-
ments, such as current vs voltage (i.e. conductance) measure-
ments. We have recently shown61 that the Landauer formula62

that connects the conductance of a junction to its transmission
properties can be generalized to situations involving thermal
relaxation in the barrier. We use this generalization to estimate
the relationship between the electron-transfer rate associated with
a given bridge and its conductance. Finally, we discuss possible
experimental methods for determining the route (thermal or
nonthermal) by which the process of electron transmission takes
place.

In the next section, we describe the model used in the present
discussion of bridge-mediated electron transfer with thermal
relaxation. Following this, in section 3, we derive approximate
equations of motion for the reduced density matrix of the
molecular system and formally solve them for the steady-state
rate. The procedure used and the resulting equations are similar
to the Redfield theory; however, we repeat the derivation in
order to emphasize some subtle issues associated with the
application of this type of theory to steady-state nonresonant
processes. Section 4 discusses the relationship between the
steady-state rate and its counterpart obtained from the transient
process following a pulse preparation of the donor level.
Numerical results for some model systems and a discussion of
the dependence of the computed rate on our model parameters
are provided in section 5. Section 6 discusses the implication
of these results for the conductance of a junction constructed
with a given molecular bridge between two metal contacts. In
section 7, we discuss possible ways of distinguishing experi-
mentally between the thermal and the tunneling routes in bridge-
mediated ET processes. Some concluding remarks are made in
section 8.

2. The Molecular Model

In the present discussion, we limit ourselves to a minimal
model that can describe the physical process under discussion,
specifically, bridge-mediated electron transfer between given
donor and acceptor levels and the factors that affect it: electronic
coupling; thermal interactions that lead to dephasing within the
bridge and between bridge and the donor/acceptor levels;
thermal relaxation between occupied bridge levels; possible
losses to competing channels; and, when relevant, initial and
final electron reservoirs that correspond to metal contacts. We
bear in mind that the donor and acceptor “levels” are, in reality,
manifolds of vibronic levels associated with donor and acceptor
electronic states and that, similarly, each bridge site corresponds
to an intermediate electronic state with its own vibronic
manifolds. This important aspect of the problem is simplified
in our model (Figure 1). Panel a depicts the simplest superex-
change model that consists of a single donor level, a single

kET ∝ 1
N

(2)
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acceptor level, and a single intermediate level for each bridge
site; it will be referred to as model A. The continuous manifolds
on the two sides of this figure correspond to electronic states
of metal contacts if the model is to describe a metal-molecule-
metal junction. In ref 47, we analyzed the effect of additional
dephasing interactions on the charge-transfer dynamics associ-
ated with this model. We, as well as others,52,54 have found
that, in this case, a thermal channel for electron transport may
open, in which the electron physically occupies the bridge. When
this mechanism is important, we must account for thermal
transitions between bridge levels, as well as for thermal
dephasing on the bridge. In most cases, the strongest electronic
coupling between donor (acceptor) and bridge levels, as well
as electronic coupling between bridge levels, involves higher
vibrational levels of these sites. When the bridge is physically
occupied, thermal relaxation between these levels may affect
the electron transport processes. To account for this effect, we
consider the model of Figure 1b with two levels per bridge site,
which we will call model B. The levels marked by bold
horizontal lines are those that appear in Figure 1a. The levels
marked by thin horizontal lines are lower vibrational levels of
the bridge that are assumed to couple relatively weakly to the
donor/acceptor levels and also among themselves. Note that
models used by other workers52,54 also consider higher vibra-
tional levels both in the donor-acceptor sites and in the bridge
sites. Our minimal model is sufficient for a qualitative discussion
of the effect of thermal relaxation on bridge-mediated electron
transfer, and its simplicity makes it possible to elucidate the
nature of the effects observed. At the same time, the formulation
given below may be generalized to more sophisticated models
if desired.

In the discussion that follows, we use Latin indices to denote
donor, acceptor, and bridge sites and Greek indices to denote
vibrational levels within each site. The donor level is denoted
by D or n ) 0, the acceptor level is denoted by A orn ) N +
1, and the bridge sites are denotedn ) 1, 2, ..., N. The
Hamiltonian for the overall system is

whereHB is the Hamiltonian of the free thermal environment
(or bath).HM is the molecular Hamiltonian, which is further
separated according to

whereH0 contains the local Hamiltonian for the donor, acceptor,
and bridge molecular units

and whereV is the molecular coupling responsible for the ET
process in the isolated system. For this interaction, we assume
the usual nearest-neighbors coupling form

Finally, the molecule-bath couplingHMB takes the form

where the molecular matrix elements ofF are operators in the
bath coordinates.

The model just described, model B, has already been
simplified by taking a tight-binding form for the interaction and
by limiting the number of bridge levels to two per site. We
have also disregarded the vibronic structure of the donor (D)
and acceptor (A) electronic states. In realistic applications, the
result should be averaged over a distribution of donor states.
On the opposite side of the system, we will ensure irreversibility
by assigning a widthΓA to the acceptor level.ΓΑ signifies that
|A〉 actually represents a continuum of states: either the
vibrational quasi-continuum of the acceptor and the solvent in
a regular ET process or a continuum of quasi-free electron states
in case of a metal contact. Finally, the form of eq 7 implies
that the thermal bath does not couple different electronic states
and that it induces relaxation and dephasing only within the
local site. Given this assumption, we may exclude, without
further loss of generality, the donor and acceptor levels from
the sum in eq 7, as was done above.

Given the Hamiltonian in eqs 3-7, we will consider the time
evolution of the reduced density operator of the molecular
system,σ(t) ) TrBF(t), whereF(t) is the density operator of the
overall molecule-bath system and where TrB is a trace over
all bath states.

Assuming that

whereFB ) (TrBe-HB/kBT)-1e-HB/kBT is the density operator of
the thermal environment, standard theory (see section 3) leads
to equations of motion for the matrix elements ofσ with thermal
relaxation coefficients expressed as Fourier-Laplace transforms
of bath correlation functions. The latter are of the form

Figure 1. Schematic representation of the models A (upper panel)
and B (lower panel) that are discussed in the text. D and A represent
donor and acceptor levels (also marked 0 andN + 1). The other levels
correspond to the bridge. Double arrows represent electronic coupling
(the wavy double arrows in model B represent thermal relaxation). The
continua on the left and right correspond to the source that maintains
the population in the donor and the sink that removes population from
the acceptor. In a metal-molecular layer-metal junction, these continua
are quasi-free electron states in the metal. In this case, D and A may
denote the positions of the corresponding Fermi energies.

H ) HM + HB + F (3)

HM ) H0 + V (4)

H0 ) ED|D〉〈D| + EA|A〉〈A| + ∑
n)1

N

∑
R)1

2

EnR|nR〉〈nR| (5)

V ) ∑
R)1

2

[V0,1R|0〉〈1R| + V1R,0|1R〉〈0| + VNR,N+1|NR〉〈N +

1| + VN+1,NR|N + 1〉〈NR|] + ∑
n)1

N-1

∑
R)1

2

∑
R′)1

2

[VnR,(n+1)R′|nR〉〈(n +

1)R′| + V(n+1)R′,nR|(n + 1)R′〉〈nR|] (6)

F ) ∑
n)1

N

∑
R)1

2

∑
R′)1

2

(F)nR,nR′|nR〉〈nR′| (7)

〈F〉B ) Tr(FBF) ) 0 (8)
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where F̃(t) ) eiHBtFe-iHBt. We will make the additional
assumption that no correlations exist between system-bath
interactions associated with different sites, that is, only terms
with n ) n′ contribute in eq 9. The rationale for this model
assumption lies in the local nature of the statesn. We essentially
assume that the perturbations induced in the bath when the
electron resides in sitesn andn′ (n * n′) are associated with
different, uncorrelated, bath degrees of freedom.

Next we derive approximate equations of motion for the
reduced density matrix of the molecular system and show how
the steady-state rate can be computed from these equations.

3. Reduced Equations of Motion

Starting with the Liouville equation for the density operator
F of the overall molecule-bath system (working with units for
which p ) 1)

with H given by eqs 3-7, we proceed as usual to derive the
corresponding equation of motion for the reduced molecular
density operatorσ ) TrBF. Standard approximations, which rely
on the assumptions thatV and F are small relative to the
characteristic energy spacing of the molecular system and that
F is approximated well by the productFBσ(t), lead63 to the
Redfield-type equation

where

and where〈 〉 denotes an average over a thermal distribution of
the bath. We will later supplement this equation with phenom-
enological damping terms that are associated with the decay of
the acceptor level, as discussed above. Equation 11 is further
simplified if the bath correlation functions are assumed to decay
quickly, so thatt′ is close tot. The standard Redfield equations64

are obtained by substituting

in all terms in the integral of eq 11 and then setting the upper
integration limit to infinity. This substitution leads to

Alternatively,at steady state, σ is time independent. Equation
11 then becomes

Equation 15 is obviously different from the steady-state limit
of eq 14; however, eq 14 will yield the correct steady-state
solution in the common case where this steady state is
characterized by zero nondiagonal elements ofσ. In the
examples discussed in section 5 below, we typically find that,
at steady state,∑i*j|σij|2/∑iσii

2 e 10-2, implying that results
based on eqs 14 and 15 are practically identical.

It has been noticed,65 but not widely recognized, that eq 14
(and eq 15) does not yield the correct long-time limit, that is,
a Boltzmann population distribution, in a model of a closed
system (no damping terms added to eqs 11, 14, and 15) that is
characterized by diagonal coupling to the thermal environment
(Fjk ) Fjjδjk) if the molecular couplingV is non-zero.73

This result is an artifact of the low-order approximation used
in Redfield-type theories and can be avoided if we stick to the
representation that diagonalizesHM in eq 4, that is, if we use
eq 14 or 15 for the caseV ) 0.64 For this reason, we will also
use the molecular basis with eqs 14 and 15, that is, we will use
these equations withV ) 0 and withωij defined as the difference
between eigenvalues ofHM. However, because our boundary
conditions and assumptions about the correlation properties of
Fij are given in the local basis (eigenfunctions ofH0), we must
transform back and forth between these representations. In this
process, we use the transformation equations summarized in
Appendix A. Our procedure, therefore, proceeds along the
following steps:

(1) The model is defined in terms of the local basis, as
presented in section 2.

(2) The Hamiltonian is rewritten in the molecular basis
representation (see Appendix A), that is, we replace the
representation in eq A1 by the form in eq A2 using eqs A5 and
A7. All thermal operatorsFhVV′ in this representation (see
Appendix A) will now be non-zero and mutually correlated.

(3) The reduced equations of motion are derived in this
molecular basis representation, leading to equations of the forms
in eqs 14 and (for steady state) 15 withV ) 0. These equations
are of the general form of eq A4 (withσ̆ ) 0 in the steady-
state case).

(4) The resulting equations of motion for the molecular
density matrix in the molecular basis representation are trans-
formed back to the local basis representation using eqs A5, A6,
and A8, leading to equations of the form of eq A3 (withσ̆ ) 0
in steady state). It is important to note that the resulting equations
are different from those that would be obtained by applying
the Redfield procedure to the original Hamiltonian (eq A1),
because the procedures for transforming between the molecular
and local bases and for reducing the density matrix equations
of motion do not commute with each other.

(5) After step 4 has been executed, we obtain the equations
of motion for the molecular density matrix in the local
representation in the form (using the notation of Appendix A)

where the elements ofR̃are linear combinations of the integrals

CnR1,nR2,n′R3,n′R4
(t) ) 〈(F̃(t))nR1,nR2

(F̃(0))n′R3,n′R4
〉B (9)

F̆ ) -i[H,F] (10)

σ̆jk ) -iωjkσjk - i[V,σ] jk -

∫0

t
dt′∑

lm

{〈F̃jl(t - t′)F̃lm(0)〉e-iωlk(t-t′)σmk(t′) -

〈F̃mk(0)F̃jl(t - t′)〉e-iωlk(t-t′)σlm(t′) -

〈F̃mk(t - t′)F̃jl(0)〉e-iωjm(t-t′)σlm(t′) +

〈F̃ml(0)F̃lk(t - t′)〉e-iωjl(t-t′)σjm(t′)} (11)

F̃(t) ) eiHBtFe-iHBt (12)

σjk(t′) ) σjk(t)e
iωjk(t-t′) (13)

σ̆jk ) -iωjkσjk - i[V,σ] jk +

∑
lm

{σlm(t)∫0

∞
dτ[〈F̃mk(0)F̃jl(τ)〉e-iωmkτ +

〈F̃mk(τ)F̃jl(0)〉e-iωjlτ] - σmk(t)∫0

∞
dτ〈F̃jl(τ)F̃lm(0)〉e-iωlmτ -

σjm(t)∫0

∞
dτ〈F̃ml(0)F̃lk(τ)〉e-iωmlτ} (14)

0 ) -iωjkσjk - i[V,σ] jk )

∑
lm

{σlm∫0

∞
dτ[〈F̃mk(0)F̃jl(τ)〉e-iωlkτ + 〈F̃mk(τ)F̃jl(0)〉e-iωjmτ] -

σmk∫0

∞
dτ〈F̃jl(τ)F̃lm(0)〉e-iωlkτ -

σjm∫0

∞
dτ〈F̃ml(0)F̃lk(τ)〉e-iωjlτ} (15)

dσnn′

dt
) -iωnn′σnn′ - i[V,σ]nn′ + ∑

n1

∑
n2

R̃nn′n1n2
σn1n2

(16)
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appearing in eq 14, and the corresponding steady-state equations

where the elements ofR̃ are the same linear combinations, but
of the corresponding integrals appearing in eq 15, and where
the termsJnn′ define our boundary conditions. Note that the
indicesn in eq 17 stand for the combination (nR) that defines
the vibronic states in the model described in section 2. In the
present work, we study the steady state associated with the
following boundary conditions:

whereJ is the steady-state flux, and where we assume that the
population in the acceptor state A decays with a given rateΓA.74

With this J, eq 17 constitutes a set of (N + 2) × (N + 2) (for
model A) or (2N + 2) × (2N + 2) (for model B) linear algebraic
equation that yield allσnn′ in terms ofJ and the molecular and
thermal parameters. In particular, theσAA at steady state isJ/ΓA,
and theσDD resulting from this calculation is used to calculate
the steady-state rate according to

An alternative procedure that yields the same result is to
disregard the equation associated withσ̆DD, impose a constant
σDD and the damping terms associated withΓA on the other
equations, and solve the resulting set of equations forσnn′ in
terms of the givenσDD. In particular, we find the steady-state
value ofσAA. The steady-state rate is then

4. Steady-State vs Transient Dynamics

The steady-state ratekss defined by eq 20 corresponds to a
measurement of the current in the molecular junction where
the donor-bridge-acceptor model defined in section 2 connects
two electron reservoirs, that is, metal contacts. The reservoir
associated with the “donor” keeps the populationσDD of the
latter constant, while the reservoir associated with the acceptor
provides the damping mechanism represented by the rateΓA.
A different, common experimental situation corresponds to the
initial value problem in which the donor state is prepared att
) 0 (usually by an optical excitation). In this transient mode,
the long-time evolution of the signal (for example, donor
fluorescence) is fitted to an exponential exp(-kLTt) to yield the
rate kLT. Theoretically, this rate is assigned to the lowest
eigenvalue of the tetradic matrix that describes the time
evolution, including relaxation, of the reduced density matrix
of the system. It is interesting to compare the rates computed
in these different ways and, in particular, to ask if and under
what conditions they can be equal to each other.

It is important to realize that a given dynamic model, such
as a set of coupled molecular levels subject to thermal relaxation
and dephasing interactions, can describe different steady-state
processes depending on the boundary conditions, that is,

depending on the details of the source and sink processes.
Similarly, the “long-time rate” associated with a transient
experiment described by the same model depends on the details
of the initially prepared state and of the monitored signal. For
definiteness, we will focus on the model of Figure 1a and will
consider the steady-state rate given by eq 19 or 20, which is
associated with a given population in the donor state and a given
decay rate of the acceptor state. The corresponding transient
experiment is associated with the initial conditionσDD(t ) 0)
) 1, σij(t ) 0) ) 0 (i and/orj * D). We use a vector-matrix
notation for the rate equations

where the elementsCk [k ) 0, ..., (N + 1)2] correspond to
elementsσij of the molecular density matrix, and the elements
of A are the corresponding energy differences and relaxation/
dephasing rates. In particular, we takeC0 ) σDD andC(N+1)2 )
σAA. Let the set of right and left eigenvectors ofA be |vk〉 and
〈vk| with the corresponding eigenvaluesγk, all with negative
real parts, and let|vs〉 be the eigenvector corresponding to the
eigenvalueγs with the smallest absolute real part. In the
discussion that follows, we assume that this eigenvalue is real.
Therefore,

Consider now the steady-state rate associated with the
boundary conditions defined above and given explicitly in eq
18. The corresponding elements ofCss can be obtained from

where the vectorJ is given by

J is the steady-state flux through the system. We obtain

The last approximation is valid ifγs is considerably smaller
than all other eigenvalues ofA. The steady-state rate is

where|I 〉 is the transpose of (1, 0, ..., 0), that is, the vectorC(t
) 0). Equations 22 and 26 imply thatkss ) kLT provided that

namely, provided that at steady stateσDD = 1 andσij , 1 for
(ij ) * (DD). Note that, in the transient experiment, this is also
the condition thatkLT is a meaningful rate of the process. For
this to be true, a quasi-steady state must be reached while most
of the population is still in the donor state. This condition is
often satisfied in a donor-bridge-acceptor system provided

-iωnn′σnn′ - i[V,σ]nn′ + ∑
n1

∑
n2

R̃nn′n1n2
σn1n2

) Jnn′ (17)

JDD ) -J

JAA ) ΓAσAA

JAn ) 1
2
ΓAσAn; JnA ) 1

2
ΓAσnA (18)

Jnn′ ) 0 for n, n′ * A

kss) J/σDD (19)

kss)
ΓAσAA

σDD
(20)

dC
dt

) AC (21)

kLT ) -γs (22)

ACss+ J ) 0 (23)

Jk ) Jδk0 (24)

Css) - ∑
j

1

γj

|vj〉〈vj|J〉 = -
1

γs

|vs〉〈vs|J〉 (25)

kss) J

C0
ss

) -γs〈I |vs〉〈vs|I 〉 (26)

Css≈ |vs〉 ≈ (10l
0

) (27)
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that the energy separation between the donor and bridge is not
too small. Some examples are shown in the next section.

5. Numerical Results and Discussion

The numerical results presented below are intended to
illustrate the general phenomenology associated with the
competition between the coherent tunneling and the incoherent
hopping mechanisms that, in principle, coexist in bridge-
mediated electron transfer in condensed environments. We focus
on the dependencies on the energy gap, the bridge length, the
temperature, and the strength of the thermal interaction. In
addition, we study some theoretical issues, including the effect
of the finite bath correlation time and the similarity between
the rateskLT andkss, as defined in section 4.

In the discussion that follows, all non-zero bath correlation
functions that appear in eqs 14 and 15 are assigned the Gaussian
form (τcxπ)-1κe-(t/τc)2, whereτc ≡ γc

-1 is the bath correlation
time andκ measures the associated relaxation or dephasing rate.
The detailed-balance property of the quantum correlation
functions is incorporated, so that

In reality, the parameterκ may have different magnitudes for
different correlation functions, and theω dependence in eq 28
can be better represented by a function other than a Gaussian.75

However, the present model contains the basic features affecting
the process, the magnitude and the spectrum of the relevant
correlation functions.

In the following presentation, we use two molecular models.
The familiar model consisting of one level per bridge site (Figure
1a), referred to as model A, is used because of the prominent
role it has played in describing bridge-assisted electron transfer.
Thermal relaxation effects appear in this model as dephasing
of the bridge levels. When the system is close to resonance,
and/or when the bridge may be thermally populated, the vibronic
level structure of the donor, acceptor, and bridge sites may have
an essential effect on the dynamics. As described in section 2,
we represent this situation (model B, Figure 1b) by two vibronic
levels per bridge site. Here, thermal relaxation in the bridge
can cause both dephasing and population relaxation, but in the
results shown below, only population relaxation between bridge
levels (on the same site) was taken, using the same parameters
κ andτc as in the dephasing interactions in model A. Note that,
as already emphasized in section 3, the assignment of thermal
interaction terms as corresponding to dephasing or population
relaxation depends on the representation used, and the above
statements refer to the local representation. We also emphasize
that none of the qualitative aspects of the observations described
below depend on these particular details of the model.

Unless otherwise stated, the following set of parameters is
used for model A:E0 (tED) ) EN+1 ()EA), ∆E ≡ En - E0 )
3000 cm-1 (n ) 1, 2, ..., N), Vn,n(1 ) 300 cm-1, ΓA ) 400
cm-1, τc

-1 ) 600 cm-1, κ ) 100 cm-1, andT ) 300 K. For
model B, each bridge leveln is replaced by two levels (nR), n
) 1, 2, ...,N; R ) 1, 2. The same parameters as in model A are
used for the donor, the acceptor, and theupperbridge levels,
while each lower bridge level (n1) is placed 500 cm-1 below
the corresponding higher level (n2), that is, 2500 cm-1 above
the donor and acceptor levels. In addition, each lower bridge
level is coupled thermally to the level above it via the term
Fn1,n2|n1〉〈n2| + h.c. in the Hamiltonian. The molecular coupling
involving these lower levels is assumed to vanish (that is,V0,11

) Vn1,n′R′ ) VnR,n′1 ) VN1,N+1 ) 0 for all n, n′ ) 1, 2, ...,N and
R, R′ ) 1, 2). This choice of coupling implies that the electron
can be transferred only along the upper bridge levels. It is an
enhancement of the common situation, where vibronic coupling
between different sites is maximized at some excess vibrational
energy (for which the corresponding electronic potential surfaces
cross). Again, none of the qualitative conclusions reached below
depends on these details.

Figure 2 shows the steady-state rate,kss, as a function of the
bridge lengthN for model A. Shown are results for∆E ) 3000
and 1500 cm-1 for the fast thermal bath limit (τc ) 0) and for
a finite bath response time,τc

-1 ) 600 cm-1. All results are
characterized by the same qualitative behavior, showing a
transition from exponential dependence on the bridge length
[kss∼ (V/∆E)2N], which characterizes the tunneling mechanism,
to almost no dependence on this length at some crossover value
of N (see discussion below). In addition, taking into account
the finite time of the bath response strongly reduces the effect
of thermal relaxation, inhibits the onset of the incoherent
hopping mechanism, and reduces the rate for largeN, as could
be anticipated from eq 28.

Figure 3 compares results of similar calculations done with
models A and B. Here, results are shown for∆E ) 3000 cm-1

for two temperatures,T ) 300 and 400 K. Note that the
dependence of the parametersκ and τc

-1 on temperature is
disregarded in making this comparison, although, in reality, both
are expected to increase withT in this range. We see that, at
the same temperature, the rate associated with model B is about
an order of magnitude larger than the corresponding rate of

∫-∞

∞
dteiωt〈F(0)F(t)〉 ) {κe-(1/2τcω)2

; ω g 0

e-|ω|/kBT
κe-(1/2τcω)2

; ω < 0
(28)

Figure 2. Steady-state rate,kss, as a function of the bridge lengthN
for model A (see text). Solid line:∆E ) 1500 cm-1 andτc ) 0. Dotted
line: ∆E ) 1500 cm-1 and τc

-1 ) 600 cm-1. Dashed line:∆E )
3000 cm-1 andτc ) 0. Dashed-dotted line:∆E ) 3000 cm-1 andτc

-1

) 600 cm-1. The temperature is 300 K in all cases.

Figure 3. Same as Figure 2, now comparing results for models A and
B for the caseτc

-1 ) 600 cm-1. Solid line: model B,T ) 400 K.
Dotted line: model A,T ) 400 K. Dashed line: model B,T ) 300 K.
Dashed-dotted line (identical to same line in Figure 2): model A,T )
300 K.
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model A, even though, with our choice of coupling in the local
representation, the lower bridge levels in model B should not
carry flux. This finding may seem odd at first, as one might
have expected that, because electron transition via the lower
bridge levels is blocked by our choice of coupling scheme, these
levels could function as traps that slow the transfer rate.
However, such trapping does not occur at steady state because,
by definition, the rates for population and depopulation of these
levels are equal in this situation. The strength of the system-
environment coupling (expressed by the parameterκ, eq 28) is
not an easily controlled parameter;76 however, it has played an
important role in other contexts, such as discussions of barrier
crossing rates as functions of solvent viscosity.66 Figure 4 shows,
for model A, the dependence ofkssonκ for several chain lengths
N above the crossover to hopping. In this regime ofN, a familiar
dependence is observed:kss increases withκ for small κ and
decreases withκ in the “overdamped”, largeκ limit.†77 Note
that, in the “underdamped limit”,κ , ∆E, the rate is almost
independent ofN. We return to this observation later.

One could infer from the results shown above that thermal
population of the bridge is always advantageous in promoting
long-range energy transfer. As a word of caution, we note that,
although tunneling is associated with very short bridge traversal
times (and consequently, with low relative yields of competitive
processes), physical occupation of the bridge by the transmitting
electron can increase competition from other channels that might
reduce the yield of electron transmission. The most important
effect may be a deflection of an incoming electron from the
bridge region by the repulsive interaction with another electron
that already occupies the bridge. The present one-electron model
cannot describe this Coulomb blockade effect. Instead, we
consider in Figure 5 the effect of associating, in model B, a
small loss term with the time evolution of the lower bridge levels
[specifically, we add-ΓBσn1,n1, -1/2ΓBσj,n1, and -1/2ΓBσn1,j (j
* n1) to the equations of motion forσ̆n1,n1, σ̆j,n1, and σ̆n1,j,
respectively]. Such a loss term may result, for example, from
the presence of other carrier acceptors in the system.67 Figure
5 shows the resulting plot ofkss vs N for model B, comparing
the casesΓB ) 0 to ΓB ) 2 cm-1. Obviously, the effect of
adding this damping channel is to reduce the rate associated
with the hopping regime, and this reduction becomes more
pronounced for longer chains. In fact, if such a constant loss
term is associated with each bridge site, we expect an
exponential falloff of the transmission rate with chain length
(see Appendix B), as indeed seen in Figure 5 (dashed line).
This loss is usually expected to be small, so the associated
exponential decay with chain length is expected to be much

weaker than that found in the coherent tunneling (superex-
change) regime of eq 1. It has apparently been seen experi-
mentally in hole-transfer processes in DNA.67

The temperature dependence of the steady-state rate is
depicted in Figure 6. Shown are Arrhenius plots,kssvs T-1, for
model A, model B, and model B modified by adding the loss
term ΓB ) 2 cm-1 to the dynamics of the lower bridge levels,
as described above. We see the characteristic transition from
temperature-independent behavior at lowT, where the process
is dominated by tunneling, to Arrhenius behavior at highT. The
activation energies characterizing the Arrhenius behavior are
found to be approximately 2600 cm-1 for model A and 2500
cm-1 for model B. The lowering of the activation energy relative
to the zero order gap,∆E, is associated with the presence of
the electronic couplingV, which will make the actual gap
smaller for some of the states that diagonalizeHM (eq 4).

Finally, Figure 7 compares the steady-state and the transient-
long-time rates,kssandkLT, plotted as a function ofN, for model
A, model B, and the modified model B defined above.kLT is
obtained by solving the dynamical eq 14 and fitting the long-
time part of the time evolution of the donor population to an
exponential function exp(-kLTt). For the parameters chosen, the
two rates are very similar; however, larger deviations are seen
with the modified model B for largerN, as expected. Note that
all of the results are practically identical in the tunneling regime,
where the bridge is not physically occupied. It is also interesting
to note that, for the modified model B,kss appears to be
dominated by the upper bridge levels, whereaskLT is very close
to the rate associated with the unmodified B model (ΓB ) 0).

To end this section, we comment on the observedN

Figure 4. Steady-state rate,kss, as a function of the dephasing rateκ

for model A, for bridge lengthsN ) 6 (solid line), N ) 7 (dashed
line), andN ) 8 (dotted line).kss is plotted against the ratio between
the dephasing rateκ and the energy gap∆E for ∆E ) 3000 cm-1 and
τc

-1 ) 600 cm-1.

Figure 5. Steady-state rate,kss, as a function of bridge lengthN for
model B (solid line) and for the same model modified by adding a
damping termΓB ) 2 cm-1 to the dynamics of the lower bridge level
(dashed line). See text for details.

Figure 6. Steady-state rate,kss, plotted againstT-1 for a bridge of
length N ) 5. Solid line: model A. Dashed line: model B. Dotted
line: model B modified by assigning damping termsΓB ) 2 cm-1 to
the lower bridge levels.
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dependence of the transfer rate. As discussed above, the
sequential hopping process that dominates the electron-transfer
process above the crossover value ofN appears to be practically
independent ofN. This seems, at first sight, contradictory to
expectation, as this mode of transfer is usually associated with
“Ohmic behavior”,k ∼ N-1. We have recently61 explained this
behavior by noting that, above the crossover region, the steady-
state rate satisfies

wherekup is the rate of population of the bridge andkdiff is the
rate associated with diffusion through the bridge (see Figure
8). In the Markovian limit, where all relaxation rates are equal
to κ, we have suggested the following approximate expressions:

and

These expressions yield, with the parameters chosen for model
A, kup = 1.1 × 105 s-1 andkdiff ) 3.8 × 108 s-1. A numerical
fit of results obtained for a model that is identical to model A
but with τc ) 0 in eq 29 giveskup = 1.7 × 105 s-1 andkdiff )
5.4 × 108 s-1, in reasonable agreement with the theoretical
estimates. Note that the non-Markovian case considered above
is more complicated because the occurrence of several energy
spacings in the diagonalized molecular Hamiltonian implies the

existence of several relaxation rates. The qualitative behavior
is, however, the same: The very weakN dependence seen above
some crossover bridge length in Figures 2 and 3 is a manifesta-
tion of the existence of a range ofN for which the electron
transfer is dominated by the rate for thermally occupying the
bridge. Such a range exists provided thatkup < kdiff , which, in
the Markovian case, implies that∆E > κ (cf. eqs 30 and 31).

In all cases, whenN f ∞, we find kss ∼ N-1. This result
should be contrasted with the mean first passage time for
unbiased diffusion. In that case, the mean time for a diffusing
particle starting at one end of a 1-dimensional path to reach,
for the first time, the other end scales likeN2.49,68 The mean
first passage time is, therefore, not a good measure for the
steady-state rate and the associated conduction, but it may
represent the intermediate-time behavior in transient experi-
ments.

To summarize the results of the above discussion, Table 1
shows the different cases encountered in bridge-mediated
electron transfer and the expectedN dependence associated with
each of them.

The experimentally observedN dependence is exponential,
corresponding to the coherent tunneling mechanism described
by eq 1, in many systems with sufficiently shortN and
sufficiently large∆E. As N increases, the overall rate constant
is expected to be a sum of coherent and incoherent contribu-
tions.47 Incoherent tranfer dominates because the coherent
contribution decays exponentially withN. The length depen-
dence of the incoherent process can be quite complicated (Table
1), depending on the nature of the measurement and the effects
of other parameters in both the system Hamiltonian and the bath
environment. We emphasize again that, also in this limit, the
rate may depend exponentially onN if other channels compete
for the electron on the bridge.67

One simple electron-transfer system for which the two
different limits have been observed is the phenylenevinylene-
bridged tetracene/imide system of ref 48. At very short lengths
this system behaves coherently, because the gap energy
substantially exceeds the thermal energy, and nuclear tunneling
is important; the decay with distance is then quite rapid, as
suggested by eq 1. As the bridge becomes longer, the gap
becomes smaller (both because of site interactions and because
of etheric functionalization of the bridge), and when the gap
becomes small enough (N ) 3), activated transfer can occur.
The case with the longer bridge exhibits only very weak length
dependence. Although this experimental system does, indeed,
show the transition from coherent superexchange to incoherent

Figure 7. kss and kLT plotted against the bridge lengthN. (a) Solid
line: model A. Bothkss and kLT fall on the same line within the
numerical resolution of this figure. Dotted line: model B. Again,kss

andkLT fall on the same line. Dashed line:kss in model B modified by
adding damping termsΓB ) 2 cm-1 to the dynamics of the lower bridge
levels. This line lies almost on top of the lines that correspond to model
A. In contrast, the results forkLT in the modified B model (not shown)
lie on top of those obtained for the unmodified B model. (b). The
quantity (kss - kLT)/kss plotted againstN. The results for models A and
B (solid line) are indistinguishable on this plot. Dashed line represents
the results for the modified model B.

Figure 8. (a) kss andkss
-1 plotted as functions ofN. Solid line (left

axis): kss. Dotted line (right axis):kss
-1. (b) kss

-1 vs N shown above
the crossover value ofN on an expanded scale.

kss
-1 ) kup

-1 + kdiff
-1N (29)

kup ∼ V2

∆E2
κe-∆E/kBT (30)

kdiff ∼ 4V2

κ
e-∆E/kBT (31)

TABLE 1: Bridge-length Dependence of the Transmission
Rate

physical process

bridge-
length (N)

dependence

super exchange
(small N, large∆E/V,
large ∆E/kBT)

e-âN â ) 2 ln(V/∆E)

steady-state hopping
(large N, small∆E/V,
small∆E/kBT)

N-1

nondirectional hopping
(large N, small∆E/V,
small∆E/kBT)

N-2

intermediate range
(intermediate N,
small∆E/V)

(kup
-1 + kdiff

-1N)-1 kup ∼ (V2κ/∆E2)e-∆E/kBT

kdiff ∼ (4V2/κ)e-∆E/kBT

(Markovian case)
steady-state hopping+

competing loss at
every bridge site

e-RN R ) xΓB(ΓB + κ)/2V
(Markovian case)
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hopping behavior, oversimplification can be dangerous: the
temperature dependence of the motion in these systems exhibits
gating-type behavior, as a result of internal rotations around
the π-bonds in the bridge and the breakdown of the Condon
approximation. The transition from coherent to incoherent
behavior that accompanies changes in length and temperature
is probably better illustrated in excitonic systems than in true
electron-transfer structures.

6. Relation to Conductance

In section 4, we focused on a steady-state formulation of the
electron-transfer rate problem, and we saw that, under certain
conditions, the computedkss provides a good estimate of the
rate associated with the long-time tail of the transfer process
following a sudden excitation. Alternatively, steady-state experi-
ments can be carried out, usually yielding current vs imposed
electrostatic voltage data. In this section, we comment on the
relationship between thekss associated with a given molecular
bridge and the conductance of a junction based on the same
molecule. In the latter case, the “donor” and “acceptor” levels
(|D〉 and |A〉 in Figure 1) should be thought of as the Fermi
energies for the metal junctions on the two sides of the molecular
bridge. The well-known Landauer formula62 provides a relation
between the transmission coefficientT for a free particle that
enters the junction from the left, say, to emerge on the right
and the junction conductance†78 g

where EF is the Fermi energy of the metal junction at zero
voltage bias. This result was derived under the assumption that
possible dephasing processes involve only quasi-elastic scat-
tering, that is, they involve no energy relaxation. We have
recently shown61 that this result can be generalized, under fairly
general conditions, to situations involving activated transport,
such as encountered in the present work. Focusing on a form
equivalent to eq 32

whereFi is the density of states in the initial metal manifold
andk′ss(EF) is the steady-state transfer rate associated with an
initial metal state at the Fermi energy, we have found that this
form remains valid in the presence of activated transmission
via the bridge, except thatk′ss becomes the total (elastic and
inelastic) transmission rate. It should be emphasized that this
rate is different from a “standard” electron-transfer rate,kss.
Apart from differences associated with details of the electronic
structure of specific systems, there is one important general
aspect: The former rate involves a delocalized metal state,
whereas the latter is the transfer rate associated with an initial
state localized on a donor molecule. The difference enters in
the relationship between the matrix elements connecting these
initial states to the neighboring bridge state: Their ratio should
scale like (lM/L)1/2, whereL is the size of the (1-dimensional)
metal andlM is the characteristic size of the donor state, typically
the size of a molecular site. Consequently,

Using also

wherem is the electron mass, we obtain

A comparison of eq 36 to eq 32 yields a definition for an
effective transmission coefficient

Using, for example,EF ) 3 eV andlM ) 5 Å leads to

and

With a current detector sensitive to picoamperes,kssmust exceed
108 s-1 before measurable current can be observed at a 1-V
voltage across such a junction.

7. Coherent vs Incoherent Transfer

How can we decide whether an observed electron-transfer
process proceeds by coherent tunneling or by sequential
hopping? In the experiment of ref 48, which uses poly(p-
phenylenevinylene) chains of varying length as bridges between
organic donors and acceptors, the fast decrease of the electron-
transfer rate with bridge length for 1-2 bridge units, followed
by weak dependence on length for 3-5 bridge units, can be
interpreted as a transition from tunneling to hopping, as seen
in Figures 2 and 3. However, this interpretation cannot be made
unequivocally, because the energy gap∆E between the donor/
acceptor and the bridge in these compounds decreases with
increasing bridge length. For a given positive value of∆E, we
expect that temperature-independent coherent tunneling at very
low temperatures will become thermally activated hopping
transport at some higher temperature, as seen in Figure 6. This
behavior has been observed in certain bridge-mediated electron-
transfer processes, such as the chemically modified B-vinyl(A)
reaction center;69 however, it has not yet been seen in molecular
wires. Note that, if∆E is very small or negative (that is, if the
donor level is close to or higher than the ground vibronic bridge
level), the hopping route is also activationless, and thermal
activation will not be seen. Furthermore, when the donor level
is substantially higher than the ground bridge energy, incoherent
sequential hopping may result from the irregular nature of the
coupling between states belonging to vibronic manifolds on
neighboring bridge sites, even without thermal dephasing.49

An interesting way to distinguish between the coherent
tunneling and sequential hopping modes of electron transfer has
been suggested by Grozema et al.70 in their analysis of electron
transfer in donor-DNA-acceptor systems. These authors have
pointed out that, for a bridge of adenine-thymine (AT) base
pairs, the exchange of an AT base pair by a guanine-cytosine
(GC) base pair, which corresponds to a lower energy of this
“impurity” bridge site, increases the electron-transfer rate.67a

They argue that this observation agrees with a prediction based
on coherent tunneling and stands in contrast to expectations
based on the sequential hopping model. We note that the validity

g ) e2

πp
T(EF) (32)

g ) e2k′ss(EF)Fi(EF) (33)

k′ss) kss

lM
L

(34)

Fi(EF) ) L
2πpx2m

EF
(35)

g ) e2

πp
lMkssx m

2EF
(36)

Teff ) lMkssx m
2EF

(37)

Teff ∼ (2.5× 10-16) × kss (s-1) (38)

g (Ω-1) ∼ 10-20 × kss (s-1) (39)
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of the time-dependent self-consistent field approach used in the
calculation of the coupled vibrational-electronic motion in the
model used in ref 70 is questionable.71 We show below that,
although our model reproduces some of the qualitative aspects
of that study, the overall effect of substituting an impurity site
on the bridge is considerably more involved.

Consider first the completely classical model, where the
transfer proceeds by a hopping between levels according to

wherePn is the population at siten and where

Using this kinetic scheme, we compare the rates associated with
the energy levels defined by model A (section 5) and by a model
(denoted A′) that is derived from model A by lowering the
energy of the siten ) 2 by ∆E′. An important observation is
that, for this model, the steady-state rate,kss, does not depend
on ∆E′ (see Appendix C). We obtain, for this case,

In contrast, the ratekLT, which is derived from the long-time
tail of the donor survival probability, does depend on∆E′. In
particular, for the original model A (∆E′ ) 0), kLT is very close
to kss; however,kLT decreases with increasing∆E′, as noted in
ref 70. This is seen in Figure 9, which displayskss andkLT as
functions of∆E′.

Next, consider the time evolution described by the quantum
scheme used in sections 2-5. In the following calculations, we
take∆E′ ) ∆E, so thatED ) EA ) E2, whereas the values of
En - ED, n ) 1, 3, 4, ...,N, remain constant at 3000 cm-1, as
before. Figure 10 shows the steady-state rate as a function of
bridge lengthN, as computed for models A and A′. Obviously,
the rate in the superexchange regime of model A′ is considerably
larger than the corresponding rate in model A. Perhaps surpris-
ingly, rates observed forN beyond the crossover region also
show the same trend, specifically,kss

(A) < kss
(A′), unlike the result

that could be inferred from ref 70. We recall that, for the
intermediate range ofN shown here, the steady-state rate in the
hopping regime is dominated by the rate for populating the
bridge, not by that for hopping through the bridge, and this rate

becomes higher when one bridge level (and, therefore, the band
of diagonalized molecular states) is lowered. We expect that,
for much longer bridges, for which the overall rate is determined
by the classical hopping dynamics, the trend will reflect the
observation made in the classical limit.

We conclude that the effect of inserting an impurity site into
the bridge can, indeed, distinguish between coherent tunneling
and incoherent transfer; however, this distinction depends on
the mode (such as transient or steady-state) of the experiment
and on details of the measurement. It should be noted that the
above analysis cannot be applied to the model49 in which
incoherent hopping is associated with irregular vibronic coupling
between bridge sites in a system withED > Ebridge. In this model,
the effect of lowering the electronic origin of one bridge site
on the overall transfer rate depends on details of the energy-
dependent density of states and the Franck-Condon factors that
control coupling between bridge sites.

We end this discussion by noting that there is, in principle,
one more way to distinguish between coherent and incoherent
modes of electron transfer. If we could devise a system with
two pathways (for example, two molecular bridges) connecting
the donor and the acceptor, coherent transfer should show
interference between these routes, whereas the single pathway
rates will combine additively in the incoherent case. To test
this idea, a system constructed for this purpose should have the
capability of switching off any one pathway in order to study
the way in which the pathways combine.

8. Concluding Remarks

Transfer of charge from an initial, localized donor state to a
final, localized acceptor state through a structured linking bridge
is a very common motif in synthetic and biological molecular
structures. Extensive experimental and theoretical analysis has
been devoted to this problem, often in the limit where the
excitation gap between the donor states and the bridge states is
so large that only coherent tunneling processes (in which the
bridge is never actually occupied) can contribute to the rate
process.

Several recent studies, experimental and theoretical, have
considered the situation in which occupation of the bridge levels
can occur and, therefore, incoherent processes can be seen. Our
current analysis considers various aspects of this rich and
important problem. We observe several different regimes of
distance dependence, ranging from fairly rapid exponential
decrease in the coherent superexchange regime to an inverse
length dependence in the incoherent diffusive limit (or very weak
exponential decay in the case of a “leaky” bridge) to a nearly
distance-independent behavior in the intermediate regime. The
variations among these regimes depend intimately on the role

Figure 9. Rates associated with model A′ (see text) in the classical
limit, as functions of∆E′. Solid line: kss. Dashed line:kLT.

Figure 10. Steady-state rate,kss, plotted against the bridge lengthN
for the quantum models A (solid line) and A′ (dashed line).

dPn

dt
)

-(kn-1rn + kn+1rn)Pn + knrn-1Pn-1 + knrn+1Pn+1 (40)

knrm ) {k0 exp(-
En - Em

kBT ) En > Em

k0 otherwise
(41)

kss)
ΓAk0e

-∆E/kBT

k0e
-∆E/kBT + (N + 1)ΓA

(42)
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of the environment in acting as a sink and source of energy
and as a dephasing medium.72 In addition to the distance
dependence, different regimes of temperature dependence are
observed: tunneling transport occurs at low temperatures and
activated passage over barriers takes place at higher tempera-
tures.

Thus, we expect different modes of behavior depending on
the energetics, the temperature, the bridge length, the strength
of the system-bath interactions, and the existence of competing
channels. Furthermore, different results may be obtained for
steady-state and transient situations.

Recent experiments on DNA, the photosynthetic reaction
center, proteins, and synthetic donor-bridge-acceptor systems
indicate explicitly that these different regimes of charge transport
have indeed been observed. The current analysis presents energy
criteria for the observation of the different regimes, as well as
the corresponding distance and temperature dependencies.

The analogy between conductance measurements in molecular
circuits and rate measurements in donor-bridge-acceptor
compounds suggests that the Landauer formula can be extended
not only to deal with coherent and elastic dephasing situations
but also to characterize activated transport in molecular circuitry.
This conductivity/rate correspondence suggests that several
experimental means exist that can distinguish between coherent
and incoherent modes of charge transfer. These include substitu-
tion of impurities on the bridge, examination of interference
between two bridge pathways, and careful measurement of the
temperature dependence of the transmission rate or yield.
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Appendix A

In the discussion that follows, we denote by{n} the local
basis (eigenstates ofH0) and by {ν} the basis of molecular
eigenstates (eigenstates ofHM ) H0 + V). The Hamiltonian
can be written generally as

or

The reduced equation of motion for the molecular density matrix
is written in these two representations as follows:

and

Let T be the unitary transformation from the molecular to the
local basis.

Then

are the prescriptions to transform between the two representa-
tions.

Appendix B

The problem of classical 1-dimensional hopping with a
constant loss term at each site is represented by the following
master equation (see also ref 68):

wherekB is the hopping rate between bridge sites,ΓB (assumed
to be much smaller thankB) is the loss rate at each site, andΓA

is the escape rate at the last siteN. At steady state, the flux
balance at siten is kB(Pn-1 - Pn) - kB(Pn - Pn+1) ) ΓBPn, or

Looking for a solution of the formPn ) xn, we find, to lowest
order inΓB/kB,

An approximate form for the solution that satisfiesP0 ) 1 is

and A can be determined by the other boundary condition,
which is the steady-state version of the second line of eq B1,
PN ) kB(kB + ΓA + ΓB)-1PN-1. The (intuitively obvious) result
is A = 1, so theN dependence of the transmitted flux,J(N) )
ΓAPN, is

Consider now the equivalent quantum mechanical problem:
A quantum particle moves on a 1-dimensional lattice, with all
site energies equal and with nearest-neighbor couplingV. The
amplitude at siten satisfies

Solving for a steady state withC0 ) 1 leads, for largeN, to

We note in passing that a comparison of eqs B7 and B5 leads
to an effective hopping rate for the quantum case

H ) HB + ∑
n

En
0|n〉〈n| + ∑

n*n′
∑Vnn′|n〉〈n′| + ∑

nn′
∑Fnn′|n〉〈n′|

(A1)

H ) HB + ∑
ν

Eν|ν〉〈ν| + ∑
ν
∑
ν′

Fhνν′|ν〉〈ν′| (A2)

σ̆nn′ ) -iωnn′
0 σ̆nn′ - i[V,σ]nn′ + ∑

n1n2

∑ Rnn′n1n2
σn1n2

(A3)

σ̆νν′ ) -iωνν′σνν′ + ∑
ν1ν2

∑ Rhνν′ν1ν2
σν1ν2

(A4)

|n〉 ) ∑
ν

Tnν|ν〉; T+ ) T-1 (A5)

Fhνν′ ) ∑
n
∑
n′

TnνTn′ν′
/ Fnn′ (A6)

Fnn′ ) ∑
ν
∑
ν′

Tnν
* Tn′ν′Fhνν′ (A7)

Rhνν′ν1ν2
) ∑

n
∑
n′

∑
n1

∑
n2

TnνTn1ν1

* Tn2ν2
Tn′ν′

* Rnn′n1n2
(A8)

Rnn′n1n2
) ∑

ν
∑
ν′

∑
ν1

∑
ν2

Tnν
* Tn1ν1

Tn2ν2

* Tn′ν′Rhνν′ν1ν2
(A9)

Ṗn ) -(2kB + ΓB)Pn + kB(Pn+1 + Pn-1); 0 < n < N

ṖN ) -(kB + ΓA + ΓB)PN + kBPN-1; n ) N (B1)

kB(Pn-1 + Pn+1 - 2Pn) ) ΓBPn (B2)

x ) 1 ( xΓB/kB (B3)

Pn ) A exp[- xΓB/kB n] + (1 - A) exp[xΓB/kB n] (B4)

J(N) ∼ exp(- xΓB/kB N) (B5)

Ċn ) -iV(Cn-1 + Cn+1) - (1/2)ΓBCn; n * 0, N

ĊN ) -iVCN-1 - (1/2)(ΓB + ΓA)CN (B6)

J ) ΓA|CN|2 ∼ e-(ΓB/2V)N (B7)
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which is the same form as eq 31, althoughΓB replacesκ as the
characteristic relaxation time. When both damping and dephas-
ing occur on the bridge, we expect

and using this expression in eq B5 yields

We have verified numerically that, for largeN, the same result
holds also when∆E * 0.

Appendix C

Consider the following classical kinetic scheme for electron
migration in a nearest-neighbor coupling model:

wherePk ) σkk is the polupation in levelk. In our models A
and A′,

and all other rates equalk0. We consider a steady state imposed
by settingP0 ) 1 and disregarding the equation forṖ0 in eq
C1. Summing all of the other steady-state equations yields

whereas summing the lastN - n + 1 equations (n ) 1, 2, ...,
N) leads to

Summing all of theN + 1 equations generated by eqs C3 and
C4, using the fact thatkn-1,n ) kn+1,n for all n * 0, N + 1,
leads to

whence

and

Using eq C2 in eq C7 then yields eq 42.
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