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■ Abstract Electron transmission through molecules and molecular interfaces has
been a subject of intensive research due to recent interest in electron-transfer pheno-
mena underlying the operation of the scanning-tunneling microscope on one hand,
and in the transmission properties of molecular bridges between conducting leads on
the other. In these processes, the traditional molecular view of electron transfer be-
tween donor and acceptor species gives rise to a novel view of the molecule as a
current-carrying conductor, and observables such as electron-transfer rates and yields
are replaced by the conductivities, or more generally by current-voltage relationships,
in molecular junctions. Such investigations of electrical junctions, in which single
molecules or small molecular assemblies operate as conductors, constitute a major
part of the active field of molecular electronics. In this article I review the current
knowledge and understanding of this field, with particular emphasis on theoretical is-
sues. Different approaches to computing the conduction properties of molecules and
molecular assemblies are reviewed, and the relationships between them are discussed.
Following a detailed discussion of static-junctions models, a review of our current un-
derstanding of the role played by inelastic processes, dephasing and thermal-relaxation
effects is provided. The most important molecular environment for electron transfer
and transmission is water, and our current theoretical understanding of electron trans-
mission through water layers is reviewed. Finally, a brief discussion of overbarrier
transmission, exemplified by photoemission through adsorbed molecular layers or
low-energy electron transmission through such layers, is provided. Similarities and
differences between the different systems studied are discussed.

1. INTRODUCTION

Electron transfer, a fundamental chemical process underlying all redox reactions,
has been under experimental and theoretical study for many years (1, 2). Theo-
retical studies of such processes seek to understand the ways in which their rates
depend on donor and acceptor properties, on the solvent, and on the electronic
coupling between the states involved. The different roles played by these factors
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and the way they affect qualitative and quantitative aspects of the electron-transfer
process have been thoroughly discussed in the past half-century. These kinds of
processes, which dominate electron transitions in molecular systems, are to be
contrasted with electron transport in the solid state, i.e. in metals and semicon-
ductors. Electrochemical reactions, which involve both molecular and solid state
donor/acceptor systems, bridge the gap between these phenomena (2). Here elec-
tron transfer takes place between quasi-free electronic states on one side and bound
molecular electronic states on the other.

The focus of this discussion is another class of electron-transfer phenomena:
electron transmission between two regions of free or quasifree electrons through
molecules and molecular layers. Examples of such processes are photoemission
(PE) through molecular overlayers, the inverse process of low-energy electron
transmission (LEET) into metals through adsorbed molecular layers, and electron
transfer between metal and/or semiconductor contacts through molecular spacers.
Figure 1 depicts a schematic view of such systems. The “standard” electron-transfer
model in Figure 1a shows donor and acceptor sites, with their corresponding
polarization wells connected by a molecular bridge. In Figure 1b the donor and
the acceptor are replaced by a continuum of electronic states representing free space
or metal electrodes. (This replacement can occur on one side only, representing
electron transfer between a molecular site and an electrode.) In Figure 1c the
molecular bridge is replaced by a molecular layer. In addition, coupling to the
thermal environment may affect transmission through the bridge.

The first two of the examples given above, PE and LEET, involve electrons of
positive energy (relative to zero kinetic energy in vacuum) and as such are related
to normal scattering processes. The third example, transmission between two con-
ductors through a molecular layer, involves negative energy electrons and as such
is closely related to regular electron-transfer phenomena. The latter type of process
has drawn particular attention in recent years because of the growing interest in
conduction properties of individual molecules and of molecular assemblies. Such
processes have become subjects of intensive research because of recent interest
in electron-transfer phenomena underlying the operation of the scanning tunnel-
ing microscope (STM), and in the transmission properties of molecular bridges
between conducting leads. In the latter case, the traditional molecular view of
electron transfer between donor and acceptor species gives rise to a novel view of
the molecule as a current-carrying conductor, and observables such as electron-
transfer rates and yields are replaced by the conductivities, or more generally by
current-voltage relationships, in molecular junctions. Of primary importance is the
need to understand the interrelationship between the molecular structure of such
junctions and their function, i.e. their transmission and conduction properties. Such
investigations of electrical junctions, in which single molecules or small molecular
assemblies operate as conductors connecting “traditional” electrical components
such as metal or semiconductor contacts, constitute a major part of what has
become the active field of molecular electronics (3, 4). Their diversity, versatil-
ity, and amenability to control and manipulation make molecules and molecular
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Figure 1 Schematic views of typical electron transmission systems. (a) A standard electron-
transfer system containing a donor, an acceptor, and a molecular bridge connecting them (not
shown are nuclear motion baths that must be coupled to the donor and acceptor species). (b)
A molecular bridge connecting two electronic continua, L and R, representing e.g. two metal
electrodes. (c) Same as panelb with the bridge replaced by a molecular layer. The2 blocks
represent the thermal environment.
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assemblies potentially important components in nano-electronic devices. Indeed,
basic properties pertaining to single electron transistor behavior and to current rec-
tification have already been demonstrated. At the same time, major difficulties lie
in the way of discovering real technological applications. These difficulties stem
from problems associated with the need to construct, characterize, control, and
manipulate small molecular structures at confined interfaces with a high degree of
reliability and reproducibility, and from issues of stability of such small junctions.

It should be obvious that while the different processes outlined above correspond
to different experimental setups, fundamentally they are controlled by similar phys-
ical factors. Broadly speaking, we may distinguish between processes for which
lifetimes or rates (more generally the time evolution) are the main observables
and those that monitor fluxes or currents. In this review, we focus on the second
class, which may be further divided into processes that measure current-voltage
relationships, mostly near equilibrium, and those that monitor the nonequilibrium
electron flux, e.g. in photoemission experiments.

1.0.1 Notations A problem characteristic of an interdisciplinary field such as the
one we are covering is that notations that became standard in particular disciplines
overlap similarly standard notations of other disciplines. The T operator of scatter-
ing theory and the temperature constitute one example; theβ parameter of bridge-
mediated electron-transfer theory and the inverse (temperature× Boltzmann
constant) is another. I have therefore used nonstandard notations for some vari-
ables in order to avoid confusion. Table 1 lists of the main notations used in this
article.

2. THEORETICAL APPROACHES TO MOLECULAR
CONDUCTION

The focus of this chapter is electron transfer between two conducting electrodes
through a molecular medium. Such processes bear strong similarity to the more
conventional systems that involve at least one molecular species in the donor/
acceptor pair. Still, important conceptual issues arise from the fact that such systems
can be studied as part of complete electrical circuits, providing current-voltage
characteristics that can be analyzed in terms of molecular resistance, conductance,
and capacitance.

2.1 Standard Electron-Transfer Theory

To set the stage for our later discussion, we first briefly review the rate expressions
for standard electron-transfer processes (Figures 1a, 2a). We focus on the particular
limit of nonadiabatic electron transfer, where the electron-transfer rate is given
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TABLE 1 Notations used

Notation Variable

T Scattering operator
T Transmission coefficient
2 Temperature
β (kB2)−1

β ′ Range parameter in electron-transfer rate theory
G Conduction
σ Used in different contexts for conductivity and for the

reduced system’s density operator
I Current
J Flux
ρ Used in different contexts for charge density and for the

density operator of the total system
EF Fermi energy (EFL and EFR sometimes used for left and

right electrodes)
M Electron electrochemical potential (µL andµR sometimes

used for left and right electrodes)
F The thermally averaged and Franck-Condon (FC) weighted

density of nuclear states
F System-thermal bath interaction. In specific cases we also use Hel-ph
V Electronic coupling between zero order molecular states
H System’s Hamiltonian
HB Bridge Hamiltonian
H2 Hamiltonian of the thermal bath. In some specific cases we

also use Hph
Z Overlap Matrix:Zi, j = 〈i | j 〉
H EZ–H
H Combined system+thermal bath Hamiltonian
S S matrix
v Speed
8 Potential or potential difference
6 Self energy
0 Width (decay rate)

Acronyms
MMM Metal-Molecule-Metal (junction)
MIM Metal-Insulator-Metal (junction)
EH Extended Huckel
HF Hartree Fock
FC Franck-Condon
STM Scanning tunneling microscope
LEET Low energy electron transmission
PE Photoemission
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(under the Condon approximation) by the golden rule–based expression

ket = 2π

h̄
|VDA|2F , 1.

whereVDA is the coupling between the donor (D) and acceptor (A) electronic states
and where

F = F(EAD) =
∑
νD

∑
νA

Pth(εD(νD))|〈νD|νA〉|2δ(εA(νA) − εD(νD) + EAD), 2.

is the thermally averaged and Franck-Condon (FC) weighted density of nuclear
states. In Equation 2,νD andνA denote donor and acceptor nuclear states,Pth is the
Boltzmann distribution over donor states,εD(νD) andεA(νA) are nuclear energies
above the corresponding electronic origins, andEAD= EA − ED is the electronic
energy gap between the donor and acceptor states. In the classical limit,F is given
by

F(EAD) = e−(λ+EAD)2/4λkB2

√
4πλkB2

, 3.

wherekB is the Boltzmann constant,2 is the temperature, andλ is the reorgani-
zation energy, a measure of the electronic energy that would be dissipated after
a sudden jump from the electronic state describing an electron on the donor to
that associated with an electron on the acceptor. If the donor is replaced by an
electrode (2, 5, 6), we have to sum over all occupied electrode states:

|VDA|2F ⇒
∑

k

f (εk)F(εk − e8)|VkA|2

=
∫

dε f (ε)F(ε − e8)
∑

k

δ(ε − εk)|VkA|2, 4.

where

f (ε) = 1

1 + eε/kB2
5.

is the Fermi-Dirac distribution function, withε measured relative to the electron
chemical potentialµ in the electrode and8, which determines the position of the
acceptor level relative toµ, is the overpotential. Defining∑

k

δ(ε − εk)|VkA|2 ≡ |V(ε)|2, 6.

the electron-transfer rate takes the form

ket = 2π

h̄

∫
dε

e−(λ−e8+ε)2/4λkB2

√
4πλkB2

|V(ε)|2 f (ε). 7.

Note that the reorganization energy that appears in Equation 7 is associated with
the change in the redox state of the molecular species only. The nominal change in
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the “oxidation state” of the macroscopic electrode does not affect the polarization
state of the surrounding solvent because the transferred electron or hole does not
stay localized.

Much of the early work on electron transfer has used expressions like those
found in Equations 3 and 7, with the electronic coupling termVDA used as a
fitting parameter. More recent work has focused on ways to characterize the de-
pendence of this term on the electronic structure of the donor/acceptor pair and
on the environment. In particular, studies of bridge-mediated electron transfer,
where the donor and acceptor species are rigidly separated by molecular bridges
of well-defined structure and geometry, have been very valuable in characterizing
the interrelationship between structure and functionality of the separating environ-
ment in electron-transfer processes. As expected for a tunneling process, the rate
is found to decrease exponentially with the donor-acceptor distance

ket = k0e−β ′ RDA, 8.

whereβ ′ is the range parameter that characterizes the distance dependence of the
electron-transfer rate. The smallest values forβ ′ are found in highly conjugated
organic bridges for whichβ ′ is in the range 0.2–0.6̊A−1 (7, 8). In contrast, for
free space, taking a characteristic ionization barrierUB = 5eV, we find β ′ =√

8mUB/h̄2 ≈ 2.4 Å
−1

(m is the electron mass). Lying between these two regimes
are many motifs, both synthetic and natural, including cytochromes and docked
proteins (9, 10), DNA (11–13), and saturated organic molecules (14, 15). Each
displays its own characteristic range ofβ ′ values, and hence its own timescales
and distance dependencies of electron transfer. A direct measurement ofβ ′ along
a single molecular chain was recently demonstrated (16). In addition to the bridge-
assisted transfer between donor and acceptor species, electron transfer has been
studied in systems where the spacer is a well-characterized Langmuir-Blodgett film
(17). The STM provides a natural apparatus for such studies (16, 18–22). Other
approaches include break junctions (23) and mercury drop contacts (24, 25).

Simple theoretical modeling ofVDA usually relies on a single electron (or hole)
picture in which the donor-bridge-acceptor (DBA) system is represented by a
set of levels:|D〉, |A〉, {|1〉, . . . |N〉}, as depicted in Figure 2. In the absence of the
coupling of these bridge states to the thermal environment, and when the energies
En (n = 1, . . . , N) are high relative to the energy of the transmitted electron
(the donor/acceptor orbital energies in Figures 1a and 2a or the incident elec-
tron energy in Figures 1b–c and 2b), this is the superexchange model for electron
transfer (26). Of particular interest are situations where the states|1〉, . . . |N〉 are
localized in space, so that the state indexn corresponds to a position in space
between the donor and acceptor sites (Figure 2a) or between the two electron
reservoirs (Figure 2b). These figures depict generic tight-binding models of this
type, where the statesn = 1, . . . , N are the bridge states, here taken degenerate
in zero order. Their localized nature makes it possible to assume only nearest-
neighbor coupling between them, i.e.Vn,n′ = Vn,n±1δn′,n±1. We recall that the
appearance ofVDA in Equation 1 is a low-order perturbation theory result. A more
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Figure 2 Simple level structure models for molecular electron transfer (a) and for electron
transmission (b). The molecular bridge is represented by a simple set of levels that represents local
orbitals of appropriately chosen bridge sites. This set of levels is coupled to the donor and acceptor
species (with their corresponding nuclear environments) in panela, and to electronic continua({`}
for left, {r} for right) representing metal leads in panelb. In the latter case, the physical meaning
of states 0 and N+ 1 depends on the particular physical problem: They can denote donor and
acceptor states coupled to the continua of environmental states (hence the notation 0= D, N + 1
= A), surface localized states in a metal-molecule-metal junction, or belong to the right and left
scattering continua.

general expression is obtained by replacingVDA by TDA, where the T operator is
defined byT(E) = V +VG(E)V , with G(E) = (E− H + (1/2)i 0)−1 and where
0 stands for the inverse lifetime matrix of bridge levels. Assuming for simplicity
that the donor level|D〉 is coupled only to bridge state|1〉 and that the acceptor
level |A〉 is coupled only to bridge level N, the effective coupling between donor
and acceptor is given by

TDA(E) = VDA + VD1G1N(E)VNA. 9.

This naturally represents the transition amplitude as a sum of a direct contribu-
tion, VDA, which is usually disregarded for long bridges, and a bridge-mediated
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contribution. In usingTDA instead ofVDA in Equation 1 the energy parameterE in
Equation 9 should be taken equal toED = EA at the point where the corresponding
potential surfaces cross (or go through an avoided crossing). For the level structure
of Figure 2a that corresponds to the DBA system in Figure 1a, making the tight
binding approximation and in the weak coupling limit, max|V | ¿ min(EB − E),1

the Green’s function element in Equation 9 is given by

G1N(E) = 1

E − EN

N−1∏
n=1

Vn,n+1

E − En
. 10.

For a model with identical bridge segments,En andVn,n+1 are independent ofn
and are denotedEn = EB andVn,n+1 = VB. Using this in Equation 1 leads to

ket = 2π

h̄

∣∣∣∣V1DVNA

VB

∣∣∣∣2 (
VB

1EB

)2N

F , 11.

where1EB = EB − E. Similarly, for a bridge-assisted transfer between a molecule
and an electrode, Equation 7 applies, with|V(ε)|2 given by

|V(ε)|2 =
(

VB

1EB

)2N ∑
k

δ(ε − εk)

∣∣∣∣V1kVNA

VB

∣∣∣∣2

. 12.

These results imply a simple form for the distance parameterβ ′ of Equation 8

β ′ = 2

a
ln

(
1EB

VB

)
, 13.

whereameasures the segment size, so that the bridge length isNa. The exponential
dependence on the bridge length is a manifestation of the tunneling character of
this process. For typical values, e.g.1EB/VB = 10 anda = 5 Å, Equation 13 gives
β ′ = 0.92Å−1. More rigorous estimates of the electronic coupling term in electron-
transfer processes involve electronic-structure calculation for the full DBA system.
Such calculations, in the context of molecular conduction, are discussed later.

2.2 Transmission Between Conducting Leads

Equations 1, 7, and 11 are expressions for the rate of electron transfer between
donor and acceptor molecules or between a molecule and a metal electrode. As
already mentioned, for electron transfer in metal-molecule-metal (MMM) junc-
tions, the primary observable is the current-voltage characteristics of the system.
Putting it another way, while the primary observable in standard charge-transfer
processes involving molecular donors and/or acceptors is a transient quantity,2 in

1For a generalization of Equation 10 that does not assume weak coupling see Onipko &
Klymenko (27).
2In addition to rates, other observables are the yields of different products of the electron-
transfer reaction.
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metal-molecule-metal junctions we focus on the steady-state current through the
junction for a given voltage difference between the two metal ends.

Consider first a simple model for a metal-insulator-metal (MIM) system, where
the insulator is represented by a continuum characterized by a dielectric constantε

(28). For specificity assume that the electrode surfaces are infinite parallel planes
perpendicular to thexdirection. In this case, the transmission problem is essentially
one dimensional and depends only on the incident particle velocity in thex direc-
tion, vx = √

2Ex/m. In the WKB approximation, the transmission probability is
given by

T (Ex) = exp

[
− 4π

h̄

s2∫
s1

[2m(UB(x) − Ex)]
1/2dx

]
, 14.

whereUB(x) is the barrier potential that determines the turning pointss1 ands2

and m is the mass of the tunneling particle. The tunneling flux is given by
T (Ex)n(Ex)

√
2Ex/m, wheren(Ex) is the density per unit volume of electrons

of energyEx in thex direction.n(Ex) is obtained by integrating the Fermi-Dirac
function with respect toEy andEz. When a potential8 is applied so that the right
electrode is positively biased, the net current density is obtained in the form (28)

J =
∞∫

0

dExT (Ex)ξ(Ex), 15.

where

ξ(Ex) = 2m2e

(2πh̄)3

∞∫
−∞

dvy

∞∫
−∞

dvz[ f (E) − f (E + e8)]

= 4πme

(2πh̄)3

∞∫
0

dEr [ f (E) − f (E + e8)], 16.

and whereEr = E − Ex = (1/2)m(v2
y + v2

z) is the energy in the direction
perpendicular tox. In obtaining this result, it is assumed that the electrodes are
chemically identical. At zero temperature and when8 → 0, f (E)− f (E + e8) =
e8δ(E − EF ). Equations 15 and 16 then lead to an expression for the conduction
per unit area, i.e. the conductivity per unit length

σx = 4πme2

(2πh̄)3

EF∫
0

dExT (Ex). 17.

For finite8, these expressions provide a framework for predicting the current-
voltage characteristics of the junction; explicit approximate expressions were given
by Simmons (28). Here we only emphasize (28) that the dependence on8 arises
partly from the structure of Equations 15 and 16, for example, at zero temperature,

J = 4πme

(2πh̄)3

[
e8

EF −e8∫
0

dExT (Ex) +
EF∫

EF −e8

dEx(EF − Ex)T (Ex)

]
, 18.
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but mainly from the voltage dependence ofT . The simplest model for a metal-
vacuum-metal barrier between identical electrodes without an external field is a
rectangular barrier of height above the Fermi energy given by the metal workfunc-
tion. When a uniform electric field is imposed between the two metals, a linear
potential drop fromEF on one electrode toEF −e8 on the other is often assumed.
In addition, the image potential experienced by the electron between the two metals
will lower the potential barrier (28). This has been invoked to explain the lower-
than-expected barrier observed in STM experiments (29). It should be kept in mind
that quantum mechanical and atomic size effects, as well as the dynamic nature
of the image response, should be taken into account in estimating this correction.

The planar geometry implied by the assumption that transmission depends
only on the energy of the motion parallel to the tunneling direction, as well as the
explicit form of Equation 14, are not valid for a typical STM configuration that
involves a tip on one side and a structured surface on the other. To account for
these structures, Tersoff & Hamman (30) have applied Bardeen’s formalism (31),
which is a perturbative approach to tunneling in arbitrary geometries. Bardeen’s
formula for the tunneling current is3

I = 4πe

h̄

∑
l ,r

[ f (El )(1 − f (Er + e8))

− (1 − f (El )) f (Er + e8)]|Mlr |2δ(El − Er )

= 2πe

h̄

∑
l ,r

[ f (El ) − f (Er + e8)]|Mlr |2δ(El − Er ), 19.

where

Mlr = h̄2

2m

∫
dES · (ψ∗

l ∇ψr − ψl ∇ψ∗
r ) 20.

is the transition-matrix element for the tunneling process. In these equations,
ψ` andψr are electronic eigenstates of the negatively biased (left), and positively
biased (right), electrodes, respectively,8 is the bias potential, and the integral is
over any surface separating the two electrodes and lying entirely in the barrier
region. The wavefunctions appearing in Equation 20 are eigenfunctions of Hamil-
tonians that describe each electrode in the absence of the other, i.e interfaced with
an infinite spacer medium. These functions therefore decay exponentially in the
space between the two electrodes in a way that reflects the geometry and chem-
ical nature of the electrodes and the spacer. For8 → 0, Equation 19 yields the

3This is just the golden rule rate expression (multiplied by the electron chargee), with M
playing the role of coupling. In (30) only the first term in the square brackets of the first
line appears. This gives the partial current from the negative to the positive electrode. The
net current is obtained by subtracting the reverse current, as shown in Equation 19. Also,
compared with (30), Equation 19 contains an additional factor of two that accounts for the
spin multiplicity of the electronic states.
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conduction

g ≡ I

8
= 4πe2

h̄

∑
l,r

|Mlr |2δ(El − EF)δ(Er − EF). 21.

Tersoff & Hamman (30) have used substrate wavefunctions that correspond to
a corrugated surface of a generic metal while the tip is represented by a spherical
s orbital centered about the centerr0 of the tip curvature. In this case they find

I ∝
∑

ν

|ψν(r0)|2δ(Eν − EF ). 22.

The right hand side of Equation 22 is the local density of states of the metal.
While this result is useful for analysis of spatial variation of the tunneling current
on a given metal surface, the contributions from the coupling matrix elements
in Equation 21 cannot be disregarded when comparing different metals and/or
different adsorbates (6).

2.2.1 The Landauer Formula The results of Equations 14–17 and 19–21 are
special cases of a more systematic representation of the conduction and the current-
voltage characteristic of a given junction, as shown by Landauer (32). Landauer’s
original result was obtained for a system of two one-dimensional leads connecting
two macroscopic electrodes (electron reservoirs) via a scattering object or a barrier
characterized by a transmission functionT (E). The zero temperature conductance,
measured as the limit8 → 0 of the ratio I/8 between the current and the voltage
drop between the reservoirs, was found to be4

g = e2

πh̄
T (EF ). 23.

This result is obtained by computing the total unidirectional current carried in
an ideal lead by electrons in the energy range [(0, E) = (0, h̄2k2

E/2m)]. In a one-
dimensional system of lengthL the density of electrons, including spin, with wave-
vectors in the range betweenk andk + dk, is n(k)dk = 2(1/L)(L/2π) f (Ek)

dk = f (Ek)dk/π . The corresponding velocity isv = h̄k/m. Thus

I (E) = e

kE∫
0

dkv(k)n(k) = e

kE∫
0

dk(h̄k/m) f (Ek)/π = e

πh̄

E∫
0

dE′ f (E′). 24.

At zero temperature, the net current carried under bias8 is

I = e

πh̄

∞∫
0

dE( f (E) − f (E + e8))
2→0−−−→ e2

πh̄
8. 25.

4The corresponding resistance,g−l, can be represented as a sum of the intrinsic resistance of
the scatterer itself, [(e2/πh̄)(T /(1 − T ))]−1, and a contribution(e2/πh̄)−1 from two
contact resistances between the leads and the reservoirs. [See Chapter 5 of (33) for a
discussion of this point.]
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Thus the conductance of an ideal one-dimensional lead isI /8 = e2/πh̄ =
(12.9KÄ)−1. In the presence of the scatterer this is replaced by

I = e

πh̄

∞∫
0

dET (E) ( f (E) − f (E + e8))
2→0,8→0−−−−−−−−→ e2

πh̄
T (EF )8, 26.

which leads to Equation 23. This result is valid for one-dimensional leads. In cases
where the leads have finite size in the direction normal to the propagation so that
they support traversal modes, a generalization of Equation 23 yields (33)5

g = e2

πh̄

∑
i, j

Ti j (EF ) = e2

πh̄
Tr (SS†)EF , 27.

whereTi j = |Si j |2 is the probability that a carrier coming from the left, say, of
the scatterer in transversal modei will be transmitted to the right into transversal
modej (Si j , an element of the S matrix, is the corresponding amplitude). The sum
in Equation 27 is over all traversal modes whose energy is smaller thanEF . More
generally, the current for a voltage difference8 between the electrodes is given by

I =
∞∫

0

dE[ f (E) − f (E + e8)]
g(E)

e
, 28.

g(E) = e2

πh̄

∑
i, j

Ti j (E). 29.

As an example, consider the case of a simple planar-tunnel junction (see Equa-
tions 14–17), where the scattering process does not couple different transversal
modes. In this case, the transmission function depends only on the energy in the
tunneling direction∑

i,j

Ti j (E) =
∑

i

Tii (E) = L yLz

(2π)2

∫
dky

∫
dkzT

[
E − (h̄2/2m)

(
k2

y + k2
z

)]

= L yLz

(2π)2

2πm

h̄2

E∫
0

dErT (E − Er ). 30.

Er is defined below Equation 16. Using this in Equation 27 yields the conductivity
per unit length

g

L yLz
≡ σ = 4πme2

h3

EF∫
0

dExT (Ex), 31.

in agreement with Equation 17.

5The analog of Equation 27 for the microcanonical chemical-reaction rate was first written
by Miller (34). Similarly, Equation 32 was first written in a similar context by Miller et al
(35).
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Similarly, Equations 19 and 21 are easily seen to be equivalent to Equation 23
or 29 if we identify Mlr with Tlr in Equation 35 below. An important difference
between the results of Equations 27–29 and results based on the Bardeen’s for-
malism, Equations 19–21, is that the former are valid for any set of transmission
probabilities, even close to 1, whereas the latter yields a weak coupling result.
Another important conceptual difference is the fact that the sums over` andr in
Equations 19–21 are over zero-order states defined in the initial and final subspaces,
whereas the sums in Equations 27–29 are over scattering states, i.e. eigenstates of
the exact system’s Hamiltonian. It is the essence of Bardeen’s contribution (31)
that in the weak coupling limit (i.e. high/wide barrier) it is possible to write the
transmission coefficientTi j in terms of a golden rule expression for the transition
probability between the zero-order standing-wave states|l 〉 and|r 〉 localized on the
left and right electrodes, thus establishing the link between the two representations.
[For an alternative formulation of this link, see Galperin et al (36).]

To explore this connection on a more formal basis, we can replace the expres-
sion based on transmission coefficientsT by an equivalent expression based on
scattering amplitudes, or T matrix elements, between zero-order states localized
on the electrodes. This can be derived directly from Equations 27 or 29 by using
the identity ∑

i, j

Ti j (E) = 4π2
∑
l ,r

|Tlr |2δ(E − El )δ(E − Er ). 32.

On the left side of Equation 32 a pair of indices (i, j) denote an exact scattering state
of energyE, characterized by an incoming statei on the left, say, electrode and an
outgoing statej on the right electrode. On the right,l andr denote zero-order states
confined to the left and right electrodes, respectively.T is the corresponding transi-
tion operator whose particular form depends on the details of this confinement.
Alternatively, we can start from the golden rule–like expression

I = e
4π

h̄

∑
l ,r

[ f (El )(1 − f (Er + e8))

− f (Er + e8)(1 − f (El ))]|Tlr |2δ(El − Er )

= 4πe

h̄

∑
l ,r

[ f (El ) − f (Er + e8)]|Tlr |2δ(El − Er ). 33.

(An additional factor of 2 on the right-hand side accounts for the spin degeneracy.)
It is convenient to recast this result in the form

I = 4πe

h̄

∞∫
0

dE[ f (E) − f (E + e8)]
∑
l ,r

|Tlr |2δ(E − El )δ(E − Er )

=
∞∫

0

dE[ f (E) − f (E + e8)]
g(E)

e
, 34.
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where

g(E) ≡ 4πe2

h̄

∑
l ,r

|Tlr |2δ(E − El )δ(E − Er ). 35.

Note that Equations 32 and 35 imply again Equation 29. For8 → 0, Equations
34 and 35 lead toI = g8, with

g = g(EF ). 36.

The analogy of this derivation to the result in Equation 21 is evident.

2.3 Molecular Conduction

Equations 34–36 provide a convenient starting point for most treatments of currents
through molecular junctions where the coupling between the two metal electrodes
is weak. In this case it is convenient to write the system’s Hamiltonian as the sum,
H = H0 + V , of a part,H0, that represents the uncoupled electrodes and spacer
and the couplingV between them. In the weak coupling limit the T operator

T(E) = V + VG(E)V; G(E) = (E − H + i ε)−1 37.

is usually replaced by its second term only. The first “direct” termV can be dis-
regarded if we assume thatV couples the states̀ and r only via states of the
molecular spacer. In the simple model (analog of the model that leads to Equation
10) where this spacer is an N-site bridge connecting the two electrodes so that site
1 of the bridge is attached to the left electrodes and site N to the right electrode,
we haveTlr = Vl1G1N VNr . At zero temperature this leads to (37)∑

i, j

Ti j (E) = |G1N(EF )|20(L)
1 (EF )0

(R)
N (EF ) 38.

and, using Equations 34 and 35,

I (8) = e

πh̄

EF∫
EF −e8

dE|G1N(E, 8)|20(L)
1 (E)0

(R)
N (E + e8). 39.

HereG1N is an element of the reduced Green’s function in the bridge’s subspace,
obtained by projecting out the metals’ degrees of freedom

G = (E − HB − 6B(E))−1, 40.

whereHB = H0
B + VB is the Hamiltonian of the isolated-bridge entity given in the

basis of eigenstates ofH0
B by

H0
B =

N∑
n=1

En|n〉〈n|; VB =
N∑

n=1

N∑
n′=1

Vn,n′ |n〉〈n′|, 41.
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and where

6nn′(E) = δn,n′(δn,1 + δn,N)[3n(E) − (1/2)i 0n(E)], 42.

0n(E) = 2π
∑

l

|Vln|2δ(E1 − E) + 2π
∑

r

|Vrn|2δ(EN − E)

≡ 0(L)
n (E) + 0(R)

n (E), 43.

3n(E) = PP

2π

∫ ∞

−∞
dE′ 0n(E′)

(E − E′)
. 44.

The transmission problem is thus reduced to evaluating a Green’s function matrix
element and two width parameters. The first calculation is a simple inversion of a
finite (order N) matrix. The width0 and the associated shift3 represent the finite
lifetime of an electron on a molecule adsorbed on the metal surface and can be
estimated, for example (37), using the Newns-Anderson model of chemisorption
(38). In the simple, tight-binding model of the bridge and in the weak coupling
limit, G1N is given by Equation 10 modified by the inclusions of the self-energy
terms

G1N(E) = V1,2

(E − E1 − 61(E))(E − EN − 6N(E))

N−1∏
j =2

Vj, j +1

E − Ej
. 45.

Equations 38–45 thus provide a complete simple model for molecular conduction,
equivalent to similar approximations used in theories of molecular electron transfer
(e.g. 39 and references therein). Below we discuss more general forms of this
formulation.

2.4 Relation to Electron-Transfer Rates

It is interesting to examine the relationship between the conduction of a molecular
species and the electron-transfer properties of the same species (40). We should
keep in mind that because of tunneling there is always an Ohmic regime near zero
bias, with conduction given by the Landauer formula. Obviously this conduction
may be extremely low, indicating in practice an insulating behavior. Of particular
interest is the estimating of the electron-transfer rate in a given donor-bridge-
acceptor (DBA) system that will translate into a measurable conduction of the
same system when used as a molecular conductor between two metal leads. To
this end consider a DBA system, with a bridge that consists of N identical segments
(denoted 1, 2, . . . , N), with nearest neighbor couplingVB. The electron-transfer
rate is given by Equation 11, which we rewrite in the form

kD→A = 2π

h̄
|VD1VNA|2|G1N(ED)|2F , 46.
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where, in the weak coupling limit,|VB| ¿ |EB − E| (see Equation 10)

G1N(E) = |VB|N−1

(EB − E)N
, 47.

and whereF is the Franck-Condon-weighted density of nuclear states, given in the
classical limit by Equation 3. The appearance ofF in Equation 46 indicates that
the process is dominated by the change in the nuclear configuration between the
two localization states of the electron. Consider now the conduction of a junction
where the same DBA complex is used to connect between two metal contacts such
that the donor and acceptor species are chemisorbed on the two metals (“left”
and “right,” respectively). Note that the conduction process does not involve loca-
lized states of the electron on the donor or the acceptor, so the factorF will be
absent. Using the model of Section 2.4, we get

g(E) = e2

πh̄
|GDA(E)|20(L)

D (E)0
(R)
A (E), 48.

where, in analogy to Equation 45,

GDA(E) = VD1VNA

(E − ED − 6D(E))(E − EA − 6A(E))
G1N(E). 49.

Since the donor and acceptor species are chemisorbed on their corresponding metal
contacts, their energies shift closer to the Fermi energies, and we therefore assume
that the denominator in Equation 49 is dominated by the imaginary parts of the
self-energies6. Assuming also that the electronic structure of the bridge is not
strongly distorted by the proximity to the metals leads to (40)

g = g(EF ) = 16e2

πh̄

|VD1VNA|2
0

(L)
D (EF )0

(R)
A (EF )

|G1N(EF )|2; EF = ED = EA. 50.

Comparing Equations 6 to Equation 50, we get

g = e2

πh̄

kD→A

F
8h̄

π0
(L)
D 0

(R)
A

. 51.

In the symmetric case,ED = EA, we haveF = (
√

4πλkBT)−1 exp(−λ/4kBT).
For a typical value of the reorganization energyλ ∼ 0.5 eV, and at room tempera-
ture, this is∼0.02 (eV)−1. Taking also0(L)

D = 0
(R)
A ∼ 0.5 eV leads tog ∼ (e2/πh̄)

(10−13kD→A(s−1)) ∼= [10−17kD→A(s−1)]Ä−1. This sets a criterion for observing
Ohmic behavior for small voltage bias in molecular junctions: With a current de-
tector sensitive to pico-amperes,kD→A has to exceed∼106 s−1 (for the estimates of
F and0 given above) before measurable current can be observed at 0.1-V voltage
across such a junction.
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2.5 Quantum Chemical Calculations

The simple models discussed above are useful for qualitative understanding of
molecular conductivity; however, the Landauer formula or equivalent formulations
can be used as a basis for more rigorous molecular calculations using extended
Huckel (EH) (20, 21, 41–45) or Hartree Fock (HF) (46–48) calculations. These
approaches follow similar semiempirical and ab initio calculations of electron-
transfer rates in molecular systems (49). Such atomic-level calculations usually
start from a (nonorthogonal) basis set of atomic orbitals, so the formalism described
above has to be generalized for this situation.6We also relax the assumption that the
molecule-metal contact is represented by coupling to a single molecular orbital.
Finally, to account for possible strong coupling between the molecular species and
the metals, the bridge is usually defined to include small portions of the metals on
its two sides. We refer to such a bridge as a supermolecule. Defining the operator

H(E) = EZ− H with Zi j = 〈i | j 〉, 52.

the Green’s function isG(E) = H(E)−1. In Equation 52,i and j denote atomic
orbitals that may be assigned to the supermolecule (M ), the left metal (L), and the
right metal (R) subspaces. Denoting formally the coupling between the subspaceM
and the subspacesK = L , R by the corresponding submatricesHMK, the Green’s
function for the supermolecule subspace is

G(M)(E) = (H− 6(L) − 6(R))−1, 53.

with7

6(K ) = HMK(H−1)KKHKM. 54.

Using also

Tlr =
∑
n,n′
HlnGnn′Hn′r , 55.

(l andr in the metal L and R subspaces, respectively;n,n′ in the supermolecule
subspace) in Equation 35 leads to

g(E) = e2

πh̄
Tr

[
G(M)(E)0(R)(E)G(M)†(E)0(L)

]
, 56.

where, e.g. for the left metal,

0
(L)
n,n′ = 2π

∑
l

HnlHln′δ(E − El )(n andn′ in the molecular subspace). 57.

In practice,6 and0 = −2Im(6) can be computed by using closure relations based
on the symmetry of the metal lattice (42). The trace in Equation 56 is over all basis

6Alternatively, it has been shown by Emberly & Kirczenow (50) that one can map the prob-
lem into a new Hilbert space in which the basis states are orthogonal.
76(K ) is a matrix in the molecular subspace and Equation 54 is a compact notation for
(6(K ))n,n′ = ∑

k,k′ Hnk(H−1)kk′Hk′n′ , wherek andk′ are states in the metalK subspace.
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states in the (super) molecular subspace. The evaluation of the Green’s function
matrix elements and of this trace is straightforward in semiempirical single-
electron representations such as the extended Huckel approximation, and can be
similarly done at the Hartree-Fock level using, after convergence, the Fock rather
then the Hamiltonian matrix in Expressions 52–57, and invoking Koopmans’ theo-
rem (51). There are obviously considerable weaknesses in these procedures: Both
are based essentially on an independent electron (hole) picture, and both are single-
electron orbitals associated with the ground-state electronic configuration of the
isolated neutral supermolecule. For example, Koopmans’ theorem is accurate only
for large systems, and the approximation involved in applying it to small systems
is one reason why HF is not necessarily superior to EH for calculating the con-
duction properties of small molecular junctions. [This is true particularly for the
lowest unoccupied molecular orbital (LUMO)-dominated conduction, because the
HF method is notoriously inadequate for electron affinities while highest occupied
molecular orbital (HOMO)-dominated conduction is better represented by this
approach; (for further discussion, see 48)].

In spite of these limitations, EH- and HF-based calculations have provided
important insight into the conduction properties of molecular junctions. Figure 3
shows a remarkable example. The (EH) calculation is done for a singleα,α′-xylyl
dithiol molecule adsorbed between two gold contacts. The experiment monitors
the current between an STM tip (obtained by cutting a Pt/Ir wire) and a monolayer
of such molecules deposited on gold, and it is assumed that lateral interaction
between the molecules is unimportant. Two unknown parameters are used for
fitting. The first is the position of the metal’s Fermi energy in the unbiased junc-
tion relative to the molecular energy levels expressed byEFH ≡ EF − EHOMO.
The second describes the electrostatic-potential profile along the junction, repre-
sented by a parameterη that expresses the distribution of the voltage drop be-
tween the two metal leads (see Equation 67 below). As seen in Figure 3, good
agreement between theory and experiment is obtained forEFH = 0.9 eV and
η = 0.5.

In view of the other unknowns, associated both with the uncertainty about
the junction structure and with the simplified computation, the main value of
these results is not in the absolute numbers obtained but rather in highlighting the
importance of these parameters in determining the junction-conduction behavior.
We return to the issue of the junction-potential profile below. Other qualitative
issues that were investigated with these types of calculations include the effect
of the nature (length and conjugation) of the molecular bridge (41), the effect of
the molecule-electrode binding and of the molecular binding site (42), the relation
of conductance spectra to molecular electronic structure (52), and the effect of
bonding molecular wires in parallel (41, 53).

2.6 Spatial-Grid Based Pseudopotential Approaches

Another way to evaluate the expressions appearing in Equations 32 and 35 as well
as related partial sums is closely related to the discrete variable representation
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Figure 3 Measured and computed differential conduction of a singleα,α′-xylyl dithiol
molecule adsorbed between two gold contacts. See text for details. (From Reference 21.)

of reaction probabilities as formulated by Seideman & Miller (54, 54a). We have
already seen that the sum

s(E) ≡
∑
l ,r

|Tlr |2δ(E − El )δ(E − Er ), 58.

which is related to the conduction byg(E) = (4πe2/h̄)s(E) (see Equation 35 can
be represented by Equation 56).

s(E) = 1

4π2
Tr

[
G(M)(E)0(R)(E)G(M)∗(E)0(L)

]
. 59.

If, instead of considering transitions from left to right electrode, we think of Equa-
tion 58 as expressing a sum over transition probabilities from all initial (i) states
of energyE in the reactant space to all final (f ) states of the same energy in
the product space,s(E) is also associated with the so-called cumulative reaction
probability (34, 54, 54a), which in terms of the reaction S matrix is defined by
N(E) = ∑

i, f |Si f (E)|2 = 4π2s(E), i.e. N(E) = ∑
i, f Ti f (E). Equation 59 now

expresses the important observation that the cumulative reaction probability for
a reactive scattering process can be expressed as a trace over states, defined in a
finite subspace that contains the interaction region, of an expression that depends
on the reduced Green’s function and the associated self energy defined in that
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subspace. Following Seideman & Miller, we can use a spatial grid representa-
tion for the states in this subspace, so that the trace in Equation 59 becomes a
sum over grid points. Also, in this representation the overlap matrixZ is zero.
In general, any subspace of position space that separates reactants from prod-
ucts (i.e. that encompasses the entire interaction region; the molecular bridge in
our application) can be used in Equation 59, provided that the consequences of
truncating the “rest of the universe,” expressed by the corresponding6 and0,
can be computed. The absorbing boundary condition Green’s function (ABCGF)
method of Seideman & Miller is based on the recognition that if this subspace is
shown to be so large that its boundaries are far from the interaction region, the
detailed forms of6 and0 are not important; the only requirement is that scattered
waves that approach these boundaries will be absorbed and not reflected back
into the interaction zone. In the ABCGF method, this is accomplished by taking
6 = −(1/2)i 0 = −i ε(r), a local function in position space, taken to be zero in
the interaction region, and gradually increasing from zero when approaching the
subspace boundaries. Its particular form is chosen to affect complete absorption of
waves approaching the boundary to a good numerical accuracy. Equation 59 then
becomes

s(E) = 4Tr
[
GABC(E)εRGABC∗

(E)εL
]
, 60.

whereGABC(E) = (E − H + i ε)−1; ε = εR + εL , and whereεR andεL are diff-
erent from zero only on grid points near the right side (more generally the product
side) and the left (reactant) side of the inner subspace, respectively.

A similar development can be seen for the partial sum

sl (E) ≡
∑

r

|Tlr |2δ(E − Er ), 61.

which, provided thatl is taken as an eigenstate of the Hamiltonian describing the
left electrode (or the reactant sunspace), is related the “one-to-all”–rate,kl (E), to
go from an initial state of energyE on the left electrode (or in reactant space) to
all possible states on the right one (product space) according tokl = (2π/h̄)sl .8

We use the same definition of the couplingV between our subspace (bridge) and
the reactant and product (electrode) states. PuttingT = VGV into Equation 61,
we get

sl (E) = 1

2π
〈l |VG(M)0(R)G(M)∗ V |l 〉. 62.

Using again a position grid representation of the intermediate states to evaluate
this expression, and applying the same methodology as above, Equation 62 can be

8The “microcanonical rate” is defined byk(E) = ρ−1
L (E)

∑
l kl δ(E − El ) = (2πh̄ρL

(E))−14π2s(E) = (2πh̄ρL (E))−1N(E).
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recast in the form9

sl (E) = 1

π
〈l |VGABC(E)εRGABC∗

(E)V |l 〉

= 1

π
〈l |εL GABC(E)εRGABC∗

(E)εL |l 〉. 63.

The results of Equations 60 and 63 are very useful for computations of transmis-
sion probabilities in models where the interaction between the transmitted particle
and the molecular spacer is given as a position-dependent pseudopotential. Ap-
plications to electron transmission through water and other molecular layers are
discussed in Section 4.

2.7 Density Functional Calculations

Density functional methods provide a convenient framework for treating metallic
interfaces (55). Applications of this methodology to the problem of electron trans-
port through atomic and molecular bridges have been advanced by several workers.
In particular, Lang’s approach (56, 57) is based on the density-functional formal-
ism (58) in which the single-electron wavefunctionsψ0(r) and the electron den-
sity n0(r) for two bare metal (jellium) electrodes are computed, then used in the
Lippman-Schwinger equation

ψ(r) = ψ0(r) +
∫

dr ′dr ′′G0(r , r ′)δV(r ′, r ′′)ψ(r ′′), 64.

to get the full single-electron scattering wavefunctionsψ(r) in the presence of the
additional bridge, whereG0 is the Green’s function of the bare electrode system
andδV is the difference between the potential of the full system containing an
atomic or a molecular spacer and that of the bare electrodes. Equation 64 yields
scattering states that can be labeled by their energyE, the momentumk‖ in the
direction (yz) parallel to the electrodes, the sign,±, of kx, and the spin. Denoting
byµL andµR the electron-electrochemical potential in the left and right electrode,
respectively, the zero-temperature electrical current density from left to right (for
µL > µR) is then

J(r) = −2

µR∫
µL

dE
∫

d2k‖ Im
{
ψ∗

+∇ψ+
}
. 65.

The factor 2 accounts for the double occupancy of each orbital. This approach
was used recently (59) to calculate current through a molecular species, benzene
1,4-dithiolate molecule [as used in the experiment of Reed et al (19)], between
two jellium surfaces and has demonstrated the large sensitivity of the computed
current to the microscopic structure of the molecule-metal contacts.

9The second part of Equation 63 is obtained by using the identityεr |l 〉 = 0 to write
εRG∗V |l 〉 = εR(1 + G∗V)|l 〉 = εRG∗(G∗−1 + V)|l 〉, which, together withG∗−1 =
E − H0 − V + i ε, (E − H0)|l 〉 = 0, andε|l 〉 = εl |l 〉, yields the desired result.
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The calculations described above were done in the linear response regime. In
contrast, the density-functional approach of Hirose & Tsukada (60) calculates the
electronic structure of a metal-insulator-metal system under strong applied bias.
This is accomplished by computing the effective one-electron potential in a way
that accounts for this bias. This potential contains the standard contributions from
the Coulomb and the exchange-correlation interactions as well as from the ionic
cores. However, the Coulomb (Hartree) contribution is obtained from the solution
of a Poisson equation

∇2VH (r) = −4π [ρ(r) − ρ+(r)], 66.

in the presence of the applied potential-boundary conditions.ρ+(r) is the fixed
positive-charge density, and the electron densityρ(r) is constructed by summing
the squares of the wavefunctions over the occupied states. The resulting formal-
ism thus approximately accounts for nonequilibrium effects within the density-
functional calculation. A simplified version of the same methodology has recently
been presented by Mujica et al (61).

To end this brief overview of density functional-based computations of molec-
ular conduction, we should note that this approach suffers in principle from prob-
lems similar to those encountered in using the HF-approximation, namely, the inhe-
rent inaccuracy of the computed LUMO energy and wavefunctions. The errors are
different, for example, HF overestimates the (HOMO)-LUMO gap [since the HF-
LUMO energy is too high (62) whereas DFT underestimates it (63)]. Common
to both approaches is the observation that processes dominated by the HOMO
level will be described considerably better by these approaches than processes
controlled by coupling to the LUMO (48, 64).

2.8 Potential Profiles

The theoretical and computational approaches described above are used to com-
pute both the Ohm-law conduction,g(EF ), of a molecular bridge connecting two
metals, (Equation 35 or 56) and the current-voltage characteristics of the junction,
also beyond the Ohmic regime (Equation 34). We should keep in mind that these
calculations usually disregard a potentially important factor—the possible effect
of the imposed electrostatic field on the nuclear configuration as well as on the
electronic structure of the bridge. A change in nuclear configuration under the im-
posed electrostatic field is, in fact, not very likely for stable, chemisorbed molecular
bridges. On the other hand, the electronic wavefunctions can be distorted by the
imposed field, and this in turn may affect the electrostatic-potential distribution
along the bridge,10 the electronic coupling between bridge segments, and the po-
sition of the molecular energy levels vis-`a-vis the metal’s Fermi energies. These

10In a single electron description this local electrostatic potential will be an input, associ-
ated with the underlying many-electron response of the molecular bridge, to the position-
dependent energies of the bridge electronic states in the site representation.
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effects were, in fact, taken approximately into account by Hirose & Tsukada (60)
and by Mujica et al (61) by solving simultaneously the coupled Schr¨odinger and
Poisson equations. The latter yields the electrostatic potential for the given electron
density and under the imposed potential boundary conditions.

The importance of the electrostatic-potential profile on the molecular bridge in
determining the conduction properties of an MMM junction was recently discussed
by Tian et al (21) in conjunction with the current-voltage characteristics of a
junction comprised of an STM tip, a gold substrate, and a molecule with two
bonding sites (e.g.α,α′-xylyl dithiol) connecting the two. For a given potential
bias8 = µL − µR between substrate (left electrode, for instance) and tip (right
electrode), a common model assumption is that the electrostatic potential on the
molecule is pinned to that of the substrate so that all the potential drop occurs
between the molecule and the tip. In contrast, for MMM junctions with a strong
chemical bonding of the molecule to both metals, one often assumes a linear-
potential ramp interpolating between the potentials on the two metal leads. In
fact, because the molecule is a polarizable object we may expect that most of
the potential drop takes place near the molecule-metal contacts (61). Denoting
these drops by8L and8R for the left and right electrodes, respectively (so that
8L + 8R = 8), the conduction properties of the junction are determined by the
position of the molecular-bridge states relative to the equilibrium Fermi energy,
and by the voltage division factorη defined by

8L

8R
= η

1 − η
or η = 8L

8
. 67.

If η = 0, all the potential drop occurs at the molecule tip (right) interface. In this
case, changing the voltage across the junction amounts to changing the energy
difference between the molecular levels and the tip electrochemical potential.
Enhanced conduction is expected when the latter matches either the HOMO (when
the tip is positively biased) or the LUMO (when the tip is negatively biased)
energies. However, because the HOMO and the LUMO states are usually coupled
differently to the metals (for example, in the aromatic thiols the HOMO is a
sulfur-based orbital that couples strongly to the metal whereas the HOMO is a
ring-based orbital that couples weakly to it), this implies strong asymmetry, around
zero voltage, in the current-voltage dependence, i.e. rectification. In contrast, the
observed dependence is essentially symmetric around8 = 0, a behavior obtained
from Equation 34 for a symmetric voltage division factorη = 0.5 (21).

So far, only a few studies (61, 64) have addressed the computational problem of
finding the potential distribution across biased molecular junctions. To what extent
the electrostatic potential calculated in these works is relevant for single-electron
models of molecular junctions still remains to be clarified. In particular, in other
treatments of excess electrons at the insulator side of a metal-insulator interface,
the image potential attracting the electron to the interface plays an important role
if the insulator dielectric constant is not too large (28, 65). Also, experimental im-
plications of this potential are well known (66). The observation (21) that details
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of the electrostatic-potential distribution across an MMM junction can signifi-
cantly affect qualitative aspects of the junction electrical properties makes further
theoretical work in this direction highly desirable.

2.9 Rectification

The possibility of constructing molecular junctions with rectifying behavior has
been under discussion since Aviram & Ratner (67) suggested that an asymmetric
donor-bridge-acceptor system connecting two metal leads can rectify current. The
proposed mechanism of operation of such a device is shown in Figure 4. When the
left electrode is negatively biased, i.e. the corresponding electrochemical potentials
satisfyµL > µR, as shown, electrons can move from this electrode to the LUMO
of molecular segment A as well as from the HOMO of molecular segment D to
the right electrode. Completion of the transfer by moving an electron from A to
D is assisted by the intermediate bridge segment B. When the polarity of the bias
is reversed, the same channel is blocked. This simple analysis is valid only if
the molecular-energy levels do not move together with the metal electrochemical
potentials, and if the coupling through the intermediate bridge is weak enough so

Figure 4 A model for current rectification in a molecular junction. Shown are the chemical
potentialsµL andµR in the two electrodes, and the HOMO and LUMO levels of the donor,
acceptor, and bridge. When the right electrode is positively biased (as shown), electrons
can hop from left to right, as indicated by the dotted arrows. If the opposite bias can be
set without affecting the electronic structure of the DBA system too strongly, the reverse
current will be blocked.
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that the orbitals on the D and A species maintain their local nature. Other models
for rectification in molecular junctions have been proposed (68). As discussed
above, the expected rectifying behavior can be very sensitive to the actual potential
profile in the ABD complex, which in turn depends on the molecular response to
the applied bias (21, 69). This explains why rectification is often not observed even
in asymmetric molecular junctions (69). Still, rectification has been observed in
a number of MMM junctions as well as in several STM experiments involving
adsorbed molecules (17, 18, 70, 71).

2.10 Carrier-Carrier Interactions

The models and calculations discussed so far focus on processes for which the
probability that a charge carrier occupies the bridge is low so that carrier-carrier
interactions can be disregarded. Electron-electron interactions were taken into
account only in so far as they affected the single-electron states, either in con-
structing the molecular spectrum (in the ab initio HF or DFT calculations) or in
affecting the junction electrostatic potential through the electronic-polarization
response of the molecule or the metal contacts. When the density of carriers in the
space between the metal contacts becomes large, Coulomb interactions between
them have to be taken into account explicitly. Here we briefly discuss the effect of
such interactions.

In classical (hopping) transport of carriers through insulating films separating
two metals, intercarrier interactions appear as suppression of current due to film
charging (72). In nano-junctions involving double-barrier structures, increased
electron population in the intermediate well under resonance transmission should
affect the transport process for similar reasons. For example, consider a small metal
sphere of radiusR in the space between two metal electrodes and assume that both
sphere and electrodes are made of the same metal of workfunctionW. Neglecting
the possible proximity effect of these electrodes, the classical energy for removing
an electron from the sphere to infinity isW + e2/2R and the classical energy for
the opposite process isW−e2/2R.11 Here the sphere plays the role of a molecular
bridge in assisting electron tunneling between the two electrodes, and these en-
ergies now play the same role as the corresponding HOMO and LUMO energies
of the bridge. This implies that a finite voltage difference is needed before cur-
rent can flow in this sphere-assisted mode between the two metals, a phenomenon
known as Coulomb blockade. For a larger potential bias, other conduction chan-
nels, corresponding to more highly charged states of the sphere, give rise to the
phenomenon of Coulomb steps (74). For experimental manifestations of such and
related phenomena (see for instance, 75, 76). The possibility of observing such
phenomena in electrochemical systems was discussed by Kuznetsov & Ulstrup
(77) and possibly demonstrated by Fan & Bard (78).

11From experimental and theoretical work on ionization potentials of small metal clusters
(73) we know that the actual energies are approximatelyW+0.4e2/R andW−0.6e2/2R,
respectively, with the differences arising from quantum-size effects.
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When the junction consists of a molecule or a few molecules connecting two
metal leads, such Coulomb blockade phenomena are not expected to appear so
clearly. The first Coulomb threshold is replaced, as just described, by the gap as-
sociated with the position of the metal’s Fermi energies relative to the molecular
HOMO and LUMO levels (modified by appropriate electron correlations). How-
ever, the discreteness (in the sense that1E À kBT) of the molecular spectrum
implies that for any given charging state of the molecule, e.g. a molecule with
one excess electron or one excess hole, there will be several distinct conduction
channels that will appear as steps in the current vs voltage plot. It will be hard
to distinguish between this structure and between a genuine Coulomb blockade
structure. It should be emphasized that for potential applications, e.g. using the
molecular junction in single-electron transistor devices, the distinction between
the origins of these conduction structures is, in principle, not important.

Understanding intercarrier interactions, in particular correlated-carrier transport
in molecular junctions, continues to be an important experimental and theoretical
challenge. Several recent theoretical works have addressed this problem within the
Hubbard model with (79, 80) or without (81) the mean-field approximation. Recent
work by Gurvitz & Prager (82), using exactly solvable models of electron transport
in two- and three-barrier structures, has indicated that new phenomenology may
arise from the interplay of inelastic transitions and intercarrier interactions in the
barrier. In fact, dephasing transitions in the barrier may prove instrumental in
explaining the charge quantization that gives rise to the single-electron transport
behavior of such junctions (see Equation 83, Section 6.3).

2.11 Some Open Issues

This section discusses some subtle difficulties that are glossed over in most treat-
ments of electron transmission using the formalisms described above. These should
be regarded as open theoretical issues that should be addressed in the future. The
source of these problems is our simplified treatment of what is actually a complex
many-body open system. In particular, common ways of incorporating many-body
effects using single-body effective potentials becomes questionable in particular
limits of timescales and interaction strengths.

One such issue, already mentioned, is the use of a static image to account for
the effect of metal polarizability (namely the response of the metal electrons) on
charge transfer processes at metal surfaces. The timescales estimated in Section
3.1 below are of the same order as metal-plasma frequencies that measure the
electronic-response time of metals. Still, static-image theory has been used in the
analysis of Section 2.2 and in other treatments of electron injection from metals
into insulating phases (84). To what extent dynamic-image effects are important
is not known, although theories that incorporate such effects have been developed
(55a).

Assuming that image interactions at metal surfaces should be accounted for in
the static limit, namely that the metal responds instantaneously to the tunneling
charge, opens other questions. Many calculations of electronic processes near metal
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surfaces [e.g. Equation 28; (See Section 2.2 above)] assume that the metal electrons
respond instantaneously to the position of the tunneling electron. Other approaches
used in different contexts [e.g. reaction-field (cavity) models in quantum chemistry
calculations for solvated molecules] calculate the response to electrons in their
atomic or molecular orbitals, or, more generally, electronic-charge distributions,
and computing these under the given potential-boundary conditions (e.g. see 61)
implies that the corresponding orbitals or charge distributions are well defined on
timescales shorter than the metal-response times. These two approaches are not
equivalent, because the Schr¨odinger equations derived from them are nonlinear in
the electronic wavefunctions. Examination of the energies and timescales involved
suggests that in most situations assuming instantaneous metal response to the
electron position is more suitable than assuming instantaneous response to the
charge distribution defined by a molecular orbital, but the corresponding timescales
are not different enough to make this a definite statement. A similar issue appears
in attempts to account for the electronic polarizability of a solvent in treating fast
electronic processes involving solute molecules or excess electrons in this solvent.
We return to this point in Section 4.

Finally, an interesting point of concern is related to the way the Fermi distri-
bution functions enter into the current equations. For example, Bardeen’s trans-
mission formula (19) is based on weak coupling between states localized on the
two electrodes. Consequently, unidirectional currents contain a product,f (1− f ),
i.e. the probability that the initial state is occupied multiplied by the probability that
the final state is not. In this viewpoint, the transitions occur between two weakly
coupled systems, each of them in internal thermal equilibrium, which are out of
equilibrium with each other because of the potential bias. Alternatively, we could
work on the basis of exact eigenstates of the whole system comprising the two
electrodes and the spacer between them. This system is in an internal nonequili-
brium state in which transmission can be described as a scattering problem. The
relevant eigenstates correspond to incident (incoming) waves in one electrode
and transmitted waves in the other. The flux associated with those scattering
states arising from an incident state in the negatively biased electrode is pro-
portional to f (E), while that associated with incoming waves in the positively
biased electrode is proportional tof (E + e8). The net flux is therefore found
again to be proportional to the differencef (E) − f (E + e8). This argument
cannot be made unless the process can be described in terms of coherent scatter-
ing states defined over the whole system. When inelastic scattering and dephas-
ing processes take place the description in terms of exact scattering states of the
whole system becomes complicated (83, 85), although kinetic equations for elec-
tron transport can be derived for relatively simple situations (82). On the other
hand, it appears that for weakly coupled contacts the perturbative approach that
leads to Equation 19 is valid. This approach describes the transmission in terms
of electron states localized on the two electrodes where unidirectional rates ap-
pear with f (1 − f ) factors and can, in principle, be carried over to the inelastic
regime (see also Section 3.4). The exact correspondence between these different
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representation needs further study [see (86) for a recent discussion of experimental
implications].

3. DEPHASING AND RELAXATION EFFECTS

The theoretical treatments of electron transmission and conduction through in-
sulating barriers reviewed in the previous section have assumed that the barrier
nuclear configuration is static. Consequently, the conduction was computed from
the electronic structure of static interfacial configurations. Nuclear reorganiza-
tion does play a dominant role in the analogous theory of electron transfer in
molecular systems; however, here again the electronic coupling itself is computed
for static structures, while coupling to nuclear motion is assumed to be asso-
ciated with the initial and final localized states of the transferred electron. As
discussed in Section 2.5, the corresponding nuclear reorganization energies are
unimportant in an MMM junction because the transferred electron does not stay
localized on the molecular species. Disregarding thermal interactions also dur-
ing the transmission process therefore leads to a rigid junction model. While we
cannot rule out the possible validity of such a model, it is necessary to consider
possible scenarios where thermal relaxation on the bridge is important for two
reasons. First, dephasing processes associated with electron-phonon coupling are
the primary source for converting the transmission process from coherent transfer
to incoherent hopping. Therefore ignoring nuclear dynamics disregards a poten-
tially important transfer mechanism. Second, as discussed in the introduction, an
important factor in designing molecular conductors is their structural stability;
therefore understanding heat generation and dissipation in molecular conductors
is an important issue (87, 88). This naturally motivates a study of inelastic ef-
fect and thermal relaxation during electron transmission. Indeed, the effect of
dephasing and relaxation on carrier transport through molecular junctions (as well
as other microscopic charge-transport devices) on its temperature and system-
size dependence, and on possible interference effects, has recently attracted much
attention.

3.1 Tunneling Traversal Times

The underlying assumption in the treatment of electron transfer and transmission
described in Section 2 is that the junction nuclear structure is rigid. The validity
of this assumption should be scrutinized. Obviously, whether the barrier appears
rigid to the tunneling electron, and to what extent inelastic transitions can occur
and affect transmission and conductance, depends on the relative scales of barrier
motions and the transmission traversal time, properly defined.

A framework for discussing these issues is the theory of tunneling traversal
times. “Straightforward” timescales for tunneling, such as the rate for probability
buildup on one side of a barrier following a collision of an incoming particle on
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the other side, or the time associated with the tunneling splitting in a symmetric,
double-well potential, are important measures of the tunneling rate. Following
the work of Büttiker & Landauer (89–91) and others (92), it has been recognized
that other timescales may be relevant for other observables associated with the
tunneling process. The question of how long the tunneling particle actually spends
in the classically forbidden region of the potential is of particular interest. This
traversal time for tunneling is useful in estimates of the relative importance of
processes that may potentially occur while the particle is in the tunneling region.
Energy exchange with other degrees of freedom in the barrier and interaction with
external fields focused in the barrier region (e.g. deflection of a tunneling electron
by an electrostatic field induced by a heavy ion) are important examples.

The Büttiker-Landauer approach to tunneling timescales is based on impos-
ing an internal clock on the tunneling system, for example a sinusoidal modu-
lation of the barrier height (89). At modulation frequencies much smaller than
the inverse-tunneling time, the tunneling particle sees a static barrier that is lower
or higher than the unperturbed barrier, depending on the phase of the modula-
tion. At frequencies much higher than the inverse-tunneling time, the system sees
an average perturbation and thus no effective change in the barrier height, but
inelastic tunneling can occur by absorption or emission of modulation quanta.
The inverse of the crossover frequency separating these regimes is the estimated
traversal time for tunneling. For tunneling through the one-dimensional rectangular
barrier,

V(x) =
{

UB; x1 ≤ x ≤ x2

0 otherwise
, 68.

and provided thatd = x2 − x1 is not too small, and that the tunneling energyE is
sufficiently belowUB, this analysis gives

τ = d

vI
=

√
m

2(UB − E0)
d 69.

for a particle of massm and energyE0 < UB. vI , defined by Equation 69, is the
imaginary velocity for the under-barrier motion. A similar result is obtained by
using a clock based on population transfer between two internal states of the tun-
neling particle induced by a small barrier-localized coupling between them (90).
Using the same clock for electron transfer via the superexchange mechanism in the
model of Figure 2 (equal donor and acceptor energy levels,EA = ED, coupled to
opposite ends of a molecular bridge described by an N-state tight-binding model
with nearest-neighbor couplingVB, with an energy gap1EB = EB − ED À VB)
yields (93)

τ = h̄N

1EB
. 70.

Nitzan et al (93) have shown that the results in Equations 69 and 70 are limiting
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Figure 5 Parameters used in the expressions for tunneling traversal times.Left: Tunneling
through a rectangular barrier.Right: Bridge-mediated transfer, where the gray area denotes the
band associated with the tight-binding level structure of the bridge.

cases (wide- and narrow-band limits) of a more general expression

τ = h̄N

2VB

√√√√1UB

VB
+

(
1UB

2VB

)2
, 71.

where1UB ≡ EB − 2VB − ED is the difference between the initial energyED

and the bottom of the conduction band,EB − 2V (see Figure 5). WhenVB → 0,

1UB → 1EB and the r.h.s of Equation 71 become that of Equation 70. In the
opposite limit,VB → ∞ with 1UB kept constant, Equation 71 becomes

τ = h̄N

2
√

VB1UB
. 72.

ExpressingVB in terms of the effective mass for the band motion,m = h̄2/2VBa2,
usinga = d/N, Equation 72 yields the B¨uttiker-Landauer result, which is Equa-
tion 69.

The interpretation ofτ defined above as a characteristic time for the tunneling
process should be used with caution. An important observation made by B¨uttiker
(90) is that the tunneling time is not unique but depends on the observable used as
a clock. Still, as shown in B¨uttiker & Landauer (89), for a proper choice of clock
the traversal time provides a useful measure for the adiabaticity or nonadiabaticity
of the interaction of the tunneling particle with barrier degrees of freedom. The
calculation that leads to Equations 70–72 uses a clock based on two internal states,
|1〉 and |2〉, of the tunneling particle with a small barrier-localized coupling,
λ(|1〉〈2| + |2〉〈1|), between them. The incident particle is in state|1〉. The
population of state|2〉 in the transmitted wavefunction can be related to the du-
ration of the interstate coupling, i.e. to the traversal time. Writing the transmitted
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state in the formc1|1〉 + c2|2〉 this procedure yields

τ = lim
λ→0

(
h̄

|λ|
∣∣∣∣c2

c1

∣∣∣∣). 73.

For the one-dimensional rectangular barrier model, Equation 68, and in the limit
κd À 1, this leads again to Equation 69. Galperin et al (94) have applied the same
approach to compute traversal times through water layers (see Section 4).

For tunneling through a molecular spacer modeled as a barrier of width∼10Å
(N = 2–3) and heightUB−E ∼= 1E ∼ 1 eV, Equations 69 and 70 yieldτ ∼=
0.2 fs andτ ∼= 2 fs, respectively, both considerably shorter than the vibrational
period of molecular vibrations. When the barrier is lower or when tunneling is
affected or dominated by barrier resonances, the traversal time becomes longer, and
competing relaxation and dephasing processes in the barrier may become effective.
This is expected to be the rule for resonance transmission through molecular
bridges, because the bandwidth associated with the bridge states (i.e. the electronic
coupling between them; see Figure 5) is considerably smaller than in metals. As a
consequence, thermal relaxation and dephasing are expected to dominate electron
transport at and near resonance. This issue is discussed next.

3.2 Nuclear Relaxation During Electron Transmission

It has long been recognized that tunneling electrons interact, and may exchange
energy, with nuclear degrees of freedom in the tunneling medium. One realiza-
tion of such processes is inelastic electron-tunneling spectroscopy (84), where the
opening of inelastic channels upon increasing the electrostatic potential difference
between the source and sink metals is manifested as a peak in the second deriva-
tive of the tunneling current with respect to this potential drop. Recent applications
of this phenomenon within scanning-tunneling spectroscopy hold great promise
for making the STM a molecular analytical tool (95). Inelastic electron tunneling
may also cause chemical bond breaking and chemical rearrangement in the tun-
neling medium, either by electron-induced consecutive excitation or via transient
formation of a negative ion12 (96).

As discussed by Gadzuk (97), the phenomenology of inelastic electron trans-
mission is also closely related to other electronic processes in which transient oc-
cupation of an intermediate state drives a phonon field. Intramolecular vibrational
excitation in resonant electron scattering (98), phonon excitation in resonant elec-
tron tunneling in quantum-well heterostructures (99, 99a), and electron-induced
desorption (100) can all be described using similar models. A prototype Hamilto-
nian describing these models is

H = Hel + Hph + Hel−ph, 74.

12While our language refers to electron transport and electron tunneling, hole transport and
nuclear excitation via transient positive ion formation are equally possible.
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whereHel is the electronic Hamiltonian

Hel =
∑

n

Enc†ncn +
∑

n,n′(n6=n′)

Vn,n′c†ncn′ +
∑

k

Ekc†kck

+
∑

k

∑
n

(
Vk,nc†kcn + Vn,kc†nck

)
, 75.

Hph is the Hamiltonian of the phonon bath

Hph =
∑

ν

h̄ωνb†νbν, 76.

andHel−ph is the electron-phonon interaction, usually written in the form

Hel−ph =
∑

n

∑
ν

λnνc†ncn
(
b†ν + bν

)
. 77.

Herec†j andcj ( j = n, n′, k) create and annihilate an electron in electronic statej,
while b†ν andbν similarly create and annihilate a phonon of modeν, of frequency
ων . In Equation 75 the states (k) are taken to be different manifolds of continuous-
scattering states, denoted by a continuous indexk. Figure 2b shows two such
manifolds,k = {`}, {r }, with intermediate states that are discrete electronic states
of the observed molecular system. The electronic Hamiltonian (Equation 75) can
describe a scattering process in which the electron starts in one continuous manifold
and ends in another, and the states{n} belong to the target that causes the scattering
process. These states may be the eigenstates of the target Hamiltonian, in which
caseVn,m in Equation 75 vanishes, or some zero-order representation in which
the basis states are mutually coupled by the exact-target Hamiltonian. Equation
76 represents the thermal environment as a harmonic-phonon bath. The coupling
between the electronic system and this bath is assumed in Equation 77 to originate
from a target-state dependent shift in the equilibrium position of each phonon mode.
An exact solution to this scattering problem can be obtained for the particular case
where the target is represented by a single staten = 1 and the phonon bath contains
one oscillator of frequencyω. In this case, it is convenient to consider the oscillator
as part of the target that is therefore represented by a set of states|m〉 with energies
E1 + mh̄ω (the zero-point energy can be set to 0). If the oscillator is initially in
the ground state (m = 0), the cross-section for electron tunneling (or scattering)
from left to right is given by (98–99a)

T (Ei , E f ) ∼ 0(L)0(R)

∞∑
m′=0

δ(Ei − E f − m′h̄ω)

×
∞∑

m̃=0

〈m′|m̃〉〈m̃|0〉
Ei − Em̃ − 3m̃(Ei ) + (i /2)0m̃(Ei )

, 78.

where|m̃〉 are states of the shifted harmonic oscillator that corresponds to the tem-
porary negative ion (electron residing on the target) andEm̃ = E1+mh̄ω−λ2/h̄ω.
3m̃ and0m̃ are the shifts and widths of the dressed-target states associated with
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their coupling to the continuous manifolds and

0(K )(E) = 2π
∑

k

|Vk,1|2δ(E − Ek); K = L , k = l or K = R, k = r. 79.

The exact solution shown in Equation 78 can be obtained because of the sim-
plicity of the system, which was characterized by a single-intermediate electronic
state and a single-phonon mode. In more realistic situations characterized by many-
bridge electronic states and many-phonon modes, one needs to resort to approxi-
mations or to numerical simulations. We discuss such systems next.

To get the proper perspective on the nature of this problem, consider again the
standard electron-transfer process in a DBA system without metal electrodes. As
already emphasized (see Section 2.5), nuclear dynamics and conversion of elec-
tronic energy to nuclear motions, resulting from solvent reorganization about the
donor and acceptor sites upon changing their charge state, are essential ingredi-
ents of this process. The reason for the prominent role of nuclear dynamics in
this case is that the transferred charge is localized on the donor/acceptor orbitals,
consequently affecting distortion of their nuclear environments (represented by
the parabolas in Figures 1a and 2a). Standard electron-transfer theory assumes
that nuclear motion is coupled to the donor and acceptor electronic states only,
and the electronic coupling itself is taken independent of the nuclear configuration
(the Condon approximation). This assumption is sometimes questionable, in par-
ticular when intermediate electronic states are involved, as in Figures 1 and 2. The
possible role of nuclear motion on such intermediate electronic potential surfaces
has been discussed by Stuchebrukhov and coworkers (101). Focusing on bridge-
assisted, electron-transfer processes, these authors separate the nuclear degrees of
freedom into two groups. The first includes those nuclear modes that are strongly
coupled to the donor-acceptor system (solvent polarization modes and vibrational
modes of the donor and acceptor species). In the absence of the other modes, this
coupling leads to the standard electron-transfer rate expression shown by Marcus
(see Equations 1, 3 and 9)

ket = 2π

h̄
|TDA|2 e−(λ+EAD)2/4λkB2

√
4πλkB2

, 80.

whereλ is the reorganization energy,EAD is the free-energy difference between
the initial (electron on donor) and final (electron on acceptor) equilibrium con-
figurations, andTDA is the nonadiabatic electronic-coupling matrix element that
incorporates the effect of the bridge via, for example, Equations 9 and 10. The
other group of degrees of freedom, “bridge modes,” are coupled relatively weakly
to the electron-transfer process, and it is assumed that their effect can be incor-
porated using low-order perturbation theory. This is accomplished by considering
the modulation of the electronic couplingTDA by these motions,TDA = TDA({xν}),
where{xν} is the set of the corresponding nuclear coordinates. It is important to
note that the separation of nuclear modes into those coupled to the donor and
acceptor states (schematically represented by the Marcus parabolas in Figures 1a
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and 2a) and those associated with electronic coupling between them is done for
convenience only and is certainly not a rigorous procedure. Within this picture the
electron-transfer rate is obtained (101) as a convolution

k =
∫

dερB(ε)k0(EAD + ε), 81.

where

ρB(ε) =
∫

dtei εt 〈TDA(t)TDA(0)〉
〈T2

DA〉 , 82.

and

TDA(t) = eiHBt/h̄TDAe−iHBt/h̄, 83.

whereHB is the bridge Hamiltonian including the thermal environment (22 of
Figure 1). Calculations based on this formalism indicate (101) that inelastic con-
tributions to the total electron-transfer flux are substantial for long (>10 segments)
bridges.

It should be emphasized that dynamical fluctuations in the bridge can consi-
derably affect also the elastic transmission probability. For example, a substantial
effect of the bridge nuclear motion on the electron-transfer rate has been observed
in simulations of electron transfer in aqueous azurin carried out by Xie et al (102), in
agreement with earlier theoretical predictions (103). There are some experimental
indications that electron-transfer rates in proteins are indeed substantially affected
by the protein nuclear motion (104).

Equations 81–83 correspond to the lowest-order correction, associated with
intermediate-state nuclear relaxation, for bridge-mediated, electron-transfer rates.
At the other extreme, we find sequential processes that are best described by two
or more consecutive electronic transitions. For this to happen two conditions have
to be satisfied. First, the intermediate state(s) energy should be close to that of
the donor/acceptor system, so these states are physically populated either directly
or by thermal activation. Second, nuclear relaxation and dephasing should be fast
enough so that the bridging states can be treated as well-defined, thermally averaged
electronic configurations. Obviously, intermediate situations can exist. Bridge-
mediated electron transfer can be dominated by two (donor-acceptor) electronic
states coupled via intermediate high-lying states that are only virtually populated,
by real participation of such intermediate states in a coherent way (when thermal
relaxation and dephasing are slow), or by sequential transfer through such states.
This issue was extensively discussed (105, 106) for three-state models of electron
transfer that were recently used to describe primary charge separation in bacte-
rial photosynthesis. The possibility of observing similar effects in STM studies of
molecules adsorbed at electrochemical interfaces was discussed by Schmickler &
Tao (107).

Closely related to this phenomenology is the process of light scattering from
molecular systems where the donor and acceptor states are replaced by the in-
coming and outgoing photons. Elastic (Rayleigh) scattering is the analog of the
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two-state standard electron-transfer process. Inelastic (Raman) scattering is the
analog of the inelastic electron-transfer process analyzed above, except that our
ability to resolve the energy of the scattered photon makes it possible to separate
the total rate (or flux), the analog of Equation 81, into its elastic and different inelas-
tic components (108). Resonance Raman scattering and resonance fluorescence
are the processes that take place when excited molecular states are physically,
as opposed to virtually, occupied during the light-scattering process. The former
is a coherent process that takes place in the absence of dephasing and thermal
relaxation while the latter follows thermal relaxation in the excited molecular
state. Reemitting the photon after dephasing has occurred, but before full thermal
relaxation takes place, is the process known as hot luminescence.

3.3 Thermal Interactions in Molecular Conduction

Coming back to electron transfer and transmission, the importance of dephasing
effects in the operation of microscopic junctions has long been recognized (33, 83).
The Landauer formula for the conduction of a narrow constriction connecting
two macroscopic metals, Equations 23 or 27, is derived by assuming that the
transmission is elastic and coherent, i.e. without dephasing and energy-changing
interactions taking place in the constriction. If the constriction is small relative to
the mean free path of the electron in it, these effects may indeed be disregarded.
When the constriction becomes macroscopic, multiple scattering and dephasing
are essential to obtain the limiting Ohm’s law behavior. A simple demonstration
is obtained (83, p. 63) by considering a conductor of lengthL as a series ofN
macroscopic scatterers, each of the type that, by itself, would yield Equation 23.
At each scatterer, the electron can be transmitted with probabilityT , or reflected
with probabilityR = 1− T . Let the total transmission throughN such objects be
TN , so thatT = T1. Provided the phase of the wavefunction is destroyed after each
transmission-reflection event, so that we can add probabilities, the transmission
through anN-scatterer system is obtained by considering a connection in a series
of an N − 1 scatterer system with an additional scatterer, and summing over all
multiple scattering paths,

TN = TN−1(1 +RRN−1 + (RRN−1)
2 + . . .)T = T TN−1

1 −RRN−1
, 84.

withR = 1 − T andRN = 1 − TN. This implies

1 − TN

TN
= 1 − TN−1

TN−1
+ 1 − T
T = N

1 − T
T , 85.

so that

TN = T
N(1 − T ) + T = L0

L + L0
, 86.
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whereL0 = T /ν(1 − T ) andν = N/L is the scatterer density. Using this in
Equation 23 yields

g(E) = e2

πh̄

L0

L + L0
, 87.

which gives the inverse length-dependence characteristic of Ohm’s law asL → ∞
(but see 33, p. 107).

A more detailed treatment of the role played by dephasing in quantum charge
transport in microscopic junctions was given by B¨uttiker (109). He has introduced
phase destruction processes by conceptually attaching an electron reservoir onto
the constriction, under the condition that, while charge carriers are exchanged
between the current-carrying system and the reservoir, no net-averaged current is
flowing into this reservoir. B¨uttiker has observed that such a contact, essentially
a voltage probe, acts as a phase-breaking scatterer. By adjusting the coupling
strength between this device and the system, a controlled amount of incoherent
current can be made to be carried through the system. This approach has been very
useful in analyzing conduction properties of multigate junctions and connected
nano-resistors.

In molecular systems, a very different approach to dephasing was considered by
Bixon & Jortner (110), who pointed out that the irregular nature of Franck-Condon
overlaps between intramolecular vibrational states associated with different elec-
tronic centers can lead to phase erosion in resonant electron transfer. Consequently,
bridge-assisted electron transfer, which proceeds via the superexchange mecha-
nism in off-resonance processes, will become sequential in resonance situations.
For a finite temperature system with an electronic energy gap between donor and
bridge that is not too large relative toκB2, the thermally averaged rate from a
canonical distribution of donor states results in a superposition of both superex-
change and sequential mechanisms.

While coupling to the thermal environment is implicit in the models described
above, using molecular bridges embedded in condensed environments as con-
ductors immediately suggests the need to consider the coupling to intramolecu-
lar and environmental nuclear motions explicitly, as in the Hamiltonian shown
in Equations 74–77. The models of Figures 1 and 2, where transition between
the two electron reservoirs or between the donor and acceptor species is me-
diated by a bridge represented by the group of states{n}, are again the starting
point of our discussion. Several workers have recently addressed the theoreti-
cal problem of electron migration in such models, where the electron is coupled
to a zero-temperature phonon bath. Bonˇca & Trugman (111, 111a) have pro-
vided an exact numerical solution for such a problem. Their model is similar
to that described by Equations 74–77, except that the metal leads connected to the
molecular target are represented by one-dimensional, semi-infinite, tight-binding
Hamiltonians:

H = Hel + Hph + Hel−ph, 88.
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Hel =
∑

n

Enc†ncn +
∑

k

Ekc†kck +
∑
n,n′

Vn,n′c†ncn′

+
∑
k,k′

Vk,k′c†kck +
( ∑

n,k

Vn,kc†nck + h.c

)
, 89.

Hph =
∑

ν

h̄ωνb†νbν, 90.

Hel−ph =
∑

n

∑
ν

λnνc†ncn(b
†
ν + bν). 91.

Here, Hel desribes both the metal leads [represented by the manifold(s) of states
{k}] and the molecular target (with states{n}). The coupling to the phonon field is
assumed to vanish on the metal sites. The electron transport problem is treated as
a one-particle, multichannel scattering problem, where each of the (one incoming,
many outgoing) channels corresponds to a given vibrational state of the target.
A finite basis is employed by using a finite number of phonon modes and lim-
iting the number of phonons quanta associated with each site, and by projecting
out leads that carry only outgoing states; however, the size of this basis can be
increased until convergence is achieved. Yu et al (112) have studied the same one-
dimensional electronic model with a different electron-phonon interaction: Instead
of the Holstein-type interaction, as seen in Equations 77 and 91, they use a model
similar to the Su-Schrieffer-Heeger (SSH) Hamiltonian (113), where Equations
89–91 are replaced by

Hel + Hel−ph =
∑

n

Enc†ncn

+
∑

n

{
[Vn,n+1 − αn,n+1(un+1 − un)]c

†
ncn+1 + h.c.

}
, 92.

Hph = 1

2
K

N−1∑
n=1

(un+1 − un)
2 + 1

2

N∑
n=1

mnu̇2
n, 93.

whereun(n = 1, . . . , N) are displacements of the target atoms. The segment of
the lattice betweenn = 1 andn = N represents an organic oligomer, connecting
between two metals, and the model for the oligomer is the same as that used in
the SSH theory of conducting conjugate polymers, with the nuclear degrees of
freedom treated classically. The electron-phonon coupling is again assumed to
vanish outside the bridge, i.e. in Equation 92,αn,n+1 is taken to be zero unless
n = 1, 2, . . . , N − 1. A special feature (in the context of this review) of this
calculation is that it is done using the exact many-electron ground state of the
metal-oligomer-metal system, which takes into account the Peierls distortion that
leads to a dimerization in the oligomer’s structure (113). The time evolution of an
excess-electron wavepacket going through the oligomer segment is computed using
the quantum-classical, time-dependent, self-consistent field (TDSCF) approxima-
tion, whereupon the electron wavefunction is propagated under the instantaneous
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nuclear configuration, while the latter is evolved classically using the expectation
value of the Hamiltonian with the instantaneous electronic wavefunction.13 It was
found that lattice dynamics can be quite important at an intermediate window of
electron energies, where the electronic and nuclear timescales are comparable.

A fully quantum analog of this model was studied by Ness & Fisher (114).
Their Hamiltonian is

Hel =
∑

n

Enc†ncn +
∑

ν

h̄ωνb†νbν +
∑
ν,n,m

γν,n,m
(
b†ν + bν

)
c†ncm, 94.

where, again, the distinction between the metal leads and the molecular system
enters through the values of the site energies En, and through the fact that coupling
to phonons exists only at the oligomer sites. The ground state of the neutralN
electron-dimerized chain is the reference system, and the time evolution in the
correspondingN + 1 or N − 1 electron system is studied at zero temperature
using the multichannel, time-independent scattering-theory approach of Bonˇca &
Trugman (111, 111a). The result of this calculation is a considerable increase in
the tunneling current when the electron-phonon interaction is switched on, in
particular for long chains. The origin of this behavior seems to be the existence
of a polaron state below the conduction band edge of the molecular segment that
effectively lowers the barrier energy experienced by the tunneling electron. Close
to resonance, however, the effect of electron-phonon coupling may be reversed,
leading to a smaller total overall conduction (115).

The Bonča & Trugman approach (111, 111a) has also been used recently by
Emberly & Kirczenow (85), also for a one-dimensional, tight-binding model de-
scribed by the SSH Hamiltonian. These authors attempt to take into account the
Pauli exclusion principle in calculating the inelastic contributions to electron trans-
mission and reflection. While the formalism can, in principle, be applied to finite
temperature processes, the implementation is done for a low-temperature system.
The result again indicates that inelastic processes can substantially modify electron
transport for long molecular chains and large potential drops.

3.4 Reduced Density Matrix Approaches

The research described above uses models for quantum transport that yield practi-
cally exact numerical solutions at the cost of model simplicity: one-dimensional,
tight-binding transport models; only a few harmonic oscillators; and essentially
zero temperature systems. An alternative approach uses the machinery of nonequi-
librium statistical mechanics, starting from a Hamiltonian such as in Equation 88
and projecting out the thermal bath part. The resulting reduced equations of motion
for the electronic subsystem contain dephasing and energy-relaxation rates that are
related explicitly to properties of the thermal-bath and the system-bath coupling.

13An open issue in this calculation is the validity of the TDSCF approximation. This ap-
proximation is known to be problematic in tunneling and scattering calculations where the
quantum wavefunction splits to several distinct components.
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Such approaches to bridge-mediated electron transport were made by several
workers (116–119). For simplicity we limit ourselves to the tight-binding superex-
change model for bridge-mediated electron transfer (see Section 2.1). Also, for
simplicity of notation we considerN bridge states between the two electrodes,
without assigning special status to donor and acceptor states, as in Figure 2b. (It
should be obvious that this makes only a notational difference.) The Hamiltonian
for the athermal system is

H = H0 + V, 95.

H0 =
N∑

n=1

En|n〉〈n| +
∑

l

El |l 〉〈l | +
∑

r

Er |r 〉〈r |, 96.

V =
∑

l

(Vl ,1|l 〉〈1| + V1,l |1〉〈l |) +
N−1∑
n=1

(Vn,n+1|n〉〈n + 1|

+Vn+1,n|n + 1〉〈n|) +
∑

r

(Vr,N |r 〉〈N| + VN,r |N〉〈r |), 97.

where{l} and {r} are again continuous manifolds corresponding to the left and
right metal leads and{n} is a set of bridge states connecting these leads in the
way specified by the corresponding elements of the couplingV. In the absence of
thermal interactions, and when the left and right electrodes are coupled only to
levels 1 andN of the bridge, respectively, transport in this system is descibed by
the conduction function (see Equations 29 and 38)

g(E) = e2

πh̄
|G1N(E)|20(L)

1 (E)0
(R)
N (E), 98.

with

0
(L)
1 (E) = 2π

∑
l

|Vl1|2δ(E1− E); 0
(R)
N (E) = 2π

∑
r

|VNr |2δ(EN − E). 99.

In general,G(E) is evaluated numerically by inverting the corresponding Hamil-
tonian matrix. ForEn = EB andVn,n+1 = VB, identical for all bridge levels
and for all mutual couplings, respectively, and in the superexchange limit,|VB| ¿
|EB − E|, the Green’s function element isV N−1

B /1EN
B (see Equation 10), with

1EB = E − EB. In this case,g depends exponentially on the bridge lengthN
according tog ∼ exp[−β ′N] with β ′ = 2 ln(|1EB/VB|) (see Equation 13).

3.4.1 Weak Thermal Coupling To see how these dynamics are modified by
thermal relaxation and dephasing effects, we follow the formulation of Segal et al
(118) The HamiltonianH is supplemented by terms describing a thermal-bath and
a system-bath interaction

H = H + H2 + F, 100.

where H2 is the Hamiltonian for the thermal environment or bath, and where the
system-bath interactionF is assumed weak. In this case, thermal coupling between



P1: GDL

March 30, 2001 14:49 Annual Reviews AR127-23

ELECTRON TRANSMISSION 721

different bridge levels is neglected relative to the internal couplingVbetween them,
so

F =
N∑

n=1

Fn|n〉〈n|, 101.

whereFn are operators in the bath degrees of freedom that satisfy〈Fn〉 ≡ Tr2
(e−βH2 Fn) = 0 (Tr2 is a trace over all thermal bath states).F is characterized by
its time-correlation function. As a simple model we postulate

〈Fn(t)Fn′(0)〉 = f (t)δn,n′ . 102.

The Fourier transform of the remaining correlation functions satisfies the detailed
balance condition,

∞∫
−∞

dtei ωt 〈Fn(t)Fn(0)〉 = eβh̄ω

∞∫
−∞

dtei ωt 〈Fn(0)Fn(t)〉; β = (kB2)−1, 103.

where2 is the temperature andβ is the Boltzmann constant. For specificity we
sometimes use

f (t) = κ

2τc
exp(−|t |/τc), 104.

which becomesκδ(t) in the Markovian,τc → 0, limit. Note that Equation 101
is a particular model for the thermal interactions, sufficient to show their general
consequences, but by no means adequate for quantitative predictions. In particular,
the assumption in Equation 102 will be replaced by a more realistic model below.

Galperin et al (36) have shown that the conduction properties of a system like
that described by the Hamiltonian Equations 95–100 can be obtained by studying
a steady state in which the amplitude of one state|0〉 in the initial {l} manifold
remains constant and the amplitudes of other states evolve under this restriction.
Segal et al (118) have generalized this approach to thermal systems of the kind
described by the Hamiltonian Equation 100 using, in the weak thermal-coupling
limit, the Redfield approximation (116, 120). This approximation combines two
steps that rest on the weak-coupling limit: an expansion up to second order in
the couplingF and the assumption that the thermal bath is not affected by its
coupling to the molecular system. In this approach, one starts from the set of states
|0〉, |1〉, . . . , |n〉, {|l 〉}, {|r 〉}, where|0〉 is the incoming state in the{l} manifold,
and projects out the continuous manifolds{l} (except|0〉) and{r }. This amounts
to replacingH of Equations 95–100 by an effective Hamiltonian,Heff, in the
space spanned by states|0〉, |1〉, . . . , |n〉, in which the energiesE1 andEN are
modified by adding self-energy terms whose imaginary parts are, respectively,
0

(L)
1 /2 and0(R)

N /2. This effective Hamiltonian of orderN +1 is then diagonalized
and the resulting set ofN + 1 states (originating fromN bridge states and one
incoming state) is used to represent the Liouville equation for the density operatorρ

of the overall electrode-bridge-bath system,ρ̇ = −i [H, ρ]. This Liouville equation
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is expanded to second order inF and traced over bath degrees of freedom using the
approximationρ(t) = ρ2σ(t), with ρ2 = e−βH2 andσ(t) = Tr2ρ(t). This leads
to an equation of motion for the reduced density matrixσ(t) for the electrode-
bridge system that takes the form

σ̇ jk = −i E jkσ jk − 0 jkσ jk

−
t∫

0

dt′
∑
lm

{〈F̃ jl (t − t ′)F̃ lm(0)〉e−iElk (t−t ′)σmk(t
′)

− 〈F̃mk(0)F̃ jl (t − t ′)〉e−iEkl (t−t ′)σlm(t ′)

− 〈F̃mk(t − t ′)F̃ jl (0)〉e−iE jm(t−t ′)σlm(t ′)

+ 〈F̃ml(0)F̃ lk(t − t ′)〉e−iE jl (t−t ′)σ jm(t ′)
}
, 105.

where Ejl = Ej − El andF̃(t) = eiH2t Fe−iH2t . Here the indicesj,k,l,m refer
to molecular states that diagonalize the effective HamiltonianHeff. The damp-
ing terms0 originate from the decay of states|1〉 and|N〉 distributed into these
eigenstates. At steady state allσ elements are constant and Equation 105 becomes

0 = −iE jkσ jk − 0 jkσ jk

+
∑
lm

{
σlm

∞∫
0

dτ
(〈

F̃mk(0)F̃ jl (τ )
〉
e−iElkτ + 〈

F̃mk(τ )F̃ jl (0)
〉
e−iE jmτ

)

− σmk

∞∫
0

dτ 〈F̃ jl (τ )F̃ lm(0)〉e− iElkτ

−σ jm

∞∫
0

dτ 〈F̃ml(0)F̃ lk(τ )〉e−iE jl τ

}
. 106.

Transforming Equation 106 back to the local bridge representation{0, n = 1, . . . ,

N} leads to a set(N + 1)(N + 1) equations of the form

−iEnn′σnn′ − i [V, σ ]nn′ +
∑
n1

∑
n2

Rnn′n1n2σn1n2 = 1

2
(0n + 0n′)σnn′ ;

n, n′ = 0, . . . , N, 107.

where the elements ofR are linear combinations of the integrals appearing in
Equation 106 and where0n = 0

(R)
N δn,N + 0

(L)
1 δn,1. Again, at steady state the first

(n = n′ = 0) equation is replaced by the boundary conditionσ00 = constant. The
remaining(N+1)(N+1)−1 equations constitute a set of linear nonhomogeneous
algebraic equations in which the terms containingσ00 constitute source terms.
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Thus, all elementsσnn′ , and in particularσNN, can be obtained in the formσnn′ =
Unn′σ00, in terms of the fixed populationσ00 in the incoming state|0 > of the
{l} manifold, where the coefficientsUnn′ are related to the inverse of the(N + 1)

(N+1)−1 order matrix of thermal rates. The steady state flux into the{r} manifold
is 0

(R)
N σNN, and the corresponding rate is

k0→R = 0
(R)
N σNN

/
σ00 = 0

(R)
N UNN. 108.

While the general expression forUNN is very cumbersome, involving the inverse
of an (N + 1)(N + 1) − 1 order matrix, numerical evaluation of the resulting
rate and its dependence on coupling parameters, bridge length, and temperature
is an easy numerical task for reasonable bridge lengths. A final technical point
stems from the observation that the resultingk0→R must be proportional to|V10|2,
the squared coupling between the first bridge level and the left continuous mani-
fold. We therefore rewrite Equation 108 in terms of new variablesk′

0→R andU ′
NN,

defined by

k0→R = k′
0→R|V10|2 = 0

(R)
N U ′

NN|V10|2. 109.

We can make contact with results obtained in the athermal case by writing|0〉 =
|k‖, kx〉, wherex is the direction of transmision,k‖ is the momentum in theyzplane,
and(h̄2/2m)(k2

‖ + k2
x) = E‖ + Ex = E0. The transmission coefficientT (E0, k‖)

for electron incident from the left electrode with total energyE0 in channelk‖ is
related tok0→R by

k0→R = kx

mL
T (E0, k‖) = (2πρ(Ex))

−1T (E0, k‖), 110.

whereρ(Ex) is the one-dimensional density of states for the motion in thex
direction. Therefore,

T (E0, k‖) = 2πρ(Ex)k0→R = 0
(L)
1,k‖k

′
0→R, 111.

and the all-to-all transmission at energyE0 is the sum over all channels with energy
E‖ < E0

T (E0) = 0
(L)
1 k′

0→R = 0
(L)
1 0

(R)
N U ′

NN. 112.

Comparing Equation 112 with Equation 98, we see that Equation 112 is the analog
of Equation 38, where, in the thermal case,U ′

NN has replaced|G1N |2.
In the athermal case, the conduction of a junction characterized by a given

transmission coefficient is obtained from the Landauer formula (27). Here the issue
is more complex since, whileT (E0) is the probability that an incident electron
with energyE0 will be transmitted through the molecular barrier, it is obvious
that the transmitted electron can carry energy different fromE0. As an example,
consider the case where the bridge has only one intermediate state, i.e.N = 1.
Within the same model and approximations as outlined above, it is possible (121)
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to obtain the energy-resolved transmission. In the Markovian limit (τc →0 in Equa-
tion 104) the result is

T ′(E0, E) = T0(E0)

[
δ(E0 − E) + (κ/2π)e−β(E1−E0)

(E1 − E)2 + (01/2)2

]
, 113.

[we useT ′ to denote the differential (per unit energy range) transmission coeffi-
cient], where01 = 0

(L)
1 + 0

(R)
1 andT0 is elastic transmission coefficient

T0(E0) = 0
(L)
1 0

(R)
1

(E1 − E0)2 + (01/2)2
.

The total transmission coefficient, including inelastic contribution, is given by

T (E0) =
∫

dET ′(E0, E) = T0(E0)

[
1 + κ

01
e−β(E1−E0)

]
. 114.

In the absence of thermal interactions(κ = 0 in Equation 104),T is reduced toT0,
and the electron is transmitted withE = E0. For a finiteκ we get an additional,
thermally activated, component peaked around the energyE1 of the bridge level.

How will this affect the conduction? It has been argued (see 83) that simple
expressions based on the Pauli principle (e.g. Equations 19 and 33) are not valid
in the presence of inelastic processes, including thermal relaxation. It may still be
used however in the weak metal-bridge coupling limit (see discussion in Section
2.12). Proceeding along this line, an equation equivalent to Equation 33 can be
written

I = e

πh̄

∞∫
0

dE0

∞∫
0

dET ′(E0, E)

× [ f (E0)(1 − f (E + e8)) − f (E0 + e8)(1 − f (E)]. 115.

For small bias and low enough temperature [so thatf (E + e8) ∼ f (E) − e8δ

(E − EF )], this leads to (121)

g(E0) = I

8
= e2

πh̄
T0(E0)

(
1 + (1 − f (E1))

κ

01
e−β(E1−E0)

)
. 116.

The equivalent result for electron-transfer rates is familiar: At zero-temperature,
the rate is determined by a tunneling probability, and at higher temperature an
activated component takes over. For an experimental manifestation of this behavior
(e.g. see 122, Figure 5).

It is also interesting to examine the bridge-length dependence of the trans-
fer rate and the associated conduction. Here analytical results are cumbersome,
but numerical evaluation of the rate (Equation 108), and the transmission coeffi-
cients (Equations 111 and 112), in terms of the system parameters (Hamiltonian
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Figure 6 Finite temperature conduction of a simple tight-binding model of a molecular junction
as a function of bridge lengthN. (See text for details.)

couplings and the parametersκ andτc of Equation 104) is straightforward (118).
Figure 6 shows the conduction (in units ofe2/πh̄) obtained from such a model
calculation usingVB = 0.05 eV, 1EB = EB − EF = 0.2 eV, 0

(L)
l = 0

(R)
N =

0.1 eV, τc = 0, κ = 0.01 eV, plotted against the number of bridge segmentsN
for two different temperatures,T = 300 K and 500 K. An exponential depen-
dence onN, characteristic of the superexchange model, is seen to give way to a
weak bridge-length dependence at some crossover value ofN. Further analysis of
these results (118, 119) reveals that the dependence on bridge length beyond the
crossover may be written in the form(k−1

up + k−1
diff N)−1, wherekup is the rate asso-

ciated with the thermal-activated rate from the Fermi-level into the bridge, whereas
kdiff corresponds to hopping (diffusion) between bridge sites. AsN increases, the
conduction behaves asN−1, indicating Ohmic behavior. This inverse length de-
pendence should be contrasted with nondirectional diffusion, where the rate to
reach a distanceN from the starting position behaves likeN−2. Furthermore,
if other loss channels exist, carriers may be redirected or absorbed with a rate
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TABLE 2 Bridge-length dependence of the transmission rate (118)

Bridge-length
Physical Process (N) dependence

Super exchange e−β ′ N β ′ = 2 ln(VB/1EB)

(small N, large1EB/VB,
large1EB/κB2)

Steady state hopping
(large N, small1EB/VB, N−1

small1EB/kB2)

Nondirectional hopping
(large N, small1EB/VB, N−2

small 1EB/kB2)

Intermediate range (k−1
up + k−1

diff N)−1 kup ∼ (V 2
B κ/1E2)e−1EB/kB2

(intermediate N, small 1EB/VB) kdiff ∼ (4V 2
B /κ)e−1EB/kB2

Steady state hopping+ competing loss e−αN α = √
0B(0B + κ)/2VB

at every bridge site

0B once they populate the bridge, the bridge-length dependence again becomes
exponential and may be writteng ∼ (k−1

up + k−1
diff N)−1e−αN , whereα is related to

this loss rate (13, 123). Table 1 (118) summarizes these results for the Markovian
limit of the thermal-relaxation process.

Experimental observation of the behaviors indicated in Table 2 is not easy since
it is usually not possible to change the length of a molecular bridge without af-
fecting its other properties, e.g. the positions of molecular HOMOs and LUMOs
relative to donor and acceptor energies or an electrode Fermi energy (124). A
nice example (125) of a crossover behavior observed in a LEET experiment (see
Section 6) as a function of thickness of an absorbed molecular layer is seen in
Figure 7. Here electrons are injected into N-hexane films adsorbed on a poly-
crystaline Pt foil at energies below the bottom of the conduction band (∼0.8 eV).
The role of bridge states is here assumed by impurity states in the hydrocar-
bon band gap. Since the energy and localization position of these states is not
known, the observed results cannot be quantitatively analyzed with the model de-
scribed above. However, a crossover from tunneling to hopping behavior is clearly
seen.

3.4.2 Strong Thermal Coupling The weak system-thermal, bath-coupling
model discussed above rests on two approximations: (a) The system-bath in-
teraction can be considered in low order, and (b) the bath degrees of freedom
are essentially unaffected by the electronic process. Using these assumptions has
enabled us to obtain the general characteristics of electron transmission through
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Figure 7 Transmitted current in n-hexane films as a function of thickness for various incident
energies, showing the transition from tunneling to activation-induced transport. (Reproduced from
Reference 125 and used by permission.)

molecular barriers in the presence of barrier-localized thermal interactions. When
the interaction between the electronic system and the underlying bath is stronger,
these assumptions break down, and distortions in the bath configuration induced
by the electronic process can play an important role. One example is the analysis
of Ness & Fisher (114) discussed above, where coupling to phonons increases
the overall transmission because of the existence of a polaron state below the
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conduction band edge of the electronic system. However, because the overall
transmission efficiency depends both on energetics (the polaron state lowers the
effective barrier height) and coupling strength (small nuclear overlaps between
distorted and undistorted nuclear configurations decreases the effective coupling),
the issue is more involved, and depending on details of coupling and frequen-
cies, both enhancement or reduction of transmission probabilities can occur. Simi-
larly, at finite temperatures, the relative importance of the two transmission routes,
tunneling and activated hopping, is sensitive to these details. Relatively simple
results are obtained in the particular limit where the thermal coupling is strong
while the bare electronic-couplingVB is weak. In this case, it may still be as-
sumed that the bath degrees of freedom remain in thermal equilibrium through-
out the process. Taking the bath to be a system of harmonic oscillators,HB =∑

α[(p2
α/2mα) + (mαω2

α/2)x2
α], and takingFn in Equation 101 to be linear in the

coordinatesxα,

Fn = (1/2)
∑

α

Cnαxα 117.

(so that the Hamiltonian used in Equation 100 is similar to the polaron-type Hamil-
tonian used in Equations 74–77 and 88–91), a small polaron transformation is
applied in the form

H′ = UHU−1

U = U1U2 . . .UN

Un = exp(−|n〉〈n|Än)

Än =
∑

α

Änα; Änα = Cnα pα

2mαω2
α

, 118.

leading to the transformed Hamiltonian

H′ = H + HB + F ′ + Eshift

F ′ = VB

N−1∑
n=1

(|n〉〈n + 1|ei (Än+1−Än) + |n + 1〉〈n|e−i (Än+1−Än)
)

Eshift = −1

8

∑
n

∑
α

C2
nα

mαω2
α

|n〉〈n|, 119.

whereH is given by Equations 95–97. IfVB is small, the procedure based on
the Redfield approximation, which leads to Equation 107, can be repeated. Note
that keeping terms only up to second order in F′ still includes terms of arbitrary
order in the system-bath coupling. This procedure leads to (D Segal, A Nitzan,
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unpublished result)

σ̇ jk = − i ω jkσ jk − iVB

∑
m

(〈F ′
jm〉σmk − 〈F ′

mk〉σ jm
)

+ V2
B

∑
l ,m

σlm

∞∫
0

dτ
(〈F̃mk(0)F̃ jl (τ )〉e−iElkτ + 〈F̃mk(τ )F̃ jl (0)〉e−iE jmτ

)

− σmk

∞∫
0

dτ 〈F̃ jl (τ )F̃ lm(0)〉e−iElkτ − σ jm

∞∫
0

dτ 〈F̃ml(0)F̃ lk(τ )〉e−iE jl τ ,

120.

where F̃ = F ′ − 〈F ′〉. The terms in the first line of Equation 120 account for
coherent motion with a modified coupling operator, while the terms proportional
toVB

2describe incoherent hopping between bridge sites. An important new element
in this formulation is the temperature-dependent renormalization of the coupling
responsible for the coherent transmission. Using Equation 119 results in

〈F ′〉 = exp(−ST )

ST = (1/2)
∑

α

d2
nα(2nα + 1)

nα = (exp(ωα/kBT) − 1)−1

d2
nα = (Cnα − Cn+1,α)2

8mαω3
α

, 121.

so that coherent transfer becomes less important at higher temperatures. This
reduction in the coherent hopping rate is associated with the small overlap between
bath degrees of freedom accommodating the electron at different sites. In fact,〈F ′〉
is recognized as the thermally averaged Franck-Condon factor associated with the
electron transfer between two neighboring bridge sites. In terms of the spectral
density

J(ω) = π

2

∑
α

(Cnα − Cn+1,α)2

mαωα

δ(ω − ωα) 122.

(independent ofn if the bridge sites are equivalent), we have

ST = 1

8π

∞∫
0

J(ω) coth(ω/2kBT)

ω2
dω

ω→0−−−→
finite T

kBT

4π

∞∫
0

J(ω)

ω3
dω. 123.

Depending on the spectral density, this integral may diverge. More specifically, if
J(ω) ∼ ωs with s < 2, ST diverge at any finite temperature and the coherent route
is blocked. In other cases, the coherent route quickly becomes insignificant with
increasing temperature.
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We have extended this discussion of thermal relaxation and dephasing effects in
bridge-assisted electron transport both because these effects are inherently impor-
tant in determining transport and conduction properties of molecular junctions,
and because the issue of heat generation in these current-carrying nanostructures
is intimately related to these relaxation phenomena. As we have seen, this problem
is far from being solved and more research along these lines can be expected.

4. ELECTRON TUNNELING THROUGH WATER

Electron tunneling through water is obviously an important element in all electron-
transfer processes involving hydrated solutes and in many processes that occur
in water-based electrochemistry. Still, only a few systematic experimental studies
of the effect of the water structure on electron-transfer processes have been done
(22, 24, 126–131). Porter & Zinn (24) have found, for a tunnel junction made
of a water film confined between two mercury droplets, that at low (<1 nm)
film thickness, conduction reflects the discrete nature of the water structure. Nagy
(130) has studied STM current through adsorbed water layers and has found that the
distance dependence of the tunneling current depends on the nature of the substrate
and possibly indicates the existence of resonance states of the excess electron in
the water layer. Vaught et al (129) have seen a nonexponential dependence on tip-
substrate distances of tunneling in water, again indicating that at small distances
water structure and possibly resonance states become important in affecting the
junction conductance. Several workers have found that the barrier to tunneling
through water is significantly lower than in a vacuum for the same junction geo-
metry (22, 126–128, 130, 131). The observed barrier is considerably lower than the
threshold observed in photoemission into water (132) and, in contrast to tunneling
in a vacuum, cannot be simply explained by image effects (24).

The present section focuses on attempts (133–138) to correlate these observa-
tions with numerical and theoretical studies. In the spirit of most calculations of
electron-transfer rates (as in Section 2) and of earlier dielectric continuum modes
that neglect water structure altogether, we assume at the outset that in films con-
sisting of a few monolayers, transmission is dominated by elastic processes. The
discussion in Section 3 emphasizes the need to justify this assumption. Since we
are dealing with negative-energy (tunneling) processes, electronic excitations of
water molecules by the transmitting electron can be ruled out. In addition, pho-
toemission through thin water films adsorbed on metals indicates that inelastic
processes associated with the water’s nuclear motion contributes relatively weakly
at such energies (139). Numerical simulations of subexcitation electron transmis-
sion through 1–4 water monolayers adsorbed on Pt (1,1,1) (140) are in agree-
ment with this observation.14 Theoretical calculations of inelastic tunneling (144)

14It should be kept in mind that energy transfer from the transmitting electron to water,
nuclear degrees of freedom, the mechanism responsible for capturing and localizing the
electron as a solvated species, must play an important role for thicker layers (141–143).
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similarly show that sufficiently far from resonance, the overall transmission is only
weakly affected by inelastic processes. In both cases, this can be rationalized by
the short interaction times (see 140; see also Section 3.1). In such cases, a static
medium assumption appears to provide a reasonable starting point for discussing
the overall transmission, i.e. we assume that the transmission event is completed
before substantial nuclear motion takes place. The computation of the transmis-
sion probability can therefore be done for individual static water configurations
sampled from an equilibrium ensemble, and the results averaged over this ensem-
ble. This assumption is critically examined below. It should be emphasized that
while solvent nuclear motion is slow relative to the transmission timescale, solvent
electronic response (electronic polarizability) is not. We return to this issue below.

In Section 2 we have summarized the theoretical and computational approaches
available for studying electron transfer and electron transmission. The following
account (see also 137) summarizes recent computational work on electron trans-
mission through water that uses the pseudopotential method (133–136, 138). Here
the detailed information about the electronic structure of the molecular spacer is
disregarded and replaced by the assumption that the underlying electron scattering
or tunneling can be described by a one-electron potential surface. This potential
is taken to be a superposition of the vacuum potential experienced by the elec-
tron and the interaction potential between an excess electron and the molecular
spacer. The latter is written as a sum of terms representing the interaction between
the electron and the different atomic (and sometimes other suitably chosen) cen-
ters. The applicability of this method depends on our ability to construct reliable
pseudopotentials of this type. In the work described below, we use the electron-
water pseudopotential derived and tested in studies of electron hydration (145);
[for an alternative pseudopotential, see Rossky & Schnitker (145a)], and a modi-
fied pseudopotential that includes the many-body interaction associated with the
water electronic polarizability.

With such a potential given, the problem is reduced to evaluating the transmis-
sion probability of an electron when it is incident on the molecular layer from one
side only. In recent years, various time-dependent and time-independent numerical-
grid techniques were developed for such calculations. In the time-dependent mode,
an electron wavepacket is sent toward the molecular barrier and propagated on
the grid using a numerical solver for the time-dependent Schr¨odinger equation.
This propagation continues until such timetf at which the collision with the bar-
rier has ended, i.e. until the probability that the electron is in the barrier region,∫

barrier |ψ(r , t)|2dr , has fallen below a predetermined margin. Since only the re-
sult at the end of the time evolution is needed, a propagation method based on the
Chebychev polynomial expansion of the time-evolution operator (146) is particu-
larly useful.

In the time-independent mode, Nitzan and coworkers (137, 147) have ap-
plied the spatial-grid–based, absorption-boundary condition, Green’s-function
(ABCGF) technique described in Section 2.7 (Equations 60 and 63). Takingx to
be the tunneling direction, periodic boundary conditions are used in they–zplane
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parallel to the molecular layer, and the absorption function,ε(r) = ε(x), is taken
to be different from zero near the grid boundaries in the z direction, far enough
from the interaction region (i.e. the tunneling barrier), and gradually diminishing
to zero as the interaction region is approached from the outside. The stability of
the computed transmission to moderate variations of this function provides one
confidence test for this numerical procedure. The cumulative microcanonical
transition probability and the one-to-all transition rates are calculated as outlined in
Section 2.7. In addition, exact outgoing and incoming wavefunctions9+

i and9−
f ,

which correspond to initial and final states (eigenfunctions of H0 with energy E)
φ i andφf, respectively, can be computed from

ψ+
i = 1

E − H + i ε
iεφi

124.
ψ−

f = 1

E − H − i ε
(−iε)φ f ,

and provide a route for evaluating state-selected transition probabilities,Sif =
〈ψ−

f |ψ+
i 〉. The evaluation of these expressions requires (a) evaluating the Hamil-

tonian matrix on the grid, and (b) evaluating the operation of the corresponding
Green’s operator on a known vector. As in most implementations of grid Hamil-
tonians, the resulting matrix is extremely sparse, which suggests the applicability
of Krylov space-based iterative methods (148).

Although considerable sensitivity to the water structure is found in these studies,
water layers prepared with different reasonable water-water interaction models
have similar transmission properties (134, 135). On the other hand, the results
are extremely sensitive to the choice of the electron-water pseudopotential. Most
previous studies of electron solvation in water represent the electron-water pseu-
dopotential as a sum of two-body interactions. Studies of electron hydration and
hydrated-electron spectroscopy show that the potentials developed for this pur-
pose (145) could account semiquantitatively for the general features of electron-
solvation structure and energetics in water and water clusters. Taking into account
the many-body aspects of the electronic polarizability contributions to the electron-
water pseudopotential (149) has led to improved energy values that were typically
different by 10%–20% from the original results. In contrast, including these many-
body interactions in the tunneling calculation is found to make a profound effect
(see below), an increase of∼2 orders of magnitudes in the transmission probability
of electron through water in the deep tunneling regime. There are two reasons for
this. First, as already noted, tunneling processes are fast relative to characteristic
nuclear relaxation times. The latter is disregarded, leaving the electronic polari-
zability as the only solvent response in the present treatment. Second, variations of
the interaction potentials enter exponentially into the tunneling probability, mak-
ing their effects far larger than the corresponding effect on solvation. It should be
kept in mind that including the solvent electronic polarizability in simulations
of quantum mechanical processes in solution raises some conceptual difficul-
ties. The simulation results described below are based on the approach to this
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problem described elsewhere (133, 135). In what follows, modelB refers to the
the corrected electron-water pseudopotential used in these papers whereas model
A refers to the original pseudopotential of Barnett et al (145) [see the original pub-
lications 133–137 for details of the water-water and water-metal potentials used
in these calculations].

The results described below illustrate the principal factors affecting the trans-
mission process: (a) the dimensionality of the process, (b) the effect of layer
structure and order, (c) the effect of resonances in the barrier, and (d ) the signature
of band motion. The simulations consist of first preparing water layer structures
on (or between) the desired substrates using classical MD simulations, then setting
the Schr¨odinger equation for the electron-transmission problem on a suitable grid,
and finally, computing the transmission probabilities.

Figure 8 shows the results of such calculations for the transmission probability
as a function of the incident electron energy. The results for the polarizable model
(B) are seen to be in remarkable agreement with the expectation based on the
lowering of the effective rectangular barrier by 1.2 eV, whereas those obtained using
modelA, which does not take into account the many-body nature of the interaction
associated with the water electronic polarizability, strongly underestimates the
transmission probability. In fact, modelA predicts the transmission probability in
water to be lower than in a vacuum, in qualitative contrast to our observations.

Next, consider the effect of orientational ordering of water dipoles on the metal
walls. Water adsorbs with its oxygen on the metal surface and the hydrogen atoms
pointing away from it, leading to net surface dipole density directed away from
the wall. Simulations yield∼5 · 10−11 Coulomb/m for this density. (I. Benjamin,
A. Nitzan, unpublished data). This is an important factor in the reduction of the
surface-work function of many metals due to water adsorption (132, 150). The
sparse-dotted line in Figure 8 shows the transmission probability for a model
obtained from modelA by eliminating the attractive oxygen/metal-wall interac-
tion, thereby destroying the preferred orientational ordering at the water-metal
interface. We see that the existence of a surface dipole in the direction that re-
duces the work function is associated with a larger transmission probability, as
expected.

Traditional approaches to electron transfer are based on a continuum dielectric
picture of the solvent, where the issue of the tunneling path rarely arises. Barring
other considerations, the exponential dependence of tunneling probabilities on the
path length suggests that the tunneling process will be dominated by the shortest
possible, i.e. one-dimensional, route. A closer look reveals that electron tunnel-
ing through water is inherently three-dimensional (e.g. see 133, Figure 7). An
interesting demonstration of the importance of the three-dimensional structure of
the water layer in determining the outcome of the tunneling process was given in
Benjamin et al (136), where the transmission probability was computed, using the
configuration of Figure 8 and modelB at room temperature, for water configura-
tions prepared in the presence of a strong electric field pointing along the tunneling
(x) axis. In such layers, the water dipoles point on the average along this axis. The
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Figure 8 Electron transmission probability as a function of the incident energy. Shown are
one-to-all transmission results with the electron incident in the direction normal to the water
layer. These results are averaged over six equilibrium water configurations sampled from an
equilibrium trajectory for the water system. This system contains 192 water molecules confined
between two walls separated by 10Å, with periodic boundary conditions, with period 23.5Å in
the directions parallel to the walls, at 300 K. These data correspond to three water monolayers
between the walls.Thin dashed line: Results from model A (see text).Full line: Results from model
B. Also shown are the corresponding results for tunneling through a vacuum, i.e. through a bare
rectangular potential barrier of height 5 eV (thick-dotted line), and through a similar barrier of
height 3.8 eV (thick-dashed line), which corresponds to the expected lowering of the effective
barrier for tunneling through water. Thethin-dotted lineis the transmission probability computed
for modelA modified by eliminating the attractive part of the water-metal interaction, thereby
eliminating the preferred orientational ordering of the water dipoles at the water-metal interface.
(Reproduced from Reference 135 and used by permission.).

electric field was removed during the subsequent tunneling calculation. The com-
puted one-to-all transmission for electrons incident in thexdirection shows several
orders of magnitude difference between the probabilities calculated for electron in-
cident in the direction of the induced polarization and against this direction. Micro-
scopic reversibility implies that the corresponding one-dimensional process should
not depend on the tunneling direction, positive or negative, along thex axis. The
observed behavior is therefore associated with the three-dimensional nature of the
process. It shows that the angular distribution associated with the transmission
through such layers depends strongly on the transmission direction and suggests
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that asymmetry in current-voltage dependence of transmission current should exist
beyond the linear regime.

Next consider the possibility of resonance-assisted tunneling. Such resonances
are found (138) in a range of∼1 eV below the 5 eV vacuum barrier, and their
existence correlates with the observation of weakly bound states of an electron
in neutral configurations of bulk water. Mosyak et al (135) have found that such
states appear in neutral water configurations in both modelsA andB; however,
only modelB shows such states at negative energies. Moreover, these states are
considerably more extended in systems described by modelB compared with the
corresponding states of modelA (135). The possible effect of bound electron states
in water on electron-transmission probability through water was raised in the past
(151). Peskin et al (138) have recently identified the source of the resonances seen
in our simulations as transient vacancies in the water structure. We emphasize
again that because these results were obtained for static water configurations, their
actual role in electron transmission through water is yet to be clarified.

The effective barrier to electron tunneling in water has been the subject of many
discussions in the STM literature (22, 128, 131, 152). Although the absolute num-
bers obtained vary considerably depending on the systems studied and on experi-
mental setups and conditions, three observations can be made. (a) Tunneling is
observed at large tip-surface distances, sometimes exceeding 20Å (22, 131, 152).
(b) The barrier, estimated using a one-dimensional model from the distance de-
pendence of the observed current, is unusually low, of the order of 1 eV in systems
involving metals with work functions of 4–5 eV. (c) The numbers obtained scat-
ter strongly: The estimated barrier height may be stated to be 1± 1 eV. (d ) The
apparent barrier height appears to depend on the polarity of the bias potential.

It should be kept in mind that even in a vacuum STM, the barrier to tunneling
is expected to be lower than the work functions of the metals involved because of
image effects associated with the fast electronic response of the electrodes (29).
Nevertheless, the reduction of barrier height in the aqueous phase seems to be con-
siderably larger. Taking the vacuum barrier as input in our discussion, let us con-
sider the possible roles of the solvent. These can arise from the following factors: (a)
the position, on the energy scale, of the “conduction band” of the pure solvent (by
“conduction band” we mean extended electronic states of an excess electron in the
neutral solvent configuration); (b) the effect of the solvent on the electrode work-
function; (c) the hard cores of the atomic constituents (in the present case the water
oxygens, which make a substantial part of the physical space between the electrodes
inaccessible to the electron); and (d ) the possibility that the tunneling is assisted by
resonance states supported by the solvent. Such resonances can be associated with
available molecular orbitals—this does not appear to be the case in water—or with
particular transient structures in the solvent configurations, as discussed above.

Factorsb–d are usually disregarded in theories of electron transfer, whereas a
common practice is to account for the first factor by setting the potential barrier
height at a value, below the vacuum level, determined by the contribution of the
solvent electronic polarizability. This value can be estimated as the Born energy of
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a point charge in a cavity of intermolecular dimensions, say a radius of∼5 au, in a
continuum with the proper dielectric constant, here the optical dielectric constant
of water,ε∞ = 1.88. This yieldse2(2a)−1[ε −1

∞ −1] ∼ −1.3 eV, the same order as
the result of a more rigorous calculation by Schmickler & Henderson (153) and in
agreement with experimental results on photoemission into water (132). It should
be noted that this number was obtained for an infinite bulk of water and should be
regarded as an upper limit for the present problem.

The simulations described above shed some light on the roles played by the other
factors listed above. First, we find that lowering the metal work function by the
orientational ordering of water dipoles at the metal surface does affect the tunneling
probability, as discussed above and shown in Figure 8. Second, the occupation of
much of the physical space between the electrodes by the impenetrable oxygen
cores strongly reduces the tunneling probability. In fact, if these two factors exist
alone, the computed tunneling probability is found to be considerably lower than
in the corresponding vacuum process (see 133, Figure 7). Even including the
effect of the water electronic polarizability (i.e. attractiver−4 terms) in the two-
body electron-water pseudopotential (modelA), it is not sufficient to reverse this
trend, as seen in Figure 8. Taking into account the full many-body nature of this
interaction is found to be essential for obtaining the correct qualitative effect of
water, i.e. barrier lowering relative to vacuum.

The estimate of the magnitude of this lowering effect in our simulations can be
done in two ways. One is to fit the absolute magnitude of the computed transmission
probability to the result obtained from a one-dimensional rectangular barrier of
width given by the distancesbetween the electrodes (134). This is done in Figure 9
for systems with 1–4 monolayers of water (s = 3.6, 6.6, 10.0, 13.3̊A).15 The fol-
lowing points should be noted:

(1) The effective barrier to tunneling computed with the fully polarizable
modelB is reduced by at least 0.5 eV (from the bare value of 5 eV used in
these simulations) once a bulk has been developed in the water layer,
i.e. once the number of monolayers is larger than two.

(2) The equivalent calculation done with modelA, in which water
polarizability is accounted for only on the two-body level, yields an
effective barrier higher than the vacuum barrier.

(3) For the very thin layers studied, the effective barrier height depends on the
layer thickness. This behavior [which supports a recent experimental
observation by Nagy (130)] is expected to saturate once a well-defined
bulk is developed.

Following common practice in STM studies, another way to discuss the effec-
tive simulated barrier is to fit the distance dependence of the observed tunneling

15It should be emphasized that these results were not statistically averaged over many water
configurations, so the absolute numbers obtained should be taken only as examples of a
general qualitative behavior.
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Figure 9 Effective one-dimensional barrier height for electron transmission through water, dis-
played as a function of number of water layers.Solid, dotted, anddashed linescorrespond to
modelsA andB, and to the bare (5 eV) barrier, respectively. See text for details. (Reproduced from
Reference 134 and used by permission.)

probability to the analytical result for a rectangular barrier. This practice can yield
very low apparent barriers in cases where tunneling is influenced by resonance
structures (137). Moreover, since the existence and energies of these resonances in
water depend on local structures that evolve over time, it is possible that the charac-
teristic scatter of data that appears in these measurements (22, 128, 131, 152) may
arise not only because of experimental difficulties but also from intrinsic system
properties.

The existence in water of transient structures that support excess electron reso-
nances and the possible implications of these resonances in enhancing the tunneling
probability, and the apparent barrier height, raises again the issue of timescales. In
particular, the lifetimes of these resonance states is of considerable interest, since
they determine the duration of the electron capture by the water film and, as a
consequence, the possibility that water dynamics and thermal relaxation become
important on this timescale. Peskin et al (138) have determined these lifetimes



P1: GDL

March 30, 2001 14:49 Annual Reviews AR127-23

738 NITZAN

by a direct evaluation of the complex eigenvalues associated with the correspond-
ing resonance structures, using a filter diagonalization method with the imaginary
boundary-conditions Hamiltonian. The resulting eigenvalues have imaginary parts
of the order∼0.05 eV, implying lifetimes of the order≤10 fs. An alternative way to
probe the dynamics of electron tunneling in water is by evaluating the correspond-
ing traversal times (see Section 3.1). Here the timescale for possible interaction
between the excess electron and barrier motions can be determined both near and
away from resonance energies. Galperin et al (94) have applied the internal clock
approach of Section 3.1 to this problem, starting from the one-to-all transmission
probability, shown in Equation 63, written in the form

σ = 1

π
〈φin(E)|ε̂∗

inĜ
†
ε̂outĜε̂in|φin(E)〉, 125.

whereφin denotes an incoming state in the reactant region andεin andεout are the
absorbing boundary functions in the reactant (incoming) and product (outgoing)
regions, respectively. In the present application, the electron is taken to have two
internal states, so that ifx is the tunneling direction,φin = (

eikx/
√

ν
) ( 1

0

)
. The

Green’s operator is given bŷG = (E − Ĥ0 + i (ε̂in + ε̂out))
−1 with Ĥ0 replaced by

Ĥ = Ĥ0

(
1 0
0 1

)
+ λF̂(x)

(
0 1
1 0

)
, 126.

whereλ is a constant and whereF(x) = 1 in the barrier region and 0 outside it.
The approximate scattering wavefunction,

|ψ(E)〉 = iĜ(E)ε̂in|φin(E)〉 =
(

ψ1(E)

ψ2(E)

)
, 127.

is evaluated using iterative inversion methods (148). The transmission probabilities
into the|1〉 and|2〉 states are obtained from

Ti (E) = 〈ψi (E)|ε̂out|ψi (E)〉; i = 1, 2. 128.

Ti are equivalent to|ci |2, whereci (i = 1, 2) are defined above in Equation 73.
Accordingly,

τ(E) = limλ→0

(
h̄

|λ|

√
T2(E)

T1(E)

)
. 129.

Figures 10 and 11 (94) display some results of this calculation. Figure 10
shows calculated traversal times as functions of incident electron energy for an
electron transmitted through a layer of three water films between two platinum
electrodes (the distance between the electrodes isd = 18.9 au. Shown isτ/τ 0
for several configurations of this system, whereτ 0 is the tunneling time associ-
ated with the bare vacuum barrier (same geometry with no water). The transient
nature of the water structures that give rise to the resonance features is seen here.
Note that the difference between different configurations practically disappears



P1: GDL

March 30, 2001 14:49 Annual Reviews AR127-23

ELECTRON TRANSMISSION 739

Figure 10 The ratioτ/τ0 (see text) computed for different static configurations of (a) three and
(b) four monolayer water films, displayed against the incident electron energy. Theinsetshows an
enlarged vertical scale for the deep tunneling regime. (Reproduced from Reference 94 and used
by permission.)
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Figure 11 The tunneling traversal time (full line; left vertical scale) and the transmission prob-
ability (dotted line; right vertical scale) computed as functions of incident electron energy for one
static configuration of the 3-monolayer water film. (Reproduced from Reference 94 and used by
permission.)

for energies sufficiently below the resonance regime, where the ratio between
the time computed in the water system and in the bare barrier is practically con-
stant, approximately 1.1. Figure 11 shows, for one of these configurations, the
tunneling time and the transmission probability, both as functions of the incident
electron energy. We see that the energy dependence of the tunneling time fol-
lows this resonance structure closely. In fact, the times (3–15 fs) obtained from
the peaks in Figures 10 are consistent with the resonance lifetimes estimated in
Peskin et al.

We conclude this discussion with two more comments. First, in the above
analysis, the possibility of transient “contamination” of the tunneling medium
by foreign ions has been disregarded. Such ions exist in most systems used in
underwater STM studies, and the appearance of even one such ion in the space
of 10–20Å between the electrodes can have a profound effect on the tunneling
current behavior. This may add another source of scatter in the experimental results.
Second, as discussed, changes in the water structure between the electrodes may
appear also as bias-dependent systematic effects. Thus, the asymmetry in the bias
dependence of the barrier height observed in Pan et al (128), Hahn et al (22),
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and Hong et al (131) may be related to the asymmetric transmission properties of
orientationally ordered layers.

5. OVERBARRIER TRANSMISSION

Our discussion so far has focused on electron-transmission processes that at
zero-temperature can take place only by tunneling. This section provides a brief
overview of transmission processes where an electron incident on a molecular
barrier carries a positive (above-ground–state vacuum) energy. It should be em-
phasized that this in itself does not mean that transmission can take place classically.
If the incident energy is in the band gap of the molecular spacer, zero-temperature
transmission is still a tunneling process. Still, this type of phenomenon is distinct
from those discussed in the other parts of this review, for several reasons. First,
positive-energy transmission (and reflection), essentially scattering processes, are
amenable to initial-state control and to final-state resolution that are not possible
in negative-energy processes. Second, a positive-energy electron interacts with a
large density of medium states; therefore, the probability for resonance or near
resonance transfer is considerably larger, implying also a larger cross-section for
dephasing and inelastic energy loss. Third, at this range of energies, conventional
quantum-chemistry approaches as well as pseudopotentials derived from low-
energy electronic-structure data can be very inaccurate. Finally, at high enough
energies, electronic excitations and secondary electron generation become impor-
tant factors in the transmission mechanism. For the last two reasons the numerical
approaches described in Section 2.6–8 are not immediately applicable.

The effect of adsorbates on photoelectrons emitted from surfaces has been
studied for almost a century (154, 155). These experiments were partially motivated
by their practical ramifications whereby the surface work function was modified by
the adsorbate (156). Recently, the development of tunable ultraviolet light sources
has enabled studies of energy-resolved photoelectron spectroscopy. This eventually
led to studies of photoelectron energy distribution for photoelectrons produced
from metal surfaces covered with self-assembled monolayers of organic molecules,
or organized organic thin films (147, 157–162). These films are prepared either with
the Langmuir-Blodgett technique (163) or by self-assembly from vapor or solution.
One of the earlier experiments of this kind was the measurement of transmitted
electron energy distribution for photoelectrons produced from a Pt (111, 111a)
surface covered with several layers of water (139). The transmission probability
decreased exponentially with increasing numbers of water layers; however, this
number does not affect the energy distribution of the emitted electrons, indicating
that transmission in this system is independent of the electron energy and that
inelastic energy loss is small. These results should, however, be regarded with
caution in view of LEET data (142) that indicate that energy loss from a transmitted
electron to water nuclear motion may be quite efficient. The latter observation is
supported by estimates (143) of the distance (20–50Å) traversed by electrons
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photoejected into water at subexcitation energies before their capture to form the
precursor of solvated electrons.

Unlike water, the electron affinityA = −V0 of hydrorcarbon layers is negative,
i.e. their LUMOs, or in the language of solid state physics, the bottom of their
electron-condition band is above vacuum energy [V0 = 0.8 eV for bulk hydrocar-
bons (164)]. Indeed, a threshold for electron photoemission from silver, covered
with a monolayer of cadmium stearate [CH3(CH2)16COO−]2Cd2+, or arachdic acid
CH3(CH2)16COOH, is observed (159). Above 0.8 eV, photoemission from these
surfaces proceeds with efficiency close to one, turning down again at higher ener-
gies. Oscillations in the transmission probability through similar films as a function
of the initial electron energy were interpreted in terms of the electronic-band struc-
ture of the film (147). This interpretation gains further support from the observation
of the large sensitivity of the transmission probability to the film structure in the
lateral dimension (161), and from the strong effect of film ordering (161). This does
not exclude what is often taken to express a single molecule effect—a strong pref-
erence of the phtoemission to be directed along the axis of the molecular adsorbate
(158). Finally, using chiral molecular self-assembled monolayers (L or D polyala-
nine polypeptides) has revealed that electron transmission of spin-polarized elec-
trons depends, with a high degree of selectivity, on the chirality of the layer (162).

Another way to study electron interactions with molecular layers is to send an
electron beam from the vacuum side onto a molecular film condensed on a suit-
able, usually metallic, substrate. In LEET spectroscopy developed by Sanche and
coworkers (141), the electron-transmission spectrum is measured by monitoring
the current arriving at the metal substrate as a function of the incident electron en-
ergy and direction. Similarly, the reflected electron beam can be analyzed with re-
spect to energy and angular distribution, yielding electron-diffraction data, energy-
loss spectra, and energy-loss excitation spectra. The same experimental setup can
be used to study the effect of electron trapping, electron-stimulated desorption, and
electron-induced chemical reactions on the molecular films. [For a recent review
of these types of studies and references to earlier work, see Sanche (141).] Here
we focus on observations from LEET experiments that are relevant to our present
subject. First, the prominence of the elastic and quasielastic component of the
transmitted intensity, observed in most experiments of this kind, is in agreement
with the photoemission experiments discussed above. Second, a threshold of a few
tens of electron volts (relative to the vacuum level) is seen for transmission through
alkane and rare gas layers, indicating negative electron affinities of these layers and
providing an estimate for the position of the bottom of the layers’ conduction bands.
Third, conduction peaks below this threshold are attributed to tunneling assisted by
local states inside the gap (125). This is the analog of the bridge-assisted tunneling
discussed in Section 2, except that the film constitues a three-dimensional barrier in
which the local states are distributed randomly in position and energy. As discussed
in Section 3.4, thermal relaxation and dephasing processes manifest themselves
in a characteristic thickness dependence of the transmission probability as the
processes change from tunneling to hopping dominated with increasing barrier
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width (see Figure 7). Fourth, the electron transmission spectra closely reflects the
band structure of the corresponding layer. This should not be taken as evidence for
ballistic transport, in fact this observation holds only for the inelastic components
of the emission intensity. Rather, the electron propagation through the molecular
environment is viewed as a sequence of scattering events, with cross-sections that
are proportional to the density of available states (165). The resulting averaged-
mean free path is therefore inversely proportional to the density of states at an
energy that (as long as the absolute energy loss is small) may be approximated
by the incident energy. Finally, the transmission can be strongly affected by reso-
nances, i.e. negative ion formation. This in turn may greatly increase the probability
for inelastic energy loss (141). These processes are observed in the high-resolution
electron energy-loss spectroscopy, by monitoring the energy of reflected electrons,
but they undoubtedly play an equally important part in the transmission process.

As already mentioned, while the theoretical methods discussed in previous sec-
tions of this review are general, their applicability to electron transmission in the
positive energy regime needs special work because standard quantum-chemistry
calculations usually address negative energy regimes and bound electronic states,
and because pseudopotentials are usually derived from fitting results of such
ab initio calculations to analytical forms based on physical insight. Model cal-
culations that demonstrate some of the concepts discussed above are shown
in Figures 12 and 13 (147). Figure 12 compares the transmission probability
(“one to all,” with the incident electron perpendicular to the barrier) through a
one-dimensional rectangular barrier of height 3 eV and width 1.2 nm as a function
of the incident electron energy measured relative to the barrier top with the trans-
mission through a three-dimensional slab of four Ar layers cut out of an Ar crystal
in the{100} direction. The latter results are obtained with a spatial-grid technique
using the electron-Ar pseudopotential of Space et al. (166). The oscillations of the
dotted line in Figure 12 are interference patterns associated with the finite width of
the layers. The full line in Figure 12 also shows such oscillations, but in addition, a
prominent dip above 4 eV corresponds to a conduction band gap of this thin-ordered
layer. The transmission through the disordered layer (dashed line) is considerably
less structured (smoother shapes should be obtained with more configurational
averaging); in particular, the dip associated with the bandgap has largely disap-
peared. Figure 13 compares the transmission (one-to-all) versus electron energy
for an electron incident in the normal direction on ordered Ar films made of 2, 4,
and 6 atomic monolayers (prepared by cutting them off an Ar crystal, as described
above). Already at six-layer thickness, the observed transmission dip is very close
to its bulk value, indicating that the band structure is already well developed.

These calculations investigate transmission through static nuclear structures
and consequently cannot account for thermal relaxation and dephasing effects. In
the other extreme limit one uses stochastic models (167) that become accurate
when the molecule film is thick enough so that the electron goes through multi-
ple scattering events before being transmitted through or reflected from the film.
Such an approach has been used (141, 168) to describe the energy distributions of
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Figure 12 Dotted line: Transmission probability through one-dimensional rectangular barrier
characterized by height of 3 eV and width of 12Å, as a function of incident electron energy
measured relative to the barrier top.Full line: Electron transmission through a slab made of four
Ar layers, cut out of an FCC Ar crystal in the{100} direction.Dashed line: Same results obtained
for a disordered Ar slab, obtained from the crystalline layer by a numerical thermal annealing at
400 K next to an adsorbing wall using molecular dynamics propagation. The results shown are
averaged over four such disordered Ar configurations (see 147 for more details). (Reproduced
from Reference 147 and used by permission.)

electrons reflected from molecular films and their relation to the density of excess
electron states in the film.

6. CONCLUSIONS AND OUTLOOK

This review has described the current status of theoretical approaches to electron
transmission and conduction in molecular junctions. In particular, Section 2 con-
stitutes an account of theoretical approaches to this problem for static junctions,
whereas Section 3 discusses approaches that focus on dephasing and thermal re-
laxation effects. It is important to note that even though our methodology follows
a stationary, steady state viewpoint of all processes studied, the issue of relative
timescales of different processes has played a central role in our analysis.

Current studies of molecular junctions focus on general methodologies on the
one hand and on detailed studies of specific systems on the other. We have described
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Figure 13 The computed transmission probabilities, vs electron energy, for an electron incident
on slabs cut out of an FCC Ar crystal in the{100} direction. Shown are transmission probabilities vs
incident electron energy through slabs made of two monolayers (dotted line), four monolayers (full
line), and six monolayers (dashed line). (Reproduced from Reference 147 and used by permission.)

in detail recent computations of electron transmission through water layers and
have described other studies on prototypes of molecular wires. Two imporant
classes of molecular wires have now become subjects of intense research, even de-
velopment effort. These are DNA wires and carbon nanotubes. Although the gene-
ral principles discussed in this review apply also to these systems, the scope of
recent research on special structure-function properties of these wires merits a
separate review.

Returning to theoretical issues, we have outlined some open problems in the
methodology of treating these many-body, strongly interacting, nonequilibrium
open systems. One additional direction not covered is the possibility of controlling
the operation of such junctions using external forces (as opposed to control of
function by varying the structure). Several recent studies point out the possibility of
controlling transport processes by external fields (169). The specific and selective
nature of molecular optical response make molecular junctions strong potential
candidates for such applications.

In conclusion, electron transmission and conduction processes in small molec-
ular junctions combine the phenomenology of molecular electron transfer with
structural problems associated with design and construction of such junctions, and
with the need to understand their macroscopic transport properties. In addition, the
potential technological promise suggests that research in this area will intensify.
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