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Abstract 
Theory of energy transfer interactions between a pair of two level molecules in the molecular 
nanojunction including surface plasmon (SP) dressed interaction of plasmonic nanostructure, 
replicating metallic leads is presented. Results on the modification of bare dipolar interaction, 
known to be responsible for molecular energy transfer processes, in the proximity of metallic 
nanosystem are presented. Specifically, the manuscript includes theoretical investigation of 
nanosphere (NSP) monomer, nanoshell (NSH) monomer, and coupled nanosphere pair (dimer) 
based nanosystems. Closed form analytical expressions for NSP and NSH structures tailored for 
molecular nanojunction geometry are derived in the theoretical framework of multipole spectral 
expansion (MSE) method, which is straightforwardly extendible to dimers and multimers. The role 
of size and dielectric environment on energy transfer is investigated and interpreted. Theory predicts 
that the monomer and dimer both enhance the dipolar interaction, yet, dimer geometry is favorable 
due to its spectral tuning potential originated from plasmon hybridization and true resemblance with 
typical molecular nanojunctions.  
 
Keywords: Plasmonic nanostructure, surface plasmon, nanoshell, energy transfer, exciton, dipole,   
    molecular nanojunction, nanoparticle dimer. 

1.  Introduction 
 Metallic nanostructures (MNSs) have found immense real life applications in e.g., molecular 
spectroscopy, sensing, detection, medical diagnostics, optoelectronic integration etc., to name only a 
few. Extensive applications and multitude of fascinating nano-regime phenomena linked to MNSs 
primarily originate from their ability to enhance and concentrate electromagnetic field (EMF) by 
virtue of surface plasmon (SP) excitation, the quanta of collective free electron oscillations [1]. 
Continuum of already known applications in conjunction with the scope of tremendous unexplored 
potential has given an ever increasing impetus to the theoretical as well as experimental 
investigation of variety of MNSs, including but not limited to spherical, spheroidal, cubic, rods, star, 
and triangular prisms [2]. Isolated spherical metallic nanoparticle and coupled metallic nanoparticle 
pair (dimer) has attracted a great deal of attention to investigate various phenomena occurring in the 
world of plasmonics. In addition to the nanoparticle monomer, coupled nanoparticles have also been 
widely investigated and proved to be useful in e.g., surface enhanced Raman scattering (SERS), 
nano-scale optical wave-guiding, detection, nanolensing, phase tuning of the nonlinear 
susceptibility, enhancement of molecular fluorescence, and quantum-dots (QDs) photoluminescence 
[3-6]. Coupled nanoparticle dimers have widely been investigated using hybridization theory where  
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SP modes of a complex nanostructure are expressed as the bonding (symmetric) and the antibonding 
(asymmetric) interaction of SPs belonging to the constituents [7, 8]. Another class of MNS similar to 
NSP but exhibiting rich plasmonic features is nanoshell (NSH) [9, 10], which provide scope for 
spectral fine-tuning of SP frequencies in its monomer geometry itself. This is possible by virtue of 
controlling sphere and cavity plasmon interaction through core/shell dimensions. In addition, NSHs 
are expected to: (I) show greater sensitivity to the change of dielectric environment, (II) allow 
controllable redirection of electromagnetic radiation, (III) facilitate study of multipole surface 
plasmon resonances (SPRs). Although numerous studies have been undertaken concerning monomer 
and dimer of solid as well as shell based MNSs, but for the most part, studies focus on the MNSs 
excited by uniform electric field or plane waves. In the recent years, the study of molecular exciton-
metallic nanostructure complexes has attracted attention of researchers and the efforts investigating 
plasmonic-excitonic (plexcitonic) interactions have gained unprecedented impetus; see, e.g., [11, 12] 
and references cited therein. Still the issue concerning modification of dipolar interaction between 
molecules located in the proximity of MNSs or in the junction region and its implications on 
molecular junction/bridge characteristics has not found due attention. It is expected that the excitonic 
(energy transfer) interactions accompanied by plasmonic response of metallic contacts/leads can 
have substantial effect on the electronic transport properties of molecular nanojunction [13]. Here, 
we address this issue and extend well known Gersten-Nitzan theory [14, 15] for spheroidal particle 
to examine the issue concerning molecular wire and junction. In view of the close resemblance of 
pair of metallic particles (dimer) and real molecular nanojunction system, we shall consider NSP 
dimer in addition to NSP and NSH monomers. Due to the plasmonic hybridization, dimer 
nanostructures may induce a relatively intense local EMF within the dimer gap region and in the 
proximity of MNS. We shall show that the dimer spectrum can be fine tuned to achieve the 
enhancement in the desired spectral window through engineering of the dimer parameters. For the 
proposed geometry to be studied here, specific multipoles can be made to dominate through proper 
choice of system parameters e.g., size, shape, and dipole-dipole separation. These observations are 
in sharp contrast to the situation where two molecules are located at diametrically opposite ends of 
the nanoparticle [10, 14]. Instead of direct solution approach used in [14, 15], we shall adopt 
multipole spectral expansion (MSE) based approach for the present study, since MSE based 
formalism separates the geometrical and dielectric properties and can be extended to the arbitrary 
combination of nanoparticles. It may be anticipated that SP enhanced EMF can greatly alter the 
molecular interactions in the excitonic and energy transfer donor-acceptor system. Plexcitonic 
coupling in this case will strongly affect the current conduction in the molecular wire. Moreover, 
plexcitonic coupling can have applications e.g., in the: (I) study of energy transfer through a 
plasmonic structure between the quantum dots (QDs), (II) light up-conversion, (III) carrier density 
enhancement near molecular system or the material, (IV) enhancement of cross-section of chemical 
reactions. In this manuscript, we present a unified approach based on multipole spectral expansion 
(MSE) method for a systematic study of molecular energy transfer interactions in the proximity of 
NSP monomer, NSH monomer, and NSP dimer (coupled NSPs). We shall show that the energy 
transfer in a molecular wire between two metallic contacts representing a nanoparticle dimer is 
enhanced and the spectrum can be fine tuned through controlling dimer parameters. 
 The manuscript is organized as follows. Section 2 describes the theoretical formulation of the 
problem and its implementation to the monomer of NSP and NSH and the dimer of NSP. Sec. 3 
discusses the results of our investigation. Finally, Sec. 4 presents an overall summary, concluding 
remarks and future direction of the work.  
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2.  Theoretical Model 
2.1 Formulation of the Problem 
Schematics of the plexcitonic system subjected to the present study are shown in Fig.1. Terminology 
and symbols adopted in this manuscript are explained in the figure captions. We shall adopt 
multipole spectral expansion (MSE) method originally introduced by Fuchs [16] to investigate the 
optical properties of ionic crystals and further developed by Bergman [17, 18], Milton [19], and 
Stockman et al. [20], to investigate the energy transfer between a pair of molecules (for definiteness 
we label one of them as a donor and another one as an acceptor) located in the proximity of a 
metallic nanosystem. Unless mentioned otherwise, both molecules represented by their transition 
dipole moments (pd and pa) will be assumed to be located on the z+ axis (outside metallic region) 
and oriented along ẑ direction. We shall see that the monomer can be analyzed through closed form 

 
 

zR
O

dε

pd pa

)(εm ω
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Fig. 1(a): Schematic picture showing a pair of two 
level molecular system (labeled acceptor-a, and 
donor-d for definiteness) in the proximity of NSP 
monomer of radius R. The molecules are 
represented by their dipole moments pd and pa, 
located at rd and ra, and oriented along 
ẑ direction. 
 

Fig. 1(b): Schematic picture showing a pair of two 
level molecular system (labeled acceptor-a, and 
donor-d for definiteness) in the proximity of NSH 
monomer of inner and outer radii, a and b, 
respectively. Other parameters are the same as in 
Fig. 1(a). 
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Fig. 1(c): Schematic picture showing a pair of two level molecular system (labeled as acceptor-a and 
donor-d for definiteness) in the junction region of NSP dimer consisting of identical spheres of radii R. 
The molecules are represented by their dipole moments pd and pa, located at rd and ra (relative to O), 
and oriented parallel to the symmetry axis. This geometry more closely mimics a typical molecular 
nanojunction, where plasmon hybridization [7, 8] may generate strong electromagnetic enhancement.  
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analytical expressions, and dimer through interaction matrix based approach. Metallic nanosystem 
may be described through frequency )(ω  dependent dielectric function, )(εm ω and assumed to be 
embedded in a host medium characterized by its dielectric permittivity, dε . Local response of the 
whole system is described by a space and frequency dependent dielectric function, ω),(ε r defined as, 
 )](1[ε)()(εω),ε( dm rrr Θ−+Θω=          (1) 
where, )(rΘ is the characteristic function of the system under consideration with value 1 in the metal 
and 0 in the embedded medium, hence digitally dividing active and passive regions of the system. 
Limiting our analysis to the total system size much less than the wavelength of light equivalent to 
the molecular transition frequency )(ω , where quasistatic approach is valid, the electrostatic 
potential )φ(r  must satisfy, 

 [ ] 0)φ(ω),(ε =∇•∇ rr          (2) 
Substitution of local response function ω),(ε r from Eq.1 into Eq.2 produces, 
 { } 0)φ()](1[ε)()(ε dm =∇Θ−+Θω•∇ rrr        (3) 
or,  
 { }[ ][ ])φ()(ε)(ε-1)φ( dm

2 rrr ∇Θ•∇ω=∇        (4) 
Let us now introduce spectral parameters, )(u ω and )s(ω defined as, 

{ }[ ] 1
dm ε)(ε1)s( −ω−=ω , )s(1)u( ω=ω        (5) 

Then Eq. 4 can be written in the form of spectral parameters as, 
 { }[ ])φ()()(u)φ(2 rrr ∇Θ•∇ω=∇  
or 

[ ] )φ()(s)φ()( 2 rrr ∇ω=∇Θ•∇         (6) 
The corresponding eigenvalue problem is, 
 )(s)]()([ 2 rrr λλλ ψ∇=ψ∇Θ•∇         (7) 
Eq. 7 has solutions { })(rλψ corresponding to the values, .s)s( λ=ω Therefore, we will have to solve 
Eq. 6 (equivalently, Eq. 7) for the system under investigation. The formal solution to the Eq. 6 with 

)(φext r  as the external electric potential may be written in terms of vacuum Green's function 0G as 
[17, 18], 
 [ ])'φ(')'(')',(Gr'd)u(-)(φ)φ( 0

3
ext rrrrrr ∇Θ•∇ω= ∫∫∫      (8) 

         )φ()u()(φext rr Γω+=          (9) 
where, Γ is defined as, 
 )'φ(')]',(G'[)'(r'd)φ( 0

3 rrrrr ∇∇Θ=Γ ∫∫∫        (10) 
Let us defining a scalar product of two eigenfunctions as, 
 ',

3
'

*

V
' rd)()()()(|)( λλλλλλ δ=ψ∇ψ∇Θ=ψψ ∫∫∫ rrrrr       (11) 

We would like to emphasize that the scalar product in Eq.11 is defined inside the metallic region 
only. )(* rλψ denotes the complex conjugated and δ  is the Kronecker delta symbol. In case of zero 
external potential, Eq. 9 can be written as, 
 )φ()φ()(s rr Γ=ω           (12) 
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Eq. 12 corresponds to the homogeneous counterpart of the full equation and may be written in the 
eigenvalue form as, 
 )()(s rr λλλ ψΓ=ψ           (13) 
Since Eq. 13 is the solution of Eq. 7, eigenfunctions and eigenvalues of operator Γ are the same as 
solutions of Eq. 6. Eigencharacteristics (eigenvalues and eigenfunctions) for single inclusion (here 
nanosphere) can be determined analytically by imposing the boundary and the orthonormalization 
conditions. To determine them uniquely, we seek these eigenfunctions in the form of spherical 
harmonics as, 
 Rrfor  ),,(θYrA)(ψ in <φ= ml

l
mlml r        (14) 

 Rrfor  ,
r

),(θY
B)(ψ 1

out >
φ

= +l
ml

mlml r        (15) 

where )θ(r, φ= ,r  denotes spherical coordinates relative to the origin at the centre of nanosphere 
(see, Fig. 1.a). Superscript, in (out) refers to the region inside (outside) NSP. The system boundaries 
are assumed to be placed infinitely away from the spherical inclusion. It may be noticed that the 
homogeneous differential equation is automatically satisfied by these functions except at the surface 
of the sphere where we will have to impose additional electrostatic boundary conditions stated as, 
 (i) Rr

out
Rr

in )(ψ)(ψ == = rr mlml          (16) 

 (ii) 
Rrr

)(ψ
Rrr

)(ψ
)(

out

d

in

m =∂
ε=

=∂

∂
ωε

rr mlml        (17) 

Application of these boundary conditions produces, 
 12RAB += l

mlml           (18) 

 dm
)1()( ε

+
−=ωε

l
l           (19) 

Therefore, 

 { }[ ] 12ε)(1
1)(s

dm +
=

ωε−
=ω

l
l         (20) 

Let us now determine the coefficients uniquely by imposing the orthonormalization condition, (Eq. 
11). The evaluation can be greatly simplified by using the following Green’s identity [21, 22], 

 ( ) dA
n
ψφxdψφ.ψφ

S

3

V

2

∂
∂

=∇∇+∇ ∫∫∫∫∫        (21) 

n̂ψ.dA
n
ψwhere ∇=

∂
∂ , and 

n∂
∂ is the normal derivative at the surface S (directed outward from 

inside). Eq. 11 therefore can be written as, 

 [ ] rdψψ)(dΩr
r

ψ
ψ)(|)( 3

'
2*

m
VS

2*
m'' ml'l

m'l'
lmlml ∇Θ−

∂

∂
=ψψ ∫∫∫∫∫ rrr     (22) 

Integral, [ ] rdψψ)( 3
'

2*
m

V
ml'l ∇Θ∫∫∫ r  in Eq. 22 will be zero since the electrostatic eigenstates obey 

Laplace equation, 
 0ψ '

2 =∇ ml'            (23) 
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Hence, we are left with the surface integral only. Equation 22 therefore produces, 

''
122

'' RA)(|)( mmll
l

mlmlml l δδ=ψψ +rr        (24) 
Finally, we get, 

 
12R

1A
+

=
lml

l
, and  

l

l

ml

12RB
+

=          (25) 

We can now summarize the eigencharacteristics of the NSP monomer as, 

 
12 +

=
l
lsl            (26) 

 Rrfor  ,),(θYr
R
1)(ψ m12

<φ=
+ l

l

l

in
ml

l
r       (27) 

 Rrfor  ,
r

),(θYR)(ψ 1
m

12

m >
φ

= +

+

l
l

l
out
l l

r       (28) 

Once we know the eigenvalues and eigenstates of operator Γ , we can generalize the solutions for the 
external electric potential, say )(φext r . Using the completeness condition, 
 |)()(|I rr λλ

λ

ψψ= ∑          (29) 

we get from Eq. 9, indexing the eigenstates λ as l, m 

 )()(φ|)()(
s)(s

s)(φ)φ( extext rrrrrr mlml
ml l

l ψψΘ
−ω

+= ∑      (30) 

Equation 30 is the general expression for calculating the electrostatic potential at point r of the 
system due to the external electric potential )(φext r . Notably, )(φext r  may be originated from various 
sources e.g., uniform field, plane wave, and assembly of charges.  

2.2  Generalization to the Plexcitonic System 

In order to tailor MSE based approach to the plexcitonic system, we will have to determine the 
spherical potential )(φext r  at the point )θ(r, φ= ,r  due to the point dipole positioned at 

),θ,r( jjjj φ=r , which can be expressed as [15],  

 ∑=
''

j,''ext )(Φ)(φ
ml

ml rr           (31) 

The index j label the molecule/dipole (donor or acceptor). If the dipole moment vector is denoted 
by jp , Eq. 31 may be written as [15],  

 
j

jj rr
pr

−
∇•=

1)(φext          (32) 

where, j∇ and jp are defined in the spherical polar coordinates as follows, 

 
jjjjjj

j eee
φ∂
∂

+
∂

∂
+

∂
∂

=∇ φθ θsinr
1ˆ

θr
1ˆ

r
ˆr        (33) 

 φθrr pˆpˆpˆ φθ ++= eeejp          (34) 
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Using the expansion of the Green's function term, Eq. 32 may be written as, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φφ

+
∇•= ∑ +

>

<

''
m''

*
m''1'

'

'ext ),θ(Y),θ(Y
r
r

)12(
14π)(φ

ml
ljjll

l

jj l
pr     (35) 

where the symbols have their usual meanings. Considering molecular orientations to be parallel to 
the +z-axis, we can write [21],  

 ),θ(Y),θ(Y
r
r

r)12(
1p4π)(φ m''

*
m''1'

'

''
'rext φφ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
= +

>

<∑ ljjll

l

jml l
r      (36) 

For a dipole situated outside the inclusion, the valid expression after considering the effect of 
embedded medium is, 

 ),θ(Y),θ(Y
r
r

)1'2(
)1'(p4π)(φ m''

*
m''2'

'

''d

r
ext φφ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+−

ε
= +∑ ljjll

j

l

ml l
lr      (37) 

Since, we now know the external potential in the multipolar expansion form, the overlap integral 
(say, mlI ) of )(φext r  and the NSP eigenmodes can be calculated as, 

 [ ])(φ.ψrd)()(φ|ψ)(I ext
*

m
V

3
extm rrrr ∇∇Θ=Θ= ∫∫∫ llml      (38) 

It should be noted that mlψ here refers to the inner eigenmodes of the nanosphere and )(φext r  refers 
to the external excitation potential due to one of the molecule/dipole. Employing Green’s identity 
(Eq. 21) and the Laplace equation (Eq. 23), Eq. 38 can be rewritten as, 

 ∫∫
= ∂

∂
=

Rr,

*
m

ext dA
r

ψ
)(φI

S

l
ml r         

      ),(Y
r
R

)12(
)1(

Rε
p4π *

m

2

j
3

d
jjl

l
j

l
ll

φθ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

−=
+

      (39) 

Now bearing in mind that π+==φθ 4)12()0,0(Y),(Y *
0

*
m lljjl , the electric potential can be written 

as, 

)(I
)(

)(φ)( ext rrr mlml
ml l

l

ss
s

ψ
−ω

+=ϕ ∑        (40) 

Using, 

 [ ]})1({)(
ε)(

)( dm

dm

llss
s

l

l

+ε+ωε
−ωε

−=
−ω

        (41) 

we finally get, 

 [ ] φ),(θ)Y,(Y
rr

R
rR

1
)12(
)1(

})1({)(
)(p4π

)(φ)( m
*
m

1

j

2

jdmd

j
ext ljjl

l

ml

dm

l
l

ll
φθ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+ε+ωε
ε−ωε

ε
+=ϕ

+

∑rr  (42) 

When both molecules are placed on the z-axis and their orientation is also parallel to the +z-
axis, ( ) π+== 412)0,0(Y)0,0(Y *

0m lll . We can therefore write, 
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 [ ]

1

j

2

jdm

dm

d

j
ext rr

R
rR

)1(
})1({)(ε

)(
ε
p

)(φ)(
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛+
+ε+ω

ε−ωε
+=ϕ ∑

l

ml

l
ll

rr      (43) 

The radial component of the electric field can be written as, 

 [ ]

2

j

2

dm

dm
2

3
d

j

rr
R

})1({)(
])([)1(

R
p

)()()(
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ε+ωε
ε−ωε+

ε
+=ϕ−∇= ∑

l

l
ext ll

l
rErrE     (44) 

If r is chosen to be the location of the acceptor molecule (the field there is denoted below as aE ) 
and jth molecule is taken to be a donor, the plexcitonic coupling (or, SP dressed dipolar interaction 
energy) )(J ω can be written as,  

 [ ]

2

da

2

dm

dm
2

3
d

da
3

add

da

rr
R

})1({)(
])([)1(

R
pp

rr
pp2

)(J
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ε+ωε

ε−ωε+
ε

−
−ε

−
=•−=ω ∑

l

l
a ll

l
Epa              (45) 

We have also presented an alternative derivation of Eq. 45 in the Appendix, based on the direct 
method. We can now define the interaction energy enhancement factor )(A ω similar to Ref. 14 as, 

[ ]

2

da

2

dm

dm
23

adNSP

rr
R

})1(ε{)(
])([)1(

R
rr

2
11)(A

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ωε

ε−ωε+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=ω ∑

l

l ll
l

             (46) 

It should be mentioned that Eq. 46 differs from Eq. 11 of Ref. 14 due to the fact that the molecules 
there were considered to be on the diametrically opposite sides of the particle. The present case 
corresponds to the molecules located on the same side, the situation relevant to the molecular 
nanojunction. Using Eq. 45, the characteristic frequency )( lω of the l-th mode (where, 

....3,2,1=l etc. signifies dipolar, quadrupolar and other higher order modes, respectively) can be 
described as,  

 dm
)1()( ε

+
−=ωε

l
l           (47) 

Eq. 47 defines the resonance condition corresponding to l-th mode and is the same as obtained in 
[23]. The approach was further extended to the nanoshell (NSH) geometry (see, Fig. 1.b), whose 
details will be presented in the subsequent publications. The amplification factor for NSH is 
obtained as, 

∑

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

λ++
λ−+

ε+ωε
⎭
⎬
⎫

⎩
⎨
⎧

λ−+−λ
+λ

ε−ωε
+

⎭
⎬
⎫

⎩
⎨
⎧

λ−+
λ++

ε+ωε
⎭
⎬
⎫

⎩
⎨
⎧

λ+++λ
+λ

ε−ωε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+=ω

+

l

l

l

ll

l

l

l

ll

l

l

l
l

l
l

l
l

l
l

l

)12(
)12(

)(
)12()1(

)1(4
])([

)12(
)12(

)(
)12()1(

)1(4
])([

rr
R)1(

b
rr

2
11)(A

dm

dm

dm

dm

2

da

2
2

3
adNSH  (48) 

where, 12)1(41 +++=λ l
l xll , and x denotes the inner to outer radius of NSH, which is also 

referred to as the NSH aspect ratio [10]. As expected, Eq. 48 for NSH monomer converges to the 
corresponding NSP expression in the limiting case, x=0. In contrast to the single resonant 
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frequency in NSP, NSH spectra exhibit two characteristic frequencies for each polarity index. This 
is due to the interaction between sphere and cavity plasmons, which induces surface charges at the 
inner and the outer interface of NSH. In the passing, we would like to mention that for the incident 
(exciting) field parallel to the axis, the m=0 mode (longitudinal polarization of the field) is the only 
active mode and also known to give the most significant shifts [24]. Also, when field is 
perpendicular to the chain axis (transversal polarization), only the degenerate mode 1±=m  will be 
active [23]. To extend MSE based approach to the NSP dimer, an interaction matrix approach based 
on using the eigenstates of the single inclusion [17, 18] has been used.  

3.   Results and Discussions 

In this section, we present the results of our study of a monomer of a nanosphere and nanoshell as 
well as the dimer of nanosphere. The metal considered to be silver is modeled using Drude-Lorentz 
model based frequency dependent dielectric function and is defined as, 

  
)ω(ω

ω
ε)(ωε

2
p

0m γ+
−=

i
              (49) 

where, ω is the excitation frequency, pω  is the bulk plasma frequency, and γ is the damping 
constant due to scattering of metal electrons. The values of Drude parameters, 0ε , pω  and

 
γ  used for 

present analysis are, 3.57, 9.1 eV, and 0.052 eV, respectively. Unless mentioned otherwise, the 
dielectric constant of the embedded medium 0.2ε d = , equal dipole moments pa and pd=10 D 
(Debye), the distance between the nearest molecule and the metal surface equal to 1.0 nm, and 
intermolecular distance of 1.0 nm will be used. For brevity a three index notation (u,v,w) will be 
used where first index (u) will refer to the radius (of NSP) or outer radius (of NSH), second index 
(v) will refer to the distance of the closest molecule from the surface, and the third index (w) will 
refer to the intermolecular separation in nanometers. Figure 2 shows the spectral variation of |J| 
[Fig. 2.a], A (ω) [Fig. 2.b], Re {J} [Fig. 2.c], and Im{J} [Fig. 2.d] for NSP monomer of different 
sizes (R=10, 20, 30, 40 &50 nm). The main features of Fig. 2 can be summarized as: (I). 
Appearance of sharp resonant peak at ~ ω =3.82 eV in the J spectrum for all sizes. This resonant 
position corresponds to the high order multipolar resonance limit as can be seen from the analytical 
condition, [ ]ll )1()( dm +ε−=ωε , (II). Slight blue-shift of the resonant position with increasing the 
J value, and disappearance of lower frequency peaks with the increase in NSP size. These features 
are due to the fact that sphere with greater size will support higher order surface plasmon modes 
which are dominant. For smaller sizes, as expected, lower orders (e.g., dipolar, quadrupolar etc.) 
become stronger and peaks originated from lower order multipoles can also become visible, (III). 
For NSP sizes well-suited to the quasitatic limitations, enhancement factor A (ω) > 2 is achievable 
when molecular transition frequency coincides with the dominant plasmon frequency of NSP. We 
would like to emphasize that the large enhancement of A (ω) reported in [14] and of a similar 
quantity (FRET rate Fγ ) in [10] corresponds to the negligibly small bare interaction by virtue of the 
large molecular separation. In the present system under consideration where bare interaction (~ 0.06 
eV) itself is strong, the enhancement factor > 2 is significant and may lead to important changes in 
molecular nanojunction characteristics. By virtue of the presence of the metal, J will bear now 
complex characteristics i.e., real and imaginary parts, which are separately shown in Figs. 2.c and 
2.d, respectively.  
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Fig. 2(a): The calculated variation of |J| as a 
function of the molecular transition frequency (ω) 
in the proximity of NSP monomer with variable 
size (R=10, 20, 30, 40 & 50 nm). Evidently, strong 
resonant feature ~ 3.82 eV (U.V) appears for all 
sizes. Moreover, relatively higher enhancement 
with increased size is observed. Other parameters 
are:  dε =2.0, pa and pd=10 D. 
 

Fig. 2(b): The calculated variation of enhancement 
factor A(ω) [Eq. 46] as a function of the molecular 
transition frequency (ω) in the proximity of NSP 
monomer with variable size (R=10, 20, 30, 40 & 50 
nm). Evidently > 2 fold enhancement near 
dominant plasmon frequency is obtained. Other 
parameters are:  dε =2.0, pa and   pd=10 D. 
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Fig. 2(c): The calculated variation of Re{J} as a 
function of the molecular transition frequency (ω). 
Other parameters are similar to those of Fig. 2(a). 
 

Fig. 2(d): The calculated variation of Im{J} as a 
function of the molecular transition frequency (ω). 
Other parameters are similar to those of Fig. 2(a). 
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Next, aiming to understand the effect of host medium, we present spectral variation of |J| [Fig. 3.a], 
and A (ω) [Fig. 3.b] for NSP monomer specified as (50,1,1) and considered embedded into different 
host mediums [ dε =1.0 (vacuum), 1.5. 2.0, 2.5, and 3.0]. The central features of Fig. 3 can be 
summarized as: (I). Reduction in J, and red-shift of the resonant peak position with increased 
dielectric constant dε of the of the host medium, also analytically understandable using resonance 
condition, [ ]ll )1()](Re[ dm +ε−=ωε . The use of Drude model gives, )()](Re[ 2

Re
2

0m sp ωω−ε=ωε , 
where sReω denotes the resonant frequency, which for an arbitrary multipole l can be written as, 

{ }[ ]lls )1(00pRe +ε+εω=ω . (III). Increased enhancement factor A (ω) with increasing dε  (see, 
Fig. 3.b). This attribute may be important for sensing applications, (III). For NSP sizes well-suited to 
the quasitatic limitations, enhancement factor A (ω) > 2 is achievable when the molecular transition 
frequency coincides with the dominant plasmon frequency of NSP.  

  In addition to the enhancement of the molecular interaction J, the energy transfer from the 
molecules to the metallic nanostructure is an important process as it competes with the molecular 
energy transfer. The results of our estimation are shown in Fig. 4, where we have also shown the 
spectral variation of |J| and mγ  ( mγ estimation is based on Ref. 10), and the comparison of Re{J) and 
Im{J} for NSP (50,1,1). It can be noticed that the peak positions of |J| and mγ  are shifted relative to 
each other. Through an appropriate choice of molecular transition frequency, enhancement can be 
maximized while mγ  still remains relatively small.  
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Fig. 3(a): The calculated variation of |J| as a function 
of the molecular transition frequency (ω), in the 
proximity of NSP monomer of R=50 nm and 
variable host mediums ( dε =1.0, 1.5, 2.0, 2.5, and 
3.0). 

Fig. 3(b): The calculated variation of A(ω), the 
enhancement factor, as a function of the molecular 
transition frequency (ω). Other parameters are 
similar to those of Fig. 3(a).  Evidently, A (ω) > 2 
can be achieved for practical dε .  
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Fig. 4(a): The calculated variation of |J| and the loss 
to the metal mγ  as a function of the molecular 
transition frequency (ω) in the proximity of NSP 
monomer of R=50 nm in the medium characterized 
by dielectric constant εd=2.0. 

Fig. 4(b): The calculated variation of real and 
imaginary parts of J as a function of the molecular 
transition frequency (ω) in the proximity of NSP 
monomer of R=50 nm in the medium characterized 
by dielectric constant εd=2.0. 
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Fig. 5(a): The calculated variation of |J| and the loss 
( mγ ) to the metal as a function of the molecular 
transition frequency (ω) in the proximity of NSH 
monomer of outer radius 50 nm and aspect 
ratio=0.85 in the medium characterized by 
dielectric constant εd=2.0. 

Fig. 5(b): The calculated variation of real and 
imaginary part of J as a function of the molecular 
transition frequency (ω) in the proximity of NSH 
monomer of outer radius 50 nm and aspect 
ratio=0.85 in the medium characterized by 
dielectric constant εd=2.0. 
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Next, we consider a monomer nanoshell (NSH), keeping other parameters similar to those of the 
NSP geometry. Figure 5 shows the variation of |J|, mγ , Re{J} and Im{J} for monomer NSH 
(50,1,1) with aspect ratio 0.85. It can be seen that the variation is similar to that of the sphere. 
Similar to NSP, NSH also enhances the interaction.  
 Finally, we consider a dimer of two identical silver NSPs of radius R=10 nm, surface to 
surface gap=3 nm, surface-molecule separation=1.0 nm, molecular separation=1.0 nm. The results 
of our calculation of |J| are shown in Fig. 6. In order to compare, corresponding NSP monomer 
data (right sphere is removed) is also shown. The main features can be summarized as: (I). In 
contrast to the monomer NSP, the spectrum of |J| now shows multiple peaks, where maximum 
enhancement can be achieved, this is due to the hybridization of the plasmons belonging to 
individual NSPs [7], (II). While monomer shows a single dominant resonance, dimer shows 
multiple resonances, red-shifted relative to the monomer, (III). An enhancement greater than that 
of a monomer NSP can be obtained in a wide spectral window, (IV). Since dimer geometry 
imitates a real molecular junction, an overall enhancement in the junction characteristics can be 
expected. 
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Fig. 6: The calculated variation of the absolute value of J as a function of the molecular transition 
frequency (ω) for the molecular pair placed in the dimer junction region. Radii of each NSP are 10 nm, 
intermolecular distance is 1 nm and the distance of each molecule from the closest NSP is 1-nm. The 
dielectric constant of the embedding medium is εd=2.0. Also the data for the monomer (when only the left 
NSP is present) are shown. 
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4.   Conclusions 

We have developed a theoretical model for evaluating energy transfer interactions in the proximity 
of metallic nanostructures such as nanosphere and nanoshell particles and their coupled dimer. The 
enhancement factor > 2 is predicted for practical geometries. NSP dimer shows rich spectral features 
and greater enhancement relative to the monomer. The role of size and dielectric environment on 
energy transfer interaction is investigated. The influence of the enhancement of energy transfer 
interaction on current in molecular nanojunction [13] will be studied elsewhere. 
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Appendix 

This appendix briefly presents the main steps for solving the problem considered in Sec. 2 using 
direct approach. The electrostatic potential inside and outside NSP monomer can be written as, 
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where, )( ad ΦΦ denotes dipolar potential associated with donor (acceptor) molecule, and may be 
written as, (for definiteness consider )(adrr > , although it will not affect the final result). 
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where symbols have their standard physical definitions. The radial derivative can be written as, 
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Imposing electrostatic boundary conditions (continuity of Φ  and ⊥D  at NSP surface) and assuming 
that we want to calculate the potential at the location of the acceptor (in this case the effect of the 
acceptor will be removed) produces, 
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The induced potential at the acceptor site can be written as, 
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The induced electric field at the acceptor site is, 
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The induced plexcitonic coupling (or SP dressed dipolar interaction energy) )(J ind ω  can be written 
as,  
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For the location of molecules on the symmetry axis, 
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The total dipolar interaction energy can be written as, 
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Eq. (A.9) coincides with Eq. 45.  
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