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Line shape of a molecular resonance
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In this paper we consider some implications of intramolecular electronic
celaxation on the optical line shape of large molecules in the statistical limit.
General expressions for the line shape were derived utilizing the Green’s
function formalism, which account both for interference with background
absorption and for interference between resonances. The energy dependence
of the line-width functions was elucidated. We have demonstrated that the
line shape for an‘ isolated ’ resonance is a fanian ; however, as the line profile
index is determined by the ratio of the level spacing to the non-radiative
width, the corrections to the lorentzian line shape are small in this case. We
have established the equivalence of the physical description utilizing a three-
level crude adiabatic basis and a two-level adiabatic basis. In the case of
overlapping resonances the line shape may be recast in terms of a modified
Fano-type formula where the line profile index is energy dependent. The
nature of interference effects in this case is determined by the ratio and the
relative signs of projections of the transition moments on the polarization
vector.

1. INTRODUCTORY COMMENTS

The diffuseness of spectral lines in the optical absorption spectra of large
molecules [1] is intimately related to intramolecular electronic relaxation in these
systerns. ‘Theoretical work [2-4] has cstablished that in the statistical limit the
near resonance non-adiabatic coupling between a zero-order state |s) and a quasi-
continuum {|I>} results in a Breit-Wigner line shape

11'(E,) (1.1)
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exhibiting a differential lorentzian distribution of the intensity of the zeto order s}
state, which is characterized by the energy E,. The line-width function I'(E) 1s a
slowly varying function of the energy in the vicinity of E =~ E;. and this weak energy
dependence may result in corrections to the lorentzian line shape. It is also worth-
while stressing that in the statistical limit the details of the level distribution in the
{{1>} manifold and the variation of the interstate §— [ coupling terms are immaterial
f“}d do not affect the general conclusion concerning the lorentzian line shape of an
1solated * molecular resonance.
~ The line width I'(E;) was conventionally taken [2—4] to be determined by the
intramolecular interstate coupling and by the density of states in the {|{>} quasi-
continuum. There has recently been a lively controversy concerning the * proper’



choice of a zero-order basis set and of the intramolecular coupling [5-10], where-
upon the classical approach based on the non-adiabatic coupling between Born-
Oppenheimer adiabatic (A) zero-order states was challenged, and an alternative
approach on Herzberg—Teller coupling between crude adiabatic (CA) zero-order
states was advocated [5, 6]. Obviously, the choice of a zero-order basis set is
arbitrary and does not reflect on the physical features of the problem. Both
untruncated and complete CA and A bases are adequate for describing the broaden-
ing and decay of a molecular resonance. We would like, however, to point out
that the general conditions for the validity of equation (1.1) with T being given by
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Figure 1. A schematic representation of the relevant molecular states and couplings.

Arrows indicate dipole coupling via the interaction with the radiation field. Wavy
lines represent intramolecular coupling.

the Fermi ‘ golden rule ’ are not satisfied either by the A or by the CA basis and in
certain cases physically significant deviation may be encountered [10]. The basic
physical model for a lorentzian line shape (and exponential intramolecular relaxa-
tion) in the statistical limit (see figure 1) rests on the following model :

(A) A single zero-order state s> (i.e. a vibronic component of the excited ]
electronic state) carries oscillator strength from the ground state 0.
(B) |s> is quasidegenerate with and coupled to a dense quasicontinuum {|D} ]
corresponding to a lower electronic configuration(s). _‘
(C) The quasicontinuum {|I)} does not carry oscillator strength from the
ground state. .
(D) Other ° optically active’ excited states |b>, which may correspond 10
different vibronic components of the same electronic state as s> or to other elec- 1
tronic configurations, are well separated from |s)> (relative to their zero-order
widths). ;

(E) Off-resonance coupling of the zero-order states |s) and {|I>} with other :
states |b) is negligible. 1
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We should note in passing that if condition (C)is violated, a Fano-typeline shape
[2] will result, while if condition (D) or (E) does not hold interference effects be-
tween resonances [3 b] will be exhibited. ‘Turning our attention now to the A and
to the CA basis sets the following points are relevant [10 b] : ‘

(a) The A basis minimizes the off-resonance couplings with |b) states, where-
upon the line width (and decay) can be adequately described by a two-electronic-
level (i.e. |s> and {|I>} system.

(5) The CA basis is adequate only provided that off resonance coupling with
|b) states 1s included.

(c) The A basis cannot be specified in terms of symmetry classification of the
zero-order states.

(d) The CA basis utilizes the basic symmetry properties of the zero-order
molecular states, as the electronic wavefunctions are defined for a fixed nuclear
configuration.

Thus points (a) and (b) establish the advantages of the A basis from the con-
ceptual point of view.  As far as the line shape problem is concerned, the symmetry
properties of the CA basis are useful in view of :

(¢) Inthe CA basis the symmetry selection rules (at least within the framework
of the harmonic approximation applied to the promoting vibrational modes) imply
that the quasicontinuum {|/)} is optically inactive.

(f) The A type quasicontinuum {|I>} does carry oscillator strength from the
ground state.

T e pE:

g We have just exposed the main theme of this paper. 'The use of the A basis
. does not (at least in principle) fulfil the basic condition (C) ; on the other hand, the
. CA basis, which satisfies condition (C), in turn violates condition (E). We may
3 thus conclude that neither the A nor the CA basis can satisfy simultancously
- conditions (A)~(E) and that molecular resonances encountered in an optical
experiment exhibit deviations from equation (1.1). In the present paper we study
the line shape of a molecular resonance, utilizing both the A and CA bases. We
shall demonstrate that in general the line shape is a fanian, the Fano line index

_ Parflmeter being determined by the ratio of the molecular frequency to the non-
radiative line width. For relatively small line widths I' < 10 cm~1, the correction
L tothe lorentzian line shape is trivial. Apart from intrinsic theoretical interest, the
- techniques and results of the present study are relevant for the following reasons :
(1) M:my high extra-valence excitations in large molecules are characterized by
!lne widths '~ 100-1000 cm~" and the role of the effects of background absorption
18 of physical interest. (2) The present results are of interest for the elucidation of

.t!le decay pattern of ultrafast molecular relaxation processes in the subpicosecond
time domain.

2. (GENERAL EXPRESSIONS FOR THE OPTICAL LINE SHAPE

1'%__-u.lelncluding the effects of the coupling with the radiation field up to first order,
“ear response theory yields the well known expression for the line shape [12]

L(E)~ ~ = Im Q[RGERO, 2.1)
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where Im refers to the imaginary part, p= (i . €) is the projection of the dipole
operator w on the polarization vector, €, of the electric field, while the Green °
operator

GE)=(E—H+m)™; >0t (2.2) |

is defined in terms of the molecular hamiltoniant. Performing an (arbitrary)
separation of the hamiltonian into H=H,+ V one can display the line shape in
terms of the eigenbasis |a) of H,, which satisfy H,|a>=E,|a) It is immediately
apparent that the line shape is independent of the choice of the basis set as we have
from (2.1). :

1 -
L(E)= - ; Im Z Z :u()a.Gcm'f“‘a 0 (23)

where py, = {0|ule) and G,, =<«|G(E)|«’>. Making use of the Dyson equation
G=(E—H+iny'=(E—Hy+in) + (E— Hy+ inyW(E~ H+ in)1

=GO+ GVG  (2.4)

the relevant matrix elements of the Green operator can be displayed in the form

Gua =G+ 2> GV, G
B,y

yo!

=8uE—E, +in) 1+ (E—E,+ip) 1 > V,.G,,.. (2.5)

Up to this point the basis set is completely arbitrary, however, an appropriate
choice of the basis can result in closed expressions for the matrix elements of the
Green’s function. It will be advantageous at this point to recall one of the basic
properties of both the A and the CA bases, that is that they are diagonal within the
same electronic configuration [10 b]. At this stage we introduce two simplifying
assumptions, first that the off-resonance coupling with the low lying ground state
is negligible], and second that only a single |5 state (figure 1) is included§. The
line shape from equations (2.1) and (2.5) for this model system both in the A and in
the CA bases is |

1
L(E)=——Im [F‘OSGssP'sO + prooGanttno  tosGlspttpn + o Gipstiten
+ Z(Z HorG upro+ posGapro + 101G istbso + tosGoittro + Po;thﬂbo)]- (2.6)
\TF

t If the effects of the coupling with the radiation field were included to a higher order,
the line width for an isolated resonance would be T';=I'+ I'y where I'r is the radiative 1
while I' is the non radiative width. When interference effects are encountered the radiative
corrections are more complex [11]. These radiative contributions are neglected in the 3
present study as we are interested in cases where I'> I'n.

1 The coupling matrix elements with the ground state may be easily includéd and may 3
be of some importance when the CA basis is used [13], however, they do not affect the j
features of the line shape problem, 3

§ This assumption implies neglecting interference effects between different |6> states, §
which can be included, resulting in cumbersome expressions. i
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The first term in this equation provides the major contribution to the line shape

aroand E~ E,, provided that the quasicontinuum is optically inactive, 1.e. o1 =0

‘s« - for all /, and the off-resonance coupling terms are small, i.c. V,s~0 and Vy=0.

The szcond term in (2.6) taken at E ~ E,, yields the contribution of the zero order
stat= |b) to the absorption around E =~ E,, and provided that the broadening of the
resonances centred around Ex F, and E~E, is large, interference effects will be
exhibited by second order coupling via the manifold {I}. It is also worthwhile
noting that when the CA basis is employed the second term in (2.6) will result in
the conventional Herzberg-Teller contribution to the intensity [13, 14]. The
third and fourth terms in equations (2.6) are non-vanishing for appreciable off-
resonance coupling of |s> and/or {|I>} with [&>, and exhibit the effect of inter-
ference between resonances. ‘The fifth term in (2.6) contains the direct contribu-
tion to the background absorption (for u;# 0). Finally, the last four terms in this
equation arise from intereference effects with background absorption, and include
both direct |s)— |{> interference effects and also indirect interference via the off-
resonance |b) state.

To complete this formal exposition we now utilize equation (2.4) with the
condition V;.=0 for [#1' to recast the relevant matrix elements of the Green’s
function in the following form :

Go=GuVi(Z - E) '+ Z GaVilZ—Ep)™, (2.7 a)
1

Gry=(Z — Ep) " VysGs+ Z (Z - By WVylie (2.7 b)
1

Gs! = GssVsl(Z_ EI)_I + Gsb Vbl(Z_ El)ml’ (27 C)

Gr=(Z— E)MV Gt (Z—E) MV uGe (2.7 d)

Gop=(Z—E) WG+ (Z-E)™1 VGt (2.7 ¢)

Go=GupVeo(Z—E)7'+ GpVa(Z—EY™ (2.71)

Gy =3,(Z—E)"'+ (Z— El)_lesGssVsz'(Z“* E .yt
+(Z- E:)—thonber(Z— E.yt+ (Z—- EI)FlVlsGstbl'(Z_ E.)?
+(Z—E:)_thbisVst'(Z—Er)_l’ (2.7 g)

Gop=(Z — By +(Z—Ep) WG+ (Z - E,) Z VolGu (2.7 )
]
and finally
o= (Z = E) +(Z— E)™* D, VaGit (2~ E) MV Cto (2.74)
:

Who_:ere we have used the (complex) variable Z= E+iy. It will now be convenient
© mtr.Oduce several definitions of line widths and of level shifts in terms of the
following complex functions :

VblVls

A(E)=o(E)—1iB(E) =2 75 (2.8 a)
AE)= o(B) BB =T ZSLVEHI’ (2.8 b)

M.P. o
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where
VblVls
«(E)= PP Z E_E (280
BE)=7 > VyuViJ(E—-E), (284 |
l -

where PP represents the principal part of an integral.  To keep track of the indices
of the zero order vibronic levels we maintain the notation of a sum in (2.8}, bearing
in mind that in the statistical limit {|/>} is a quasicontinuum whereupon
Y -»{dEp,. Let us note that «(E) and B(E) represent ‘ mixed type ’ level shifts

z
and level widths which connect the zero order state [s) and [b) via the quasi-

continuum.
The ¢ golden rule ’ level shifts, D, and D, and widths, ', and I, of the zero

order states |s) and |b) are defined by
Vslel

S(E)=D{(E)—iT{(E)= Z 7 E (2.9)
where
D(E)= PPZ ET{%% (2.9 )
[ (E)=m Z |V 1| 28(E— Ey) (2.9 b)
and
B(E)=Dy(E)—1iT',(E)= 2 Z"_‘ZH", (2.10)
where
Dy(E)=PP Z g_—*_’—‘g (2.10 @)
N(E)= 3, V5B~ E) (2.10 )

It is important to note at this point that the (zero order) width T'((E) does not
necessarily correspond to the total width T'(E) of the resonance located around }
E=~E,, as off-resonance coupling of terms will contribute to I :

Simple algebraic manipulations of equations (2.7 a)—(2.7 d) enable us to express
these off diagonal matrix elements in terms of the diagonal element G, as follows : §

Vg + A(E)
Gsb‘“ Gss Z“'Eb“"B(E), (2'11 a)
Gpo= Gy 2t A 2.11) }

s Z_E,— B(Ey
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Vi Vat+AE) \T
Gor= GS“‘[Z £ Z-E, (Z—Eb—B(E)) ’ (2.124)
Vis Vi Vs + A(E) )_
GSSI:Z E,  Z_E, (Z—HE,,—-B(E) | (2.126)

Making use of equation (2.11) the off diagonal terms (2.7 ¢) and (2.7 f) are

v L (Vut AE) Ve + AE)
A ey ey 6.,

Vi [ Vot A(E)

Z—IE, (Z_%b_B(E)) G (213 0)

v, 1 (Voo + AV + A(E))
Z-bE: (Z—ED—B(E)+ (E— E,— B(E))* G”)

Glb =

i3
‘\.
e
5,
s
[
Bt
Gy
Fo
[0
g.ﬂ' B
g
£
£
-
¥

Gm:

Vls Vsb'}"q(E)
*7F (Z_EFB(E)) G, {(2.13B)

Utilizing equations (2.11)—(2.13) the diagonal matrix elements (2.7 &) and (2.7 1)
take the form

L (Ve AENV o+ A(B)

Co=7 BB (E-L-BEy O @19
which may also be recast in the alternative form
_ Z—~E — S(E)
Gyp= 7_F,—B(E) G, (2.14 b)
and
_ (Vs + AENV b"‘ﬂ(E))}
GSS—{Z#ES—S(E) F—E,— B(E) (2.15)

From equations (2.14) and (2.15) it is apparent, as we have already pointed out,
that the total widths of the resonances are not given by Im B(E) and by Im S(E),
and that off resonance coupling terms are important. In particular, it will be
i useful to rewrite equation (2.15) in the form

. Gy=1{Z— E,—~ D(E)+iT(E)}, (2.15 a)

where the total level shift of s is

A
D(E)=Re {S(E)+(V°S+EA —(EJ;,‘),,)(—V;S’ (;) (E))}. (2.16)

The corresponding total line width is given from (2.15), (2.8), and (2.9)

(Vs + o —iBY(Vep+ a*—iB¥)

NE)y=T{E) = Im = B+ iT(B)

(2.17)
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We have already pointed out [10 b] that equation (2.17) can be recast in a manner
which is similar to the Fano line shape formula [2] taken at a single energy Ex E,,
Defining the auxiliary parameters :

iy E—E,— Dy(E)

€(E) B (2.18a):
G(E)Y exp (¢ =M 2.18
q(E) exp (i0(E)) 8B (2188)
we get
_ |BE)[? (EY— 1+ 2¢(E)§(E) cos 8
R Wi I+ ()
~I'(E) G(E)+EE) + 2§(E)é(E) cos 6 219

1 +&(E) ’

where we have utilized the relation |B(E)|2=TW(E)T'|(E) which originates from !
equations (2.8), (2.9) and (2.10). Itis interesting to note that when non degenerate |
electronic states are involved, then both for internal conversion (Vy,, S(E) and D(E)

all real) and for intersystem crossing (Vy,, B(E) and «(E) all complex) we have §=0
in (2.18) and equation (2.19) is further simplified to yield the familiar expression

T(E)=T(E) %:_;: (2.19 a)

This last resultt can be recast in a somewhat more detailed form
D(E) =T EXV o+ 2(E))*+ 2(E — Ey,— Dy(ENB(ENV 3+ o E)) ]
+U(ENE = By~ Dy E))/[(E— E, — Dy(E))+ T(E)2]. (2198) §

We have considered G, in such detail, as the line shape can be expressed in our §
model in terms of the functions 4(E), B(E), (which are determined by the coupling
terms V, and V,; with the quasicontinuum), the interstate coupling term ¥, and §
by the matrix element G, (equation (2.19)). The following points are now ]
pertinent : 4
(a) As we are interested in the resonance centred around E ~ E;, then in the §
statistical limit one can assert that the functions A(E), (equation (2.8 a)), A(E),
(equation (2.8 b)), [or «(E) and B(E), equatiozs (2.8 ¢) and (2.8 d)], S(E), (equation I
2.9) [or Dy(E) and I'(E), (equations (2.9 @) and (2.9 b)), B(E), (equation {2.10),
[or Dy(E) and T',(E), (equations (2.10 @) and (2.10 4))], and finally, D(E), (equation 34
(2.16)) and I'(E), (equation (2.19)) are all weakly varying functions of the energy in B
the vicinity of ExE,. Thus for reasonable estimates of the line shape, all these |
functions can be taken at a fixed energy. If the details of the level distributions 3
and the coupling strength within the quasicontinuous manifold {|/>} are known, JE

t A cursory examination of equation (2.19 a) might indicate that the linewidth can vanish 3
due to interference when ¢= —§ [15]. However, it is meaningless to consider a simple S
exponential decay in this case, and consequently to regard I" as a reciprocal decay time or
line width, as T" is strongly dependent on E.
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the energy dependence of these generalized width and level shifts can be estimated.
" In §3 we shall demonstrate that for |E— E,| <fiwy (Where wy is the totally sym-
“« . metric vibration of maximum frequency) the correction to the line width function
~ (due to its energy dependence) is trivial, while for \E — E| ~hany this correction is
of the order of 30-50 per cent.

(b) The level shifts a(E), (equations (2.8 c}), D,(E), (equation (2.10 a)) and
D(E), (equation (2.16)) which are also weakly dependent on the energy in the
vicinity of Ex E; will be incorporated in the zero order energies in the form

E.=E,+ D(E), (2.20)
E,=E,+ Dy(E). (2.21)

Note that in this definition the correction term to the energy of the zero order s
state includes the whole contributions (2.16) while the energy of the E, state includes
just the first order corrections due to the interaction with the quasicontinuum.

(c) The general width I(E) (equation (2.19)) could be derived in an alternative
manner by invoking the formal relation

I(E)=Im {S|R(E)|S>, (2.22)

where R(E) is the level shift operator [16]. We believe that the present derivation
is somewhat more transparent. :

(d) Equation (2.19) for the generalized width ['(E) implies that [(E)+#1'(E)
(where T(E) is given by equation (2.9 b)). When off-resonance coupling terms
are appreciable, the width (and the relaxation time) cannot be described in terms
] of the Fermi * Golden rule’ expression but rather by (2.22). This point brings
up a ‘ convenience principle ’ for the choice of the A basis set to describe electronic
relaxation processes.

(¢) In principle the general line shape for a molecular resonance (equation
(2.6)) is expected to exhibit deviation from a Jorentzian (characterized by the width
I(E))) due to the energy dependence of T'(E). This energy dependence can be
traced to two factors : first, the intervention of the state |b) and secondly the
correction discussed in (@) above and in § 3.

~ This completes our formal discussion of the line shape problem, without refer-
ring to any specific approximations except the use of the model system (figure 1)
and the mild restriction on the basis set which is diagonal within a given electronic
configuration. ‘Two cases of physical interest will now be encountered. (1) The
2e10 order states |s) and |b) correspond to the same electronic configuration. In
~ this case V=0, while the energy separation |E,— E,|~#w is small. In this case
(Provided that «(E) is neglected) the line width function (2.19 @) will be given by

é(E)*
(E)=TE) o e

(2) The zero order |s) and |b) states correspond to different electronic configura-
tions.  Now, V,,# 0, while the energy spacing E,— E,~ AEg is large correspond-
;gg roughly to the electronic energy gap between the s and bstates.  1f Ty(E) < AEg,
he line width function takes the form D(E)=T(E)1+ Vy/(E—Ep)) for E~E.

he latter result corresponds to a simple perturbation expansion.
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3. COMMENTS ON THE ENERGY DEPENDENCE OF THE NON-RADPIATIVE WIDTHS

The energy dependence of the non-radiative widths ['(E) and T,(E) and of the 1
‘ mixed width > B(E) can be estimated by invoking the theory of multiphonon pro. {
cesses in large molecules [17-19].  As it is well known, these functions can be 1
expressed in terms of a Fourier transform of a generating function and the integra| §
can be handled by the steepest descent method, resulting in a generalized ‘ energy 1
gap law ’ equation [18-19). 3

To obtain a reasonable estimate it will be sufficient to focus attention on a mode] §
molecule which we take to be characterized by displaced harmonic potential surfaces, §
The calculations of i

CB)=r 3 V.lPS(E - E), (3.1) |
yE)=n 3 Val (B~ E) 32

and .
BE)=m> Vy,V  S(E—E)) 6.3 |
l 4

may all be performed on equal footing by evaluating the appropriate generating
functions [17-19] J(t), Jy5(2) and Jo(t), in terms of which we have

Joo(2) dt, (34)

1 o
rE=; |
I‘S(E)zé J‘f Jos(2) dt (3.5)
and
ﬁ(E)=% ff Tpi(2) dt. (3.6)

Now, provided that the promoting modes are identical in the electronic states [,
> and |6, the generating functions can be displayed in the form [18, 19] '

P t
I(t)=> Cbécfs fiw,, exp I:_ i(E— Ep) %:I
k=1

X [(v5+ 1) exp (fwyt) + vy exp (—iw,t)] H £.5(t), (3.7)

u#h

where b and s are assumed to possess the same electronic symmetry and also to be
characterized by equal occupation numbers v, of the promoting modes k. C,, and 1
Cys are electronic coupling matrix elements and E,° will represent the electronic 3
origin of the ith state (i=s, Jor b). Finally g%(¢) in (3.7) is given by [20] '

£.5%(8)= Cvp,| exp (iP,(0)Ay,) exp (~iP,(1)A, ) vy, >, (3.8)

where A,, and A, are the normalized (reduced) components of the shifts of the b |
and s potential surfaces relative to the ! potential surface. P,(t) is the Heizenberg
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representation of the reduced momentum of the x mode, expressed in terms of
creation, a,* and annihilation a, operators for this mode

P#(O)——*W (a,t—a,), (3.9 a)
PI“(1!)=\/L2 (a,* exp (fw,t)—a, exp (—iw,1)). (3.9 )

Utilizing elementary commutation relations [20, 21] equation (3.8) can be recast
in the form :

i .
) =oxp [ —5 (8,74 80~ 1y, 0 (i) |

1
x W {0|(a— M (E)eer(at + AL ()10, (3.10)
where
1
Xilt) =75 (Bou— Boy exp (i) (3.11)

applying the binomal expansion, equation (3.10) yiclds after some algebraic
manipulations

1 AA .
g,ubs(t) =exp [ - 1 (Ab,u2 + As,uz) - __'%"Ef €Xp (Iw#t):l

min(pas, o) ( _ 1)‘”“‘7' y (Ag‘(t))uh”( Ag:*(t))”b#l )‘gl(t) ‘—2".
“ r!(*:vw—T’)I(vzm_’)I

X V(5,105,) (3.12)

In the calculation of a diagonal matrix element whereupon s and  correspond to the
same potential surface we have to set A,,= A, and v,,=v;,. If we want to calcu-
late a width, say I'(E), the relevant generating function J,(#) will contain the dia-
gonal matrix elements g,%(t). As is evident from equation (3.7) and (3.12) the
functional form of energy dependence of a real width [equation (3.4) and (3.5)], or
of a  mixed width ’, [equation (3.6)] is identical. All the pertinent information is
contained in the generating functions. Thus equations (3.4)~(3.6) together with

(3.7) and (3.12) exhibit the general energy dependence of the relevant width

nctions.  To consider a specific example let us focus attention on the ‘ mixed
width * for the case v;,=0 and v,, =1 where all the other occupation numbers are
Zro. In this case equation {3.12} takes the form

A2+ A A A
8,"ot)= —exp [(_ bﬂ: M)_ 32 * exp (prt)]

Ay, A i
X I:T/?_K/—Z exp (tw#t)]. (3.13)

From this simple result and from the general relations (3.7) and (3.12) it is apparent
*hat for small vibrational occupation numbers (such that E— E;® > vfiw) the problem



of the energy dependence of the width is reduced to the problem of the energy
dependence of integrals of the form

I- J‘ :exp <_z‘AE é) exp (A exp (iwt), (3.14)

where A is of the order of magnitude of ¥ 3A 2 and AE=E—E. Integrals of

m
this type have been commonly encountered in the theory of multiphonon processes
and have been evaluated [18-19] by the saddle point approximation to yield

AE
I~exp(---ym)=exp(—h—:j—(E—El" ), (3.15)

where w,, is the maximum molecular frequency and v is of the order of unity.

Equation (3.15) provides us with a reasonable approximation for the energy
dependence of the non radiative widths. As a relevant example let us consider the
width of the zero order state s, which is given by

()~ exp | - L (AEu+(E-E) | (3.16) |

where AE,, = E,— E® represznting the electronic energy gap between s and the /
manifolds. Thus the energy dependence of the non radiative widths 1s ]

I'(E)=T,(E,) exp (MLM (E,— E)). (3.17) f_:;

Similar equations will result from the energy dependence of I',(E) and B(E) in the
vicinity of Ex E,. 'The numerical estimates in § 2 are based on equation (3.17). 1

The general criterion for the weak energy dependence of a line width function ]
I(E) (equations (3.14) and (3.15)) is given by the simple relation 3

dl

=| <L (318) §

Ea

where E, corresponds to the centre of the line, for the case under consideration E
E,~E,  Thus for I'(E) (equation 3.16)) we have 3

dU'(E)

- ~T(E,) —<1. (3.18 a)

E=F, th

As y ~ 1 the weak energy dependence of the line width function will imply

I'(E.) < ooy (3.19)]

Thus we expect that the energy dependent corrections to the line width function are{
small provided that interference (i.e. overlap) between adjacent resonances i3]
negligible. ]

We shall now proceed to consider the features of the line shape in the A and in]
the CA basis, limiting our considerations to the case of internal conversion. Aparh;
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from the point made preceding equation (2.19 a) the case of the (spin orbit induced)
intersystem crossing is simple and does not add any new physical features to the

problem.

B 4. THE LINE SHAPE IN THE CA BASIS

The most useful feature of the CA basis involves the preservation of the
molecular symmetry properties, as the clectronic wavefunctions are chosen at a
fixed nuclear configuration @, which corresponds to the equilibrium ground state :

‘S(CA)> = (Ps(r’ QO)Xst(CA)( Q),
1A = g (v, @y)x;; 4N @), (4.1)
lb(CA)> = @y(r, Qo)ka(CA)(Q)s

where @ represent the eigenfunctions of the electronic hamiltonian for variable
electronic coordinates at the fixed nuclear configuration Q,, while x4 @) are
the crude adiabatic vibrational wavefunctions (which differ in principle from the
adiabatic vibrational wavefunctions). Now, provided that |sC42) is accessible by
optical excitation from the vibrationless level of the ground state, x @4 (@) will in
the harmonic approximation involve only totally symmetric vibrational modes. In
the weak electronic vibrational coupling limit the off-diagonal near resonance
matrix elements in this basis are (S}, (3U(r, Q)/00,)o Q| €47 where U(r, Q)
k

is the molecular potential. Let us further assume that the electronic states
o1, @,) and @,(r, Q) are characterized by different symmetry. Then the well-
known rules for vibronic coupling [17] imply that the vibrational states {xy (@)}
of the effective quasicontinuum have to contain a non-totally symmetric promoting
mode. Thus

por @8 = 0| |pyr, Q) 4(@)> =0

for all j. Tt is safe to assert that the relevant states in the {J{>} manifold do not
-~ carry oscillator strength from the ground state.
The line shape function (2.6) now takes the simplhfied form :

1
L(E)= - Im {0, C40G Oy ©A) + 105 CAIG 3y Oy OA)

+ gy CRIG 5 C8y o OA) 4 gy A Gy ©B a0 OA . (4.2)

_..Utilizing equations (2.11 a), (2.11 b) and (2.14 a) we get
©4)|2

1 |
L(E)y= —- CA)|,, (© Fob
(E) - Im I:Gss A gt A)\2+E—E’b<CA)+in(CA>(E)

{CA} (CA) 2
+ hu.OD(OA)lz Vbs +A ] (E)) Gss(CA)
E—E,©8) 44,8

CA) 4 4CA)
+ s OBty CA) Vi +4 _ (E) G. (CA)
0s 700 E—E,©% 1il,CA(E) %

Viys'©2 4+ ACAAE
+ 12y CB g OA) (E i E*b+iI‘b{CAJ(E;) GSS(OA)]_ (4.3)
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This form is particularly useful when discussing the influence of the sty
> on the lineshape in the vicinity of E,, when E—E, » I'(E), i.e. when [b) cor
responds to a different electronic configuration. Equation (4.3) can be now i}
played in a more transparent form ]

L(E\— 1 | 1405 ©2)| 20, CAYE)
O BT TR Ey

1 1 .
o Im {E_ES(CA)-I-iF(CA)(E) [0s + top(P(E) — i (E))]

<Dt E) @) (44

where we have defined the auxiliary functions :

A
Y

(E)= (Vs O2) + aCANE - ) — BCAYEYT, (CAY E) 4s 2

i (BB, + (T, 00 ’ 2l

o(E)= BCAYEYE—E,) + T, CAYE)(V,,CA) 4 (CA)) 5y

(B—Byy+(T, 00 ' o

1

For the case E— E, > I'y(E) these functions exhibit a weak energy dependence in §
b gy dep

the vicinity of ExE,. 3
For internal conversion the functions (4.5) are real. We can now define the i
energy dependent reduced effective energy ¢(E) and the line index g(E) in the form 3

E—E,

€(E)= P(CA)(E)! (4’-6 a)._
_Hos CA) 4 114, A 'p(E)
2(E)= Hop A n(E) 69

to get a generalized Fano type [2] equation

1 R PTOAE) g (B
R A R R Y

Q(F)— 1+ 24(E)(E)
i )

From equation (4.7) we conclude that interference effects in the line shape will be
always exhibited. However, the magnitude of these effects depends on the specific §
cases to be now considered :

(a) Interstate s-b coupling, ¢, and g, correspond to different symmetry of the
molecular point group. In this case «(E)= B(¥) =0 for all E as |b) is not coupled 10§
the same quasicontinuum as |s>. Now equation (4.4) will yield just a superposition;
of two lorentzians

V
(CA) (CA} {CA) __ b8
TCAXE) (Pm + Hop E - Eb) . | 1265 ©4) 2T, CAXE)

L(E)= (E—E )2+ T Co Ry (E—E,)2+ [, CAYE)?

(4.8
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the lorentzian corresponding to the s resonance seated on the background

gmely
# the lorentzian which corresponds to the |b) state. Note that this simple result
ounts both for symmetry allowed and symmetry forbidden transitions. We

o conclude that electronic states of different electronic symmetry will not con-
ibute to interference effects in the line shape. However, these states may con-
bate to the total line with, T'(E), provided that Vg, is appreciable.

;- (b) Interstate s—b coupling, ¢, and @, correspond to the same symmetry. In
dis case we can usually assume that \B,—E,|>Ty(E) (otherwise the general
uation (4.4) has to be used). Under this condition g(E)~ V,, CA|(E - E,) and

()~ BOM(EY(E~ E,) whereupon

g= #03(0(4;;"' J“'ong }Vbs/(E — Eb) (49)
1op CO[BCHNE)/(E - Ep)]

|0y OO 2T, CAXE) | |BCANE)
(E—Ep) [CAXE)

Now for a symmetry allowed |0) —|s) transition the line profile index 1s

2 -
RONIE q_f_?‘.eq_._l (4.10)

l#o 1462

L(E)=

—~ AEst'OS(CA)
7= I, CAYE Yug, CA (+104)

{Note that B~T.) The ratio of the transition moments is ~0:1-10-0 while
AE,,(['y~ 10* — 107, thus the line profile index ¢ 2 10 and only small deviation from
fl-l_erentzian line shape is exhibited, expect, of course, for a small AE,, energy gap.

Consider now the case where |s)> and |6 correspond to the same electronic
‘configuration. In this case V,=0. We should note that the form of equation
.7) is misleading, as ¢(E) is now strongly energy dependent, Still we can express
‘the line shape function in a simple alternative form, taking advantage of the fact
at V,, vanishes. Assuming also that « may be neglected equation (4.3) yields

28CAN E )iy O iy O E ~ BN E—By)

_! g OAPL OXNEYE— By 4 oy A, O (EYE ~ B
T HE-ByE By P+ (T EXE — Ey)+ Ty O (EYE~ B
(4.11)
here the matrix elements are again taken to be real
It is convenient now to define the parameter
sy E L (4.12)

| E-E,
Erms of which equation (4.11) may be recast in the form

(105 v/ [T, A (EYJB(E) + (sign Bins A VITNEN? 4 13y
(E—E )2+ (T,C8)(E) + T, CAYE)3(E))* SR

L(E)=1

.,t.-LeNote that | 82| = T'pI's so that only when I's= T (i.e. Vps=0) equation {4.10) 1s reduced
conventional Fano formula [2].
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where we have utilized the relation S(E)= + +/[Ty(E)'(E)] and sign(B)= +1.
From equation (4.13) it is immediately apparent that we shall encounter destructwe
interference (i.e. L{E)=0) either between £, and E, or outside the energy region
enclosed by & and £, depending on the sign of 8. The condition for a dip in the
lineshape is

(CA) [ CAYE
8(E)= —sign (B) ”"S(CU J (ﬁaﬁ%) (4.14)

The following commznts are now in order :

(1) The nature of the interference effect does not depend on the phases of zero
order wavefunctions as may be szen from the original expression, equation (2.6),
where every wavefunction appears with its complex conjugate. In equation (4.4)
the sign of the wavefunctions (which had been chosen to be real) does not influence
the result.

(2) The condition (4.14) for destructive interference is determined by the rela-
tive sign of py and uy, which in turn depend on the molecular paramesters. For
example suppose that s and b denote the zero and first vibrational levels of an excited
electronic state whose potential surface is shifted relative to that of the ground
electronic state by an amount A, The vibrational overlap Franck-Condon

18O

ABSORPTION CROSS SECTION (cm2al018)

———

SAT-¥5)

INCIDENT PHOTON ENERGY (em='x10%)

Figure 2. Absorption lineshapes in a system of two overlapping resonances. This parti- 3
cular example corresponds to the absorption from the vibrationless level of the ground §
electronic state of an harmonic molecule into the vibrationless and the first excited §
vibronic states of the excited electronic state, whose potential surface is displaced 1
relative to that of the ground electronic state. The electronic energy gap is 20 000 3
cm~!, the relevant molecular frequency is 100 cm ! and the non radiative widths are
taken to be 500 cm~! whole the electronic dipole matrix element is chosen so that }
the radiative widths of the two states will be 1072 em~*. The (normalized) displace- 3
ment of the electronic states is +0-8 for the solid line and —0-8 for the dotted line. §

t In these figures we included also the radiative corrections which cause the absorption 3
in the dip to be different from zero [22].
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‘factors will cause tos/iton tO be either positive or negative, depending on the sign of
‘A. Infigures 2 and 3 we present the results of numerical calculations demonstrat-

.ing this factf.

—IZ_OT

-17.5

LOG s (CROSS-SECTION)

-23.075% 23.0
INCIDENT PHOTON ENERGY (cm-is1Q3)

Figure 3. Logarithmic plots of the absorption line profiles which are presented in figure 2.

(3) If the r.h.s. of equation (4.14) is negative that means that dip in the lineshape
will be encountered between the energies £ and B, (see figure 1 and 2). If the
ths. of equation (4.14) is positive the dip will generally not be amenable to
~-experimental observation (see figure 2) as 3(E) is of the order of magnitude of unity,
..whereupon complete destructive interference will be exhibited 1n a region where the
- -absorption is practically zero.

_ (4) When the widths T',(E) and I'(E) are small relative to E.— E, the lineshape
in the vicinity of E=E, will be fanian [2]. To demonstrate this point we shall
rewrite equation (4.13) in the form

_Ly/e \/(F,,@A)(E)])z (e+9)°
L(E)_;( 00 ' — (4.15)
S el 0 (4.16 @)
T CAY(E)
_ oy B E-B, (4.16 b)

1= % L VT, OME)T CAYE)]
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and where in the vicinity of £,, 8(E) in the denominator may be neglected, ang
E-E, (and g) may be regarded as weakly varying functions of the energy. Thig
case is equivalent to the interstate coupling situation discussed above, Note thyyd
for the present case pgg~ gy, Iy~ T, while E— B, ~ B — B, = #w (where w is a tota]ly}
symmetric vibrational frequency) so that '

Fico
~2 (+.1)

This result is valid for intrastate coupling when the widths are small.

5. INTERFERENCE EFFECTS IN THE ADIABATIC REPRESENTATION

Following early work in the field it was conventionally assumed that in the
basis the quasicontinuum is optically inactive. For the case of internal conversmn
the usual argument that the quasicontinuum is characterized by unfavourable
Franck-Condon factors (for transitions from the ground state) is not entlrely_'
convincing, in view of the large density of states in this manifold. To examine this
problem somewhat more closely let us consider the adiabatic wavefunctions ]

|SA = gr, @)y, Y(Q), i
182 = g (r, @)y, A(@), (5.1
|BAY) = gy(r, @)x,tH( @), '

where o(r, Q) represent the (nuclear coordinates @ dependent) electronic wave-3
functions while x4 correspond to the vibrational wavefunctions obtained from]
the adiabatic potential surfaces. To establish the dependence of the electronic AR
type wavefunctions on the nuclear coordinates it is not sufficient to apply first order]
perturbation theory as usually done. We have previously demonstrated [9] that @
the electronic adiabatic wavefunctions can be expanded in terms of the Wigner$
Brillioum perturbation series in the weak electronic vibrational limit. As in the}
adiabatic representation the role of off-resonance coupling terms is small we can;
focus attention on a two electronic level system. In this case the energy deno-
minator in the Wigner—Brillioun perturbation expansion is given by the difference;
between the adiabatic energy surfaces corresponding to the s and I states [9]. Thusj
the quasicontinuum adiabatic electronic wavefunction takes the form ]

i, @ lor adogr @) oM
E(Q)-E(Q)

pi(r, @)=p(r, Q)+

In the weak electronic-vibrational coupling limit E(@)— E(Q) is the (@ depen_.
dent) difference between the adiabatic energy surfaces. For this limit the perturba<
tion operator in (5.2) is V=Y (0U/00,)oQx where U is the molecular potential and

- ]

the sum is taken over all normal modes. ,

Now invoking the conventional symmetry classification for the vibrationsk
x*(Q) wavefunctions [17, 23], we assert that for internal conversion yA(@) if
totally symmetric, while x,,A4( @) contains a nontotally symmetric mode whereupo®
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A% =0 so that the first term in (5.2) does not contribute to the transition

A
(xXoo XY . . . 3 :
The electronic transition moment to the quasicontinuum s

:}Jmomcnt.
| P"OI(A)= <q)0(l', QO)l!"‘l‘Ps(r: Q0)>

[rnian |2 <o) 2 2 [ ymia
E(Q)-E(Q)

oU
(a_Qk)O (Pl> Qk X:j(A)(Q): (5.3)
(Q)-E(@)

0s

(CA)
=E9;\_“' Xoo ™ (@) Z<%
E

where ¢ > and ( ) represent integration over electronic and nuclear coordinates
respectively. Fy, is the Franck-Condon vibrational overlap factor for the |0) —|s)
optical transition. The calculation of the nuclear integrals in (3.3) cannot be
‘performed by invoking the Condon approximation. Numerical calculations have
demonstrated [10 a] that these integrals take the following form for near resonance

‘¢oupling
| 2U

2. | X' ®A(@) <% (5@)0 CP‘> O x4 (Q)
' E(@)-E(@)

“—'Z <%|(%E)O @l>(X00(A)(Q) ES(Q)%CE:(Q)I x;,'(A)(Q))

v |Gg) =

My D AE,, (OpoFor,  (54)

P

~Where AE,, is the electronic energy gap, the index p refers to the promoting modes,
Q> is the matrix element of the normalcoordinate of the promoting mode between
the states specified by the vibrational quantum numbers v, =0 and v, =1, and
_ ly F, o 1s a reduced Franck—Condon vibrational overlap factor, which excludes

Promoting mode. The numerical correction factor, 7,, is of the order
MAAE, /hw. Thus we get in the A representation

(@),

A)

2 F
r PP S o (r, @) ir, @) D <0,> Y
FOs 5y fiw

{Ca)
O (55)
W
Rere U (CA) is the CA interstate coupling, provided that the ground and the s
- are not shifted in energy. It is worthwhile to note that a straightforward
Cation of first order perturbation theory for near resonance s--1 coupling
ad have resulted in a term which is smaller by 5, ~ AE ffiw. Our final result

}for the transition moment in the A basis has a simple physical interpretation.
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In view of the nuclear dependence of the A electronic functions the symmetry]
forbidden {/} vibronic components have a small allowed vibrational component,]
and their intensity is determined by p©4) and by a (small) Franck—Condon§
vibrational overlap factor.

The major advantage of the A basis is that off-resonance coupling terms can be
disregarded. Setting V,A'~0 and V,,4'~0 the line shape (apart from ,}
* background ’ due to the b state) takes the simple form '

.1
1)~ T { o PG4+ 3 (G W)
1,

+ s MG P B+ g BIG B ’)} (5.6)1

Now utilizing equations (2.7)-(2.19) for the Green’s function matrix elements in the 1
A basis our result takes the form 3

B 1
HE)= o™ PHE— B+~ T (G paos A 4+ T4 — 1)
! m i
X (pgg @) 4 T i (5.7

where the ¢ transition level shift ’ 1s

(A) {4)
JA(E):PPZP'GI Vls
i

T E_E, G8

while the corresponding mixed width 1s given by

TAE)=7 D p PV AIE—-Ey). (5.9
]

We can assume that [ and J are real. Now defining the line profile index

eI

* T8 (5.10)§
and the reduced energy
_Fw |
The line shape takes the form
g |
L(E)=Z g A28 E— EY) T3 (A (5-12)

Now consider the line index parameter in somewhat greater detail. Making use '.
(5.5) and (5.9) the denominator of equation (5.10} is 5

A 21y OO T ORIV (IF(E — E ) = pros O[T M ENCAAE)H2 3
N g CATAYE)  (5.13)
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.. whereupon the line index parameter is ¢4 xAw/T'4(E,). This result obtained in
. the A basis utilizing a two-level system is identical to the result obtained in §4
+ equation (4.17) for the CA basis utilizing intrastate coupling in a three-level system,

We have just demonstrated that the interference effects in the A and in the CA
representations are of the same order of magnitude. However, we did not establish
the full equivalence between these two representations. The difficulty lies in the

- fact that in the A basis the continuum carries oscillator strength via the interaction

. of the [s) and |{I) CA functions, while in the CA basis transitions from the ground

B sha

state to the continuum occur by second order processes via the state 5. A case in
which the equivalence between the two representations may be fully established is
encountered when g, 3 pgs so that also in the adiabatic representation the inter-
action F,; leads to a major contribution to the continuum oscillator strength. In
this case we may express g,(r, @) by an expansion of the form

(oir, @[V o r, @)
ORI

Lop(r, Q)| V| pilr, Qp))
ENQ)-EN Q)

pir, Q)=gp(r, Q)+

.+_

eo(r, @g),  (5:14)

where the coefficient of ¢,(r, @,) may not be expressed in a manner analogous to
that of the near resonance coupling of g r, @), to p(r, @y); so that we apply
the simple Raleigh-Shrodinger perturbation expansion for this coupling. Equa-
tion (5.3) will be now replaced by

por™ = {y(r, Qu)|l‘-|%(r’ Q)

1
- (A

bi

oU
Ps = | @ >Q
Z< ] an H k
where the contribution of the s state has been neglected as g >y,  Utilizing the

same procedure which lead to equation (5.5) we now obtain

pop OV (OA)
ALy,

xwm)), (5.15)

A)Y—
I( b=

o (5.16)

“fhich leads the equation (5.12) for the lineshape where now the lineshape index is
given by

Hop A AEy,
s T4 TANE)

PSP (5.17)

trhis result is analogous to the expression for g obtained for interstate coupling
In the CA representation (equation (4.10 a)).

6. DiscussioNn

In .this paper we have presented a detailed study of the optical molecular line
P¢ (n the statistical limit. We have demonstrated that apart from the energy

_depepdence of the line width function I'(E) Fano type interference effects can
Modify the lorentzian line shape. Within the framework of the CA basis other
- Mp,

I
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vibronic components of same optically active electronic manifold will contribute to
the line asymmetry. In our three electronic level CA basis the line index is
g~hw/T(E,). Within the framework of the conventional adiabatic representation §
we have challenged the conventional assumption that the zero order quasicontinuum E |
is optically inactive and within the framework of the two adiabatic electronic levels
system we were able to demonstrate that again the line shape index is qg~hw/T(E,). §
[t is gratifying that both different lines of attack on the problem yield identical 4
results, thus providing a physical demonstration of the equivalence of the basis sets, 4
Several experimental implications of the present study are of interest. As 1
pointed out by Byrne and Ross 0 their recent authoritative review {1] two sources 1
of experimental data are available concerning the line broadening of electronic
spectra which arises from electronic relaxation. (@) The gas phase data are ap-
parently hopeless as far as quantitative analysis is concerned. If the line broaden. 3
ing exceeds ~0-1cm™* rotational lines will overlap while if the line broadening ]
exceeds ~ 5 cm~! sequence bands will overlap. (b) Low temperature spectra of §
molecules embedded in some mixed crystals and in Shpolskii matrices [24] (i.e. 3
hydrocarbons or solid rare gases) may yield information concerning the upper limit 3
due to intramolecular relaxation broadening. To extract the physical information
concerning the intramolecular relaxation broadening of a molecule imbedded in a 4
medium, one has to correct for the gaussian distribution of trapping sites and for
the line broadening due to quadratic terms in the molecule-lattice coupling. The 3
total experimental linewidth cannot be rigorously considered as composed ot
additive contributions of non radiative widths and lattice contributions, and more
elaborate methods such as used in solid state physics are required to extract the
‘ntramolecular relaxation contribution to the line shape for T(E,) < 10 cm™*.  For
large widths the experimental data will be adequate provided that it will be

demonstrated that linear terms in molecular phonon coupling are negligible. The §
present theoretical results demonstrate that '

(a) For intramolecular relaxation broadening I'(E;) <10 cm™! (ie. resonance
decay times of 23 ps) the line shape is lorentzian as previously proposed.

(b) For intermediate intramolecular broadening of T'(E,)=50-200 cm™ the}
line shape can be described in terms of a fanian. Gas phase data are not useful in §
this respect, however, low temperature mixed crystal data, when they become avail- §
able for such transitions will be amenable to a proper interpretation. ]

(c) For large line widths I'(E,) ~200-1000 cm~!, interference effects between§
resonances have to be taken into account. In this case, we should use the general
equation (2.6), and it will be further advisable to utilize this equation in the A basis§
where off-resonance interstate coupling is negligible (so that the |b) state(s)y
correspond just to the same electronic configuration as |s)). Furthermore the3
energy dependence of I'(E) and ¢(E) will have to be included explicitly. When
reliable line shapes (for broad lines) in low temperature mixed crystal data becomey
available, the results of the present study can be directly applied to this problem:
It should be noted that for this physically interesting case the original Bizon-
Jortner model [3] has to be modified. ]

Finally, let us point out that relaxation line broadening characterized D ]
[(E)~ 1000 cm™! (relaxation time r~10-15s) can be encountered in real life)]
although the relaxation time exceeds the period of the molecular vibration§
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(10—14 s). In this case the zero order states are just a mathematical artifact while
the real excited states of the system are so strongly scrambled that they completely
lose their identity.
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