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In this work we shall develop a formalism which extends previous calculations of
lifetimes of excited molecular states near planar dielectric surfaces and near single
small dielectric particles to situations where the molecule is adsorbed on a cluster
made of several dielectric spherical grains. The nonradiative relaxation rate is seen to
be relatively weakly dependent on the cluster structure and, if the molecule is
adsorbed on one of the grains, is well approximated by the single grain result. The
radiative decay rate and hence the quantum yield are much more sensitive to the
geometry of the cluster which determines the position (in frequency) of the dielectric
resonances of the cluster. The formalism developed here may be used to evaluate
local field intensities at different positions within a cluster of dielectric grains under

the influence of an external incident field.

. INTRODUCTION

Following the discovery of surface enhanced Raman
scattering! and the realization that much of the observed
enhancement is due to the local electromagnetic field
enhancement on rough metal surfaces and near metallics
particles, it was pointed out that resonance optical phe-
nomena such as fluorescence and photochemical processes
involving adsorbed molecules should also be strongly
affected.? Experimental evidence for such effects quickly
accumulated.’ Both theory and experiments indicate that
the resonance optical response of molecules adsorbed on
rough dielectric surfaces is largely governed by the oppos-
ing effects of local field enhancement and of surface
induced damping.* The latter effect is easily calculated
for flat surfaces within local electromagnetic theory.’
Recent progress with nonlocal electromagnetic response
of metal surfaces has made it possible to estimate also
nonlocal effects on lifetimes of excited molecules near flat
surfaces.®’ Calculations for rough surfaces have so far
been limited to small roughness within the local electro-
magnetic theory,® while for molecules adsorbed on surfaces
with large scale roughness (e.g., surface island films) we
have used results of model calculations involving a mol-
ecule located near a single small dielectric spheroid.®

In this paper we present a formalism for calculating
the optical properties of molecules adsorbed on (or within)
aggregates of dielectric particles, and use it to calculate
the lifetimes of excited states of such molecules. The
results of such calculations make it possible to analyze
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the error associated with approximating a molecule ad-
sorbed on a surface with large scale roughness (e.g.,
surface island film) by a model consisting of a molecule
and a single dielectric grain, and they also give us
estimates of the lifetimes of excited molecules adsorbed
on aggregates of colloid particles.

There have been in recent years a number of works
which deal with the optical properties of aggregates of
dielectric particles. Earlier works® have used a very simple
model which approximates each such particle by a point
dipole.'° In later work higher multipole effects have been
shown both experimentally’! and theoretically'>'? to be
important. In this paper we extend the theoretical frame-
work developed by Bergman'# for calculating the electro-
magnetic resonances in a system of interacting dielectric
grains. This framework enables us to calculate, in the
long wavelength (“electrostatic””) limit, the response of
such a system to an oscillating point dipole which repre-
sents the excited molecule. From this we may extract the
radiative and nonradiative decay rate of such a molecule
by standard methods which are reviewed below. The
formalism incorporates the electromagnetic interaction
between the molecule and the dielectric grains and between
the dielectric grains in any desired order in the multiple
expansion. It is possible then to truncate this expansion
in different orders and thus check the convergence of the
procedure.

Even though the formalism may be extended to the
short wavelength limit'® we have limited ourselves to the
long wavelength (electrostatic) limit which, for grains
small relative to the radiation wavelength, should be a
good approximation. This limits us also to situations
where the distance between grains is small, however the
main effects on the lifetimes occur for molecules close
(<100 A) to the dielectric surface and if the grains are
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far from each other a model that disregard all but one of

them (the closest to the molecule) should be sufficient.
In what follows we first present the formal approach

and then study and discuss some particular examples.

Il. FORMALISM

Consider a system consisting of N phases character-
ized by dielectric functions e{w), i = 1 -+ + N. Following
Bergman'# we introduce the functions 6(r) such that 6(r)
= 1 if r is in phase / and 0(r) = 0 otherwise. Therefore,

N

e(r) = 2 ef{r). (1)

i=1

Later on we consider the special case where the phases

1.++.N — 1 are particles embedded in phase N. Define
ui=1_§i/fN; i=1-+-N—1. (2)

A charge distribution p(r) (later taken to be located in
phase N) gives rise to an induced potential ¥(r) which
satisfies

V- [dr)V¥(r)] = 4mp(r). 3

Using Eq. (1), Eq. (3) may be recast in the form
N-1

4
V= S u¥-(6VY) — — p. @)
v

i=1
Introducing the Green’s function G(r|r’),
V2G(rlY) = —&(r — 1), (5a)
which for an infinite system is
N
dx(r - r)’

Equation (4) is written as an integral equation

G(rlr) = (5b)

Y(r) = u, f d’r & \VG(rir) - V¥ (X') + é Y, (r), (6)

where
N—-1
or) = 2 (ui/u)b{r) )]
i=1
and where
4,0 = 4x [ & Gol)o) ®

is the potential at r due to the charge distribution p. We
define the scalar product of any two real functions by

(B = f d*r O(r)VE* - V¥ ©)

and the operator G,

GV = f d*r' (X V'Gair) - V), (10)
so that
(BIGI¥) = f d3r f d*r O(r)o(r)\VE*(r)
X VV'G(rlr) - V(). (11)
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Equations (9)-(11) constitute a generalization to many
phases of the similar definitions introduced by Bergman'*
for the two phase system. In terms of G the integral
equation (6) takes the form

v = ulG‘\Iz+i\1/,,. (12)

Y

Most of the properties of G derived for the two
phase'4 system are valid also in the multiphase case. One
important difference is that for the two phase system G
depends only on the geometry (not on the dielectric
functions) while this is no longer so in the general case.
Still G is linear and is easily shown to be self-adjoint. We
may conclude that its eigenfunctions form a complete
orthogonal set with respect to the scalar product (9). We
may therefore expand any piecewise continuously differ-
entiable function within the space of phases 1- - -N — 1
in a series of these functions. Defining these eigenfunctions
and the associated eigenvalues by

GV¥, =5V, (13)
and expanding (in the region outside )

v=>CY,, (14a)

v,=> D,V¥,, (14b)

we get a formal solution of Eq. (12) in this region in the
form

— Da
el — u;8,)

This is in general not a useful approach since the main
difficulty is in solving the eigenvalue problem (13). Instead
we follow Bergman in using an expansion in the eigen-
functions of individual grains. We consider a system
where phases 1-++N — 1 constitute grains which are
distributed in phase N. Consider one such grain, a, with
dielectric function ¢, imbedded in an otherwise pure
infinite medium made of phase N. The corresponding
Green’s operator is defined by

C. (15)

G,¥ = f d’r' 8 )V'G(xlr) - V() (16)
and its eigenfunctions ¥,, and eigenvalues s,, (G,¥..
= 5,.¥..) are casily shown to satisfy

(DR AR

Equation (17) has the form of a Laplace equation for the
electrostatic field in a system consisting of grain g in
medium N provided we identify 1 — 1/s,, with e/en.
The eigenvalues s,, correspond to such values of e,/ey for
which a field (V¥,,) may exist in the grain in the absence
of any external source. These solutions are well known
for grains of simple shapes, e.g., ellipsoids. For a sphere
of radius r, we get

an
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(Ir¢211+1)—l/2 IYIM(Q) rs< Ta

V() = p2i+l (18)
eyl it Yiml@) 1= 1a,

m = Q21+ 1), (19)

where the collective index « is here determined by / = 0,
I, 2-«cand m = =, =l + 1-+-+1L Q = (0, p) is the
spherical angle and Y,,(Q) are the spherical harmonics.
The normalization in Eq. (18) is chosen so that

<\I,Im| ‘I’I’m’> = 611’6mm' . (20)

For a system consisting of grains distributed in phase
N we may expand the potential ¥ in each grain in terms
of the grain eigenfunctions. To this end define 6 as a
step function which is unity in a volume infinitesimally
larger than grain a (so that V8, = 0 in grain g and on its
surface) and define also

N-1

n= 2 0,=1—0y, (21a)
a=1
N-1
= 2 6. (21b)
a=1
Note that G may be represented by
-~ N_l -
G = 2 (uu)G, (22)
a=1
and that G, and G satisfies the relations
G, = GO, (23a)
G = Gn*. (23b)

Consider now the projection of Eq. (12) on the
subspace defined by n*:

A 1
7'V = untGV¥ + . 7*Y,. 24)
N
Using Eqgs. (21)-(23) this implies
N-1 ~ 1
02V =07 > upGfi ¥ + - 0%, (25)
N

b=1
For each grain expand

0¥ = 2 Coulz Voo, (26a)

0%, = 2 Daubz ¥ g

a

(26b)

Inserting Eq. (26) into Eq. (25) and taking a scalar
product with a particular ¥, yields

1
C Daa + E Qaa bﬁCbB’ (27)

_N bg

where

Quoss = WSty | rOOVELE) V). (28)
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Note that the orthonormality condition on functions
defined on the same grain implies that Q.08 = 1455,0,4-
Defining the vectors C and D with elements {C,,} and
{D,,} and the matrix Q = {Q,..ss} We get

C= 1 (—-Q'D, 29)
€N

where | is the unit matrix. This is the required formal
solution for C in terms of the presumably known vector
D and matrix Q. In the Appendix we summarized the
necessary formulas for the elements of D and of Q in the
case where the grains are spheres and the inducing charge
distribution is a point dipole.

The solution C obtained from Eq. (29) corresponds
to the potential within the grains. It is also possible to
evaluate the potential in phase N. To do this we return
to Eq. (12) and use Eq. (23b) to write it in the form

- 1
¥ =uGn'¥+—V,. 30)
€N

Using Eqs. (21b), (22), (23a), and (26a) we get from Eq.
(30):

¥ =— ‘I’ + E Uy 2 Caasaa ao» (31)
a=1 a

Thus after having found C,, (and ¥ within the grains)
from Eq. (29), the potential ¥ everywhere may be found
from Eq. (31). This last result is actually not needed for
calculating the radiationless and radiative decay rates of
the adsorbed molecule, as shown below.

We now calculate these decay rates for the case
where the charge distribution p is a point dipole and
where the phase N is characterized by ¢y = 1. For this
we use the procedure used by Gersten and Nitzan for
evaluating optical properties of a molecule near a single
dielectric particle. We first focus on the nonradiative
decay. This results from energy loss due to heat generated
in the dissipative phases of the grains. The rate of heat
generation is for a field oscillating with frequency w:

amy _1f 5, 2
( d’:/)m =3 f dr o)V, (32)
where

o(r) = — Im[e(r)] (33a)

4r
is the conductivity at r. Rewriting ¢ as
N-1
or) = — 3 Imfe80)] (33b)

4r —

and using the expansion (26a) for each grain together

with the orthonormality property <\I’,m|\Ila5> 8.5 WE
obtain from Eq. (32),
dvw 2
== . 34
i 8n 2 |Cool? Im[e(w)] (34)

ao

This is the heat generated in the dielectric grains due to
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the presence of the source dipole which oscillates with
frequency w. For the latter we adopt a simple harmonic
oscillator model which implies the following relationship
between the dipole amplitude uo, its static polarizability
g, and the energy W'6:

2
——

2ao

(35)

The polarizability « is related to the radiative decay rate
T of the free molecule

(36)

where c is the speed of light. Using Eqs. (34)-(36), the
nonradiative decay rate T'ng = W™ dW/dt) takes the
final form

3 2
rw= o (9 [T 2 mien]re. o7

87 \w a=1 «a

It should be noted that |C,,|*/¢ is independent of po as
implied by Eqgs. (26b) and (29).

Turning now to the evaluation of the radiative decay
rate, we start with the classical expression for the rate of
radiative energy loss from a dipole of amplitude uf"
oscillating with frequency w:

4
aw 1 c(g) P,

a3
Here uf* is the amplitude of the total dipole induced in
the system. Equations (35), (36), and (38) lead to an
expression for the radiative decay rate

(38)

l totlZ

P ry. (39)

uf is given by

Tr=

Liver, Nitzan, and Freed: Decay rates of adsorbed molecules

we consider its components, e.g.,

- f dr 0(r)VV¥ - Vx, (42)

where Vx = 7, is a unit vector in the x direction. Next
we note that the functions ¥ and x in Eq. (42) may be
expanded in the volume of the grain a:

0¥ = 2 Caollz ¥aelr), (43a)

0ix = 2 FGO7 W 5ol1).

o

(43b)

Note that ¥ and x are real, however C,,, FY), and ¥,
need not be so. Inserting Eq. (43) into Eq. (42) we get
I, =~ CsFQ) (44)

and similarly for the y and z components. Inserting I
= Ad, + A, + ﬁzIz into Eq. (40) we finally obtain

o = po —

LFG + AFR + AFE). (45)

4
a

Equations (39) and (45) constitute our final results for
the radiative decay rate. This seemingly complicated
expression is greatly simplified for the case of ellipsoidal
particles for which expansions like Eq. (43b) are simple
(particularly if the axes are chosen along the principal
axes of the particle). Thus, for a sphere of radius r, the
functions x = rsinfcos ¥,y =rsinfsin¥and z = r
X cos 8 (r < r,) are easily expressed in terms of the
functions ¥,,(rx),/ = 1, m = 0, =1 (Eq. 18):

2
X == \/“:I "gﬂ(‘l’l 1~ Y1),
2
y=i \/;"3/2(‘1’11 + ¥, ),

uit = py + r 0,(r)E(r). (40) o
zZ= ? r?,/Z‘I’lo (46)
To evaluate the integral ) . .
Using Egs. (43b) and (46) to obtain the coefficients F&),
= J‘ &1 6,0K(r) = — f & 6,00V (M), @1) (k= x, 2), then using Egs. (39) and (45), we arrive at
the following result for the radiative decay rate of a
| molecule (represented by a point dipole):
FR = P(RD{ISIH 6 cos ‘p + 2 /Z(Cal 1 a,l,—l)lz
] ] . 2T g — 1 32 /5 - ) Ar e — 1 45~
+ |sin 6 sin ¥ + i 3 > ~ T (Cary + Cap—)* + |cos 6 — 3 > i ri2C.iol*t, (47)
where C = C/uo and where 8 and ® denote the direction [
of the molecular dipole in space. _ Tz
In the next section we apply the results of this Y= Tr + Tnr (48)

section to the calculation of the radiative 'y and the
nonradiative I'ng decay rates, as well as the emission
yield

of a molecule represented by a point dipole which is
located in the vicinity of spherical dielectric grains.

J. Chem. Phys., Vol. 82, No. 8, 15 April 1985

Downloaded 03 Mar 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Liver, Nitzan, and Freed: Decay rates of adsorbed molecules

. DECAY RATES OF A MOLECULE NEAR A
SYSTEM OF DIELECTRIC SPHERES

In this section we present detailed calculations for
the lifetimes and quantum yield associated with a point
dipole in a system of polarizable spheres. These lifetimes
are given by Eqs. (37) and (47) in terms of the coefficients
Cue [@ = (I, m)], which are obtained from Eq. (28). To
get these coefficients we need explicit expressions for the
elements of the vector D and the matrix Q defined by
Egs. (26b) and (28), respectively. Such expressions are
given in the Appendix. Since Q and D are infinite,
corresponding to the infinite number of multipoles (/
=0, 1,--+; m= —[...+[), we truncate the multipole
expansion at some / = L while testing for convergence

106 T - T

108 T T

1 L

-3
1030 25 30 35
10-3wem-!

FIG. 1. Radiative and nonradiative relaxation rates (relative to the free
molecule radiative decay rate) of a molecule adsorbed on a two-sphere
silver cluster. The inset shows the geometry of the system where the
double arrow denotes the orientation of the (point) molecular dipole.
---: surface induced nonradiative relaxation rate. This result does not
depend on L. The other curves are radiative decay rates obtained for L
=2 (e, L=4 (-, L=T(~0=-+ Yand L = 8 (—). The
molecule lies along the line perpendicular to the intersphere axis and
passing through a sphere center at a distance of 1.1 from this center. In
Fig. 1(a) the spheres are touching. In Fig. 1(b) the distance between their
centers is 2.2. All distances are in units of the sphere radius which was
taken to be 100 A. In Fig. 1(b) the lines corresponding to L = 7 and L
= 8 lie on top of each other.

3835

FIG. 2. Optical properties of
a molecule located near silver
surfaces of different configu-
ration. (a)-(c) Radiative decay
rate of a molecule near a two-
sphere cluster in a configura-
tion similar to that of Fig. 1.
The distance between the
molecule and the center of the
nearest sphere is 1.05. The
distance between the sphere
centers is 2.0 (a), 2.1 (b), and
2.5 (c). Note that the result
for w < 23000 cm™' in (a) is
not reliable because of lack of
convergence in this range. (d)
Radiative decay rate of a mol-

:,'_f e ecule located at a distance 1.05
& 100} i from the center of a single
Tog L~ 4 sphere. (¢) Radiative decay rate

- i 7 of a molecule near a plane
':; 08; f . (for distances much smaller
g 0%k 4 than the radiation wavelength
= . 2nc/w, where c is the speed of
& O 9 "L light, this rate is distance in-
2 o' g dependent). (f) Nonradiative
-~ 10k i decay rate of a molecule in a
g L . sitlfation similar to that of (b).
10720 25 30 35 This rgsult does not depend

10~ 3wem™ on the intersphere distance. In

(a)~(f) the molecular dipole is
parallel to the nearest surface. (g) Local field enhancement |EJ%/|Eg)® at
the position of the molecule in the configuration of (b). The incident
field E, is parallel to the bispherical axis and the local field E is measured
in the same direction.

by comparing results obtained for different values of L.
This truncation should be done with caution though,
because when the dipole is close to one of the spheres
(i.e., when d < r, where d is the distance of the dipole
from the sphere surface and r, the sphere radius) the
image potential seen by the dipole (which makes most of
the contribution to the nonradiative lifetime) is a very
slowly convergent series if expressed in terms of multipole
moments. Typically several hundred moments are needed
to give a good representation of the image field felt by a
dipole located at d < 0.05r,. We therefore adopt the
following truncation procedure: for all spheres we take
into account all multipole moments with / < L (in the
calculations reported below L < 8) and the couplings
Quim:brme between them. For the sphere, a, closest to the
dipole we take also higher multipole contributions (for
the smallest distance considered by us, d = 5 A, on a
sphere radius of 100 A, we have to sum terms up to /
~ 750 in order to get the image with less than 1% error).
However, the nondiagonal elements of Q which couple
these higher multipoles to the multipole moments of
other spheres are disregarded. Therefore the matrix |
— Q of Eq. (28) contains a relatively small nondiagonal
part, which is inverted numerically, and a large diagonal
part.

The results reported below address first the question
of convergence of this truncation procedure and then the
following physical questions:

(a) How do the lifetimes (radiative and nonradiative)
of a molecule located near a rough surface, represented

J. Chem. Phys., Vol. 82, No. 8, 15 April 1985

Downloaded 03 Mar 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3836

by a cluster of dielectric (spherical) grains, depend on the
morphology of the substrate. In particular, to what extent
do plan geometry and a single grain model constitute
good approximations for estimating these lifetimes?

(b) Modeling a very rough surface as a plane of
spheres—how do the relaxation times depend on the
molecule’s distance from this plane as compared to the
smooth surface and the single sphere case?

(c) How does the surface (or cluster) structure affect
the frequency dependence of the relaxation rates?

(d) How do the features mentioned above behave
for different molecule locations and orientations relative
to the grains?

For the calculation reported below we have consid-
ered (unless otherwise stated) silver grains (using the bulk
dielectric function of silver from Ref. 17) in vacuum. All
the distances reported are in units of the sphere radius
which was taken to be 100 A.

Figure 1 displays the radiative and nonradiative
relaxation rates (relative to I’ the radiative decay rate
of the free molecule) for a molecule adsorbed on a two
sphere cluster (the geometry of the system is shown in
the inset) as a function of molecular frequency. We show
results of calculations based on different truncation
schemes (with maximum multipole order L = 2, 4, 7,
and 8). However, for all cases the interaction between the
molecular dipole and the nearest sphere was calculated
up to order L = 750 which gave the correct image even
for the small molecule-sphere surface distances considered.

For the case of touching spheres [Fig. 1(a)] conver-
gence of the radiative decay rate is seen to be slow.
However, going from L = 7 to L = 8 is seen to make
little difference for w > 3 eV. When the spheres are
slightly apart [Fig. 2(b)] convergence is much more rapid,
and for an intersphere distance of 2.2 is practically
achieved for L = 7. The nonradiative decay rate is not
affected by the order of the calculation since most of the

10-2 T T
10-3
Y
10-4
105K,
-6 1 i
107°% 25 30 35
10-3wem!

FIG. 3. Quantum yield ¥ for emission from a molecule located near
different silver surfaces. The molecule is assumed to have Y = 1 when
free. —: a molecule at a distance 5 A from a plane surface; ---: a
molecule at a distance 5 A from a single sphere surface. The sphere
radius is 100 A; - -: a molecule near a two-sphere cluster in the
configuration of Fig. 1. The distance between the sphere centers is 2.1
radii; -+-o~¢ : same with the distance between sphere centers 2.5.
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107 T —T
ey 4102
108 A
M\
" TN ~10-3
Y
104
10-5%
107! 1 ' d 10-6
20 25 30 35
103 wem™!

FIG. 4. Radiative decay rate (—), surface induced nonradiative decay
rate (---) and emission yield (~+—--- ) for a molecule near a two-sphere
cluster. The configuration is shown in the inset. The distance between
the molecule and the center of nearest sphere is 1.05.

contribution to it is due to the nearest sphere whose
coupling with the molecular dipole is taken to order L
= 750.

Figure 2 shows as a function of molecular frequency
the radiative and nonradiative relaxation rates of a mo-
lecular dipole lying near a two sphere cluster along the
nearest sphere radius which is normal to the bispherical
axis. The molecular dipole is parallel to this axis (config-
uration similar to that of Fig. 1). The distance between
the molecule and the center of the nearest sphere is 1.05.
Different calculations corresponding to different inter-
sphere distances as well as to the molecule near a plane
case shown. Figure 3 displays the quantum yields calcu-
lated for these different cases. In all these cases the
calculation was truncated at L = 8.

These calculations show that the radiative lifetime
(hence the quantum yield) is quite sensitive to the cluster
structure (expressed here in terms of the distance between
the spheres). On the other hand, the nonradiative lifetime
is quite insensitive to this structure as long as the molecule
is predominantly affected by one grain. The reason for
this, as discussed above, is that the surface induced
damping results from relatively short range image effects
which are largely dominated by the nearest sphere.

The structure in the molecular frequency dependence
of the radiative decay rate is determined by the resonances
in the dielectric response of the spheres system. This may
be seen by comparing Fig. 2(b) to Fig. 2(g) which displays
the local electric field in the vicinity of the two sphere
system due to an incident spatially independent field
Eqe™* whose direction is parallel to the bispherical axis.
These resonances are sensitive to the cluster structure
because they are influenced by the interactions and the
interferences between the charge distributions induced on
the different spheres.

In Figs. 4 and 5 we show the results of calculations
similar to those done in Figs. 2 and 3 but for different
molecular positions and orientations. These results should
be compared to the single sphere (Fig. 6) and the plane
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FIG. 5. Same as Fig. 4 with another configuration as shown in the inset.

(Fig. 7) results. All the calculations described above which
involve two spheres use a truncated multipole expansion
with L = 8.

In Figs. 8 and 9 similar results are shown for a
molecule located above a cluster of five silver spheres
which may be thought of as part of a two-dimensional
square periodic array of spheres. The molecule is seated
in a perpendicular orientation on the line passing through
the center of the central sphere perpendicular to the plane
of the spheres. In these calculations we truncate the
multipole expansion at L = 4. Convergence is achieved
at this order because of the larger distance between the
spheres. Two features should be pointed out: First, it is
seen that the resonance structure obtained for this config-
uration is broader and smoother than that obtained for
the two sphere system. This is probably due to the overlap
between several peaks originated from the interactions
between the resonances associated with the different
spheres. Secondly, note that as the distance between the

|O7 T T
i0® F A i0-2
.0-3
Y
10-4
10-3
0! 1 b 10-6

20 25 30 35
10-3wem-!

FIG. 6. Same as Fig. 4 for a molecule near a single sphere. The molecule
is perpendicular to the sphere surface and is located at distance 1.05
from the sphere center.
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107 T T
dio-2
loG 10
10°
10-3
104
s Y
25108
o 104
102
|
10 10-3
10°
10! L 1 10-6
20 25 30 35
10-3wem-!

FIG. 7. Same as Fig. 4 for a molecule at distance 5 A from a plane
surface in a perpendicular orientation.

molecule and the cluster increases the nonradiative relax-
ation rate becomes more sensitive to the cluster structure
since it is less dominated by the interaction with the
nearest sphere. This is seen more clearly in Fig. 10 where
the radiative and nonradiative relaxation rates of a mol-
ecule characterized by w = 26 200 cm™! are plotted for a
geometry similar to that of Figs. 8 and 9 as a function of
the lattice constant—the distance between the spheres
centers. It is interesting to note that the radiative decay
rate increases when the cluster comes apart. This is due
to the fact that for this configuration the dipole induced
on the central sphere is different in sign than those
induced on the other four spheres so the proximity of
these other spheres reduces the total and hence the
radiative emission rate. This observation has implications
also for the lifetime of a molecule imbedded in a cluster
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FIG. 8. Radiative decay rate (—), surface induced nonradiative decay
rate (---) and emission yield (-+~--- ) for a molecule located above a
plane containing five silver spheres. The sphere arrangement is shown
in the inset. The distances between the sphere centers are all 2.5. The
molecule is seated in a perpendicular orientation on the normal to the
plane of spheres which passes through the center of the central sphere
at a distance of 1.05 from this center.
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FIG. 9. Same as Fig. 8 with the distance of the molecule from the plane
of sphere centers is now 1.5.

of polarizable atoms or molecules as will be discussed
elsewhere.'®

Finally, in Fig. 11 we give the dependence of the
molecular relaxation rates and quantum yield on the
molecule distance from the plane of spheres in the
geometry of Figs. 8—10. In Figs. 11(a), 11(b), and 11(c)
we compare the distance dependence of the radiative and
nonradiative decay rates and of the quantum yields for
the cases of a molecule (of w = 26 200 cm™') above the
5 sphere plane, a single sphere and a smooth plane,
respectively. Substantial differences are observed between
these cases.
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FIG. 10. Radiative and nonradiative relaxation rates of a molecule
located above a five-sphere planar cluster in the configuration of Fig. 8
as a function of distance between the sphere centers (express in units of
the sphere radius). The molecule is represented by a point polarizable
particle with characteristic resonance frequency » = 26 200 cm™' (cor-
responding for silver to a dielectric constant ¢ = —3.5 + 0.19i (—):
Radiative relaxation rate for a molecule located above the central sphere
at a distance 1.5 from its center. (---): Nonradiative decay rate for the
same molecule (---+-- ): Radiative relaxation rate for a molecular-

central sphere distance 1.05. (--): Nonradiative relaxation rate for the
same molecule.
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FIG. 11. (a) (—): Radiative decay rate of a molecule above a five-sphere
planar cluster in the configuration of Fig. 8 as a function of the distance
between the molecule and the cluster plane. (-+-:-- ): same for a
molecule near a single sphere. The molecular dipole orientation is
perpendicular to the nearest surface and the molecule is characterized
by w' = 26 200 cm™". The arrow marks the value of the radiative decay
rate for this molecule near a planar surface (which is distance independent
for distances small relative to the radiation wavelength). (b) Same for
the nonradiative decay rate induced by the spheres (—): five-sphere
cluster in the configuration of Fig. 8; (-+---- ). single sphere; (---):
plane. (c). Same as (b) for the emission yield ¥ = [z/(T'x + I'ng).
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IV. CONCLUSIONS

In this paper we have developed a general method
for calculating radiative and surface induced nonradiative
decay rates of molecules adsorbed on clusters of dielectric
grains and have used it to study these phenomena for the
particular case of spherical .grains. Our results constitute
a generalization of previous studies of the same phenom-
ena for a molecule on a planar surface and on a single
dielectric grain.

Obviously the detailed results described in the pre-
vious section serve only to describe the scope of these
phenomena and are not expected to be directly measur-
able. The dependence of the rates and quantum yield on
morphological details and on molecular location and
orientation relative to the grains indicate that, as intuitively
expected, there should be a broad distribution of lifetimes
and yields in such systems. Since different positions and
orientations explore different dielectric resonances of the
cluster this distribution may be very broad indeed. We
should keep in mind however that for large coverages fast
energy transfer between the adsorbed molecules may have
the effect of practically narrowing this lifetime distribution.
Furthermore, since the lifetime is seen to be dominant
by the surface induced nonradiative relaxation and since
this decay channel is the least sensitive to the cluster
structure (excluding cases where the molecule is adsorbed
in the space bordering two or more grains), the distribution
of total decay rates will be much narrower than that of
the radiative decay rates. This is true as long as the system
is made of only one dielectric substrate.

This last conclusion is also relevant for evaluating
the efficiency of photochemical and some photophysical
processes involving molecules adsorbed on rough struc-
tures as those considered here. Such processes are domi-
nated by the competition between the local field enhance-
ment and the surface induced damping. We have seen
that the latter could be accurately estimated for adsorbate
molecules in the first monolayer from a single sphere or
a smooth plane model, while an order of magnitude
estimate may be obtained from these models even for
molecules which are further away from the surface (as
long as d < r,, where d is the molecule surface distance
and r, is the typical scale of the roughness).

The method developed in this work may be applied
also for calculating local field enhancement in clusters of
dielectric grains. Using this method we have recently
evaluated such enhancement factors for hidden positions
within the cluster and have shown that the results of
recent experiments,'® which indicate that the largest surface
enhanced Raman signals are associated with molecules
which are hidden to other surface probes, may be ratio-
nalized within the electromagnetic theory of surface en-
hanced Raman scattering. This study will be published
- elsewhere.?

APPENDIX

Here we summarize the results for the elements
Qalm;bl'm’ and Dy, defined by

3839
Dt = (¥l ¥, (A1)
Qalm;bl'm’ = ubsbl'm'<‘1’a1m|‘l’b1'm'>, (A2)
where [cf. Eqgs. (18) and (19)]}
Ur2y\2rly,.(0, ) r<r, (A3)
Yondr, 8, P) = p2+1
rdhy 22— ¥,.(60,9) r=r, (Ad)

rl+ 1

with r, 8, ¢ being spherical coordinates relative to the

center of sphere a. The quantity
4 TR 1 .
? ﬁ 2 qlm(od, ¢d)Ylm(0» ‘P)

m=-1

Y, (r,0,¥) = (AS)
is the potential of a point dipole expressed in spherical
coordinates r, 8, ¥ relative to the dipole position. 8, and
¢, are the spherical angles characterizing the dipole
orientation in the same coordinate system. The coefficients
Qi are given by?!

= —3— cos 8
dio Y d»

3 . .
— sin 8,74,

Qo1 = F 8 (A6)
Also in Egs. (A1) and (A2),

Soim = 5771 [cf. Eq. (19)], (A7)

up,=1-—¢ [cf. Eq. (2)], (A8)
and [cf. Eq. (9)]

(¥ ymlF) = f d>r 0,(r)V¥%,(r) - VF(r), (A9)

where 8,(r) is a step function which is unity in the volume
of sphere, g, and is zero elsewhere.

Evaluating the integrals in Eqgs. (Al) and (A2) is
obviously a probiem of expressing spherical functions
defined about a given center in terms of spherical functions
defined about another center. A general discussion and
explicit solutions for this problem are given by Danos
and Maximon.?? Application of their results to our prob-
lem leads to

Qa.l,m;b,l’,m’

= gy (— 1)+ re'ryt ( w )”2
=t R \@I+ D@ + 1)

(+7!'+m-—m)
X [+ m\ — m\I' + m"WI' — m' ]2

X exp[i®a(m’ — m))PTi;™(cos 8a),

1 172 rla+l/2
Dalm = Uplo Z ql,m’(od’ ¢d)(m) (_1 l+mR_2’12_

m'=—1
% A+l+m-—m)
[ + mWI — mi(1 + m"(1 — m' M2
(A10)

X expli®aa(m’ — m)IPT1™(cos 0ad),
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where R, is the distance between the centers of spheres
a and b and r, and r, are their radii. ¥,, and ¥, are the
polar angles associated with the vector pointing from a
to b, R,4, 0,4, and ¥, are the polar coordinates associated
with the vector from g to the molecular dipole. g, is the
molecular dipole moment and, finally, P/"(x) are the
associated Legendre polynomials.??
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