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Electron- hole pair excilations upon atom umpact on a metal surface are studied in a framework
of a one-dimensional independent-electron model. The method employed treats electron dynamics
quantum mechanically and the atom motion classically, and the two are coupled through the
time-dependent self-consistent field (TDSCF) approximation. A vanational method is used to
calculate the time evolution of the electronic wave packet. Calculations were carried out for the
colliders, He, Ar and H; the surface parameters were chosen to model Li. Some of the results
obtained are: (1) Electron excitation by H is much more efficient than for a rare-gas colhider.
Experimental search for hole-pair excitations should thus be best pursued with H as a collider. (2)
At 0 K surface temperature AE/E, the fraction of collision energy converted to hole-pair
excitations, decreases as the collision energy increases for energies up to ~1 eV.!At collision
energy £ =001 eV, the fracuon of energy transferred is ~ 0.2% for He and —10% for H. (3)
Atom trapping due (o energy transfer to electrons occurs with high probability (50-100%) at
sufficiently low collision energies. Ar trapping takes place at energies below 1 K and H trapping
below 20 K. (4) The calculations show a pronounced transition from atom de-excitation to atom
excitation by electron-hole pairs as surface temperature increases. (5) Perturbation theory is tested
against the present method. {1 breaks down mainly for trapping and for temperature effects.
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1. Introduction

Establishing the role of conduction electrons in collisional energy transfer
between molecules and metal surfaces 1s a problem of major importance in the
study of gas-sohd interactions. Most studies of neutral molecule scattering
from metals ignore electron—hole pair excitation and assume that phonons are
the only significant energy-receiving modes of the solid [1]. Evidence is very
insufficient, however, as to which are the processes and systems for which such
an assumption is valid, and quantitative estimates are still scarce as to the
magnitude of electron participation in aspects such as energy accommodation,
trapping and desorption. Important pioneering studies on this topic were made
in recent years [2-10], leading to the formation of several models. However, in
some cases, estimates of electron contribution to accommodation effects differ
by order of magnitude for different models [2-10]. One difficulty in treating
the problem is the unavailability as yet of direct evidence from experiments
that could serve as a useful guide. The main obstacles in formulating a
quantitative approach are, however, the many-body nature of the problem, the
complicated dynamics of the electron undergoing excitation in the band, and
the poorly known interaction potentials. The approaches taken thus far neces-
sarily introduced drastic simplifications in treating most of these aspects or all
of them. Thus, in one of the earliest studies of this problem, Nourtier [2]
treated the effect of the metal electrons through a phenomenological friction
force and employed a delta function model for the interaction between the
metal electrons and the molecule. He estimated a major effect of electron—hole
pair excitation on accommodation and diffraction phenomena. Various types
of time-dependent perturbation methods were used by several authors in the
field to describe the excitation dynamics. Muller-Hartman et al. [3] applied the
weak-coupling limut. Brako and Newns [4] modelled the effect of the incoming
molecule as a slowly varying perturbation on the electrons. Gadzuk and Metiu
[5] provided estimates for accommodation effects due to electron-hole pairs,
examining the perturbation by the incoming atom in the sudden, in the
“adiabatic and in other switching limits. Several other studies representing the
incoming atom as some time-dependent perturbation on the electrons were
reported [6,7], Kumamoto and Silbey (8] treated the coupling between the
motion of the atom and that of the metal electrons by the time-dependent
Hartree approximation. They used a very simple model Hamiltonian for the
electrons, and evaluated the dynamics in special hmuts (e.g., sudden switching)
[8]. Probably the most quantitative studies to date employ time-independent
treatments of the dynamics. Gunnarson and Schonhammer [9] employed a
distorted-wave approximation to calculate electron-hole pair excitations in He
scattering from a Cu surface at low energies (~ 0.01 eV). They found extremely
low excitation probabilities differing considerably from some previous esti-
mates. Kirson et al. {10] studied electron-hole pamr excitations in very high
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energy (E > 100 ¢V) atom-surface collisions, using the “Sudden Approxima-
tion”. At these very high energies, electrons can be ejected from the metal, and
experiments studving this effect (and in particular the energy distribution of
the emitted electrons) are in progress [11]. However, the Sudden Approxima-
tion for electron excitations is not applicable for collisions at the energy range
typical of chemical interest.

The purpose of the present article is to contribute to the development of a
quantitative theory of collisional excitation of metal electrons by providing a
more refined treatment of the dynamical behaviour of the eletron undergoing
excitation. More specifically, the time evolution of the wave packet describing
the electron 1s solved numerically, to reasonable accuracy, by a vartational
procedure. This should offer an adequate description of the exciting dynamics
at the single (independent) electron level. It 18 thus a useful step towards
understanding the behaviour of the real (many-electron) system. An important
advantage of the method used is that the time evolution of the electron wave
packet offers detailed physical insight into the development of the process. In
coupling the motion of the electron and the colliding atom, the time-dependent
Hartree approximation will be used, as in the formalism of ref. [8]. However, in
this framework the equation of motion will be solved without further ap-
proximations. The resulting scheme can descnibe adequately also atom trap-
ping due to energy transfer to the electron. We are not aware of any previous
demonstration of trapping dynamics in this process. (Perturbation models
always break down in the description of trapping.)

The article proceeds as follows. Section 2 formulates the method used,
including the time-dependent Hartree approximation and the variational tech-
nique used to obtain the time evolution of the wave function. Section 3 outlines
the calculations carried out. Section 4 presents the results and their analysis.

2. The method

We restrict the treatment for simplicity to a model system of an atom
colliding with a one-dimensional metal, the motion of the atom being along the
axis collinear with the lattice. Extention to 3D 1s straightforward in principle,
but involves increased numerical effort. In a recent study of electron-hole pair
excitation in very high energy collisions {12}, 1D and 3D models of the metal
electrons were compared and also examined against experimental data [11]. It
was found that an appropriate 11> model provides satisfactory results for the
excitation probabilities [12]. Another drastic simplification that will be made 1n
the following development i1s to neglect phonon participation 1n the process.
The aim 1s obviously to focus on the role of the electrons, but 1t should clearly
be desirable in future studies to examine the extent to which conclusions on the
electron excitation are affected by the simultaneous occurrence of energy
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transfer to phonons. In any case, there have been suggestions that electron—hole
pair excitations could be partly due to phonon-electron coupling, following
excitation of phonons by the projectile [2]. Such a mechanism is neglected here.
Also neglected in the present study are processes involving electron exchange
between the atom and the metal. For the applications studied here such
channels are improbable.

Finally, another extremely important simplification that will be employed
here is to treat the process in an independent-electron framework. The Pauli
principle is imposed, but essentially only on the counting of initial and final
states. The “intermediate stage” dynamics during the collision will be de-
scribed strictly at the one (metal) electron level. The emphasis of this article is
thus on providing insight into the dynamics of single-electron behaviour in
collisional excitation of metal surfaces.

2.1. TDSCF approximation

Consider at the outset a single electron in a 1D extended potential box with
which an atom is colliding. Extension of the treatment to allow for N
independent electrons in the well is described later. To describe the collision
between the atom and the electron in the 1D potential field, the time-depen-
dent self-consistent field (TDSCF) approximation will be used. In this ap-
proximation each particle (or mode) is described as moving in a spatially-aver-
aged time-dependent potential due to the other modes. The mean fields in
which the different particles move are determined self-consistently with the
motions of the particles. This approximation was found to adequately describe
cases of weak as well as of substantial energy transfer, while retaining many
advantages of formal separability of modes. The TDSCF dates from the early
days of quantum mechanics [13], and was used in different versions and
adaptations to describe dynamical phenomena in a wide range of disciplines,
e.g., excitation spectra and dynamics of many-electron systems [14], nuclear
reactive collisions [15-17], inelastic molecular collisions {18-20], intramolecu-
lar dynamics and molecular dissociation [21], and electron-hole pair excita-
tions in atom-surface collisions. An advantage of the TDSCF is that one can
treat all particles quantum-mechanically [14,15], or all classically [22d], or some
classically and others quantum mechanically [22a,22b,8]. In the present prob-
lem 1t appears natural to apply a mixed classical-quantum-mechanical TDSCF
method, and treat the dynamics of the electron quantum-mechanically and the
motion of the atom classically.

We formulate now the TDSCF approximation for the collision of an atom
with an electron in a one-dimensional potential field. Measuring the position
from some arbitrary reference point (e.g., the edge atom of the 1D metal), x
will denote the coordinate of the electron and x, the coordinate of the atom.
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The Hamiltonan of the system is:

H=T,+ T, + U(x)+ Vya(xy) + Vielx = x4), (1)
where 7, and T, are respectively the kinetic energy operators of the metal
electron and the incoming atom, U,(x) is the potential field for the clectron in
the metal, V) ,(x,) 1s the static part of the atom interaction with the metal
surface and V,,(x — x, ) denotes the interaction potential between the electron
and the atom. In the TDSCF approximation, the following ansatz 1s made for
the time-dependent wave function of the total system:

Yx,xa,0) = ¢.(x,1) da(x,,t) expliv(s)]. (2)
The value of y(¢) 1s chosen so as to simplify the equations obtained, but 1s of
no physical significance. The equations obtained with an adequate choice of
¥(t) are: |

ia—‘I’%—?”—L |7+ U(x) + V5 (x,0)] e (x00), (3a)
PO G+ R (x00)] #aliant), (3b)
where

VEF(x,0) = [1oa (xa, DI Vaelx — x2) dxa, (4a)
VT (xant) = floe(x.0)1% Vaex — x,) dx. (4b)

Eq. (3) 1s the familiar TDSCF approximation. 1t appears reasonable in this
problem to treat the motion of the atom classically. Following previous mixed
classical-quantum-mechanical TDSCF schemes [20,22a,22b,8], the classical
TDSCF equation for the trajectory of the atom 1is:

d®x, BVA‘;CF(J‘:A’!) Wpalxa)

i di? - dx 4 dx 5 ’ G)

m, denoting the mass of the atom. The electron satisfies eq. (3a) with the
classical approximation for V.5“F(x, r):

I/;SCF(XJ): VAe(x_xA(f))' (6)
Note that the initial conditions for the collision of the atom with the solid
require only a single trajectory for the atom. The average in (4a) is thus
replaced in the classical limit by a classical trajectory approximating the
motion of the wave packet ¢, (x, 7). In the TDSCF scheme employed, one thus
solves self-consistently the classical trajectory equation (5) and the time-depen-
dent Schrodinger equation (3a) for the electron. The scheme conserves the total
energy of the system, although energy is of course transferred between the
atom and the electron.
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2.2, Variational method for calculating the time-dependent wave function

Calculation of ¢,(x, t) involves several difficulties. The electron in the
energy band has a continuous spectrum. Expansion of ¢_(x, t) in a basis of
stationary states will therefore involve a continuum of unknown time coeffi-
cients to be determined, which is an extremely difficult problem to handle.
Also, for electrons as opposed to atomic-mass particles, a semiclassical descrip-
tion of the wave packet dynamics [23] is not applicable in general [23].

The approach we shall take for solving eq. (3a) s based on using a
time-dependent variational principle. This variational method was introduced
by Frenkel in the early years of quantum-mechanics [24), with much useful
insight provided by recent studies of McLachlan [25] and Heller {26]. Assume
that the solution ¥ /(x,t,) at ¢ = ¢, of the Schrodinger equation is known. The
variational method seeks to approximate the wave function at later times
t, + 4t, where At 1s small. Using atomic units (2= 1);

Yo+ A1) =y (e,) —18(1,) At (7)

where # 1s to be taken as the “best” approximation to (dy/d¢),_,. To this
effect, one considers the following functional of & and y [26]:

I(4,6) = [y - 0] dx. (8)

The functional / vanishes if 8=1(dy/0¢), when My =8. The variational
property of I(i, #) is that it is stationary to first order in 6§ when a small
change i1s made, 8§ — & + 88, about the time solution, i.e., to first order in 86:

81 = [80+(#y - 0) dx +f69(3?’¢* ~ 6*) dx

~ 2 Re f&&*(ﬁ¢*9)dx=0. (9)

Solving eq. (9) for 8 (at £ =1;), eq. (7) is used and the process is repeated for
t =1, + 4A1. The solution 1s propagated in this way until the full time evolution
1s obtamed.

To apply the principle (9) in practice, Y(x,!) must be approximated by
some explicit form that depends on a small number of time-dependent parame-
ters. Substitution in (9) yields equations from which the parameters are
calculated [26]).

The variational principle was applied to the determination of ¢ (x, ) as
follows. Consider the unperturbed states of the electron in the metal:

[7::+[’Q(x)] Lx)=H (x)=E, [ (x), (10)

where the wave vector k£ is used to label the states. To obtain the time
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development of ¥, (x, ¢), which evolve according to the Hamiltonian:

AET(x,1) = HY(x) + VT (1), (11)
the following wave packet form is assumed:
vo(x) = [ gli=10) fu(x) exp[ -1E (1= 15)] dk, (12)

where g, (1 — t,) was taken to be a Gaussian in the wave vector, with time-de-
pendent parameters:

()= | 2L exp{ ek ko (D) (1

v
In the above equations, ¢, is the time at which the centre of the wave packet
arrives at x = 0, a point which we choose to coincide with the surface edge (the
position at which U,(x) has a barrier defining the metal /vacuum interface).
Below we shall see that ¢, is a convenient parameter for describing imitial
conditions for the electron wave packet.

The time development of the wave packet is determined by the evoluton of
¢(t), the inverse width in wave vector space of the wave packet, and of k,(r),
the centre of the packet in k-space. Physically, to represent an electron within
the given energy band, the half-width of the Gaussian in k-space must be
narrower than the value of the Fermu wavenumber:

|ak)=2/[c()})"* < ke. (14)

This condition implies that only a limited range of k-values contribute signifi-
cantly to the wave packet [12].

We specialize the considerations now to a specific model choice of the
potential field in the metal:

()={U0(>0), for x>0,

U (x (15)
0, for x <0,

[

i.e., the electron is free inside the metal but experiences a finite barrier at the
surface edge. The stationary states of the energy band are, 1n this case:

{ aikx —ikx <
2flx) = {;‘(k;eR(“i): | i:g (o)
where
alk)=[2m(U,~ E)])'*, E,=k*/2m, (17)
with m the electronic mass. T(k) and R(k) are given by:
_ ik +alk) 21k

T(k)= (18)

M= Tat T T ey
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We substitute now the ansatz (12)-(13) into the variational principle (9) to
obtain the equations for the nonlinear variational parameters k() and c(¢),
representing, respectively, the centre position and (inverse) spread in k-space of
V. (x, t). We skip the details of the algebra, and present the equations
obtained:

a(:)[{}m(a—ff) dk + k (r)f (agk)(g—i)dk

+ oo + oo a
=Re{-ij(; dkfﬂ dk’( ag )8;“3’(]3[ (Ep ~ E.)( ro)]

< [IH) V(3,0 £ (x) dx). (19)

fom(ag“)( )dk+k (1 )fow(—gi—‘;)zdk
—Re{w1f+wdkf+mdk(§k )gk expli( E, — E.)(t - 1,)]
 J12 () V) o (x) 05, (20)

Since the contributions to the k-integral are highly localized around k (see eq,
(14)), no sigificant error 1s made by extending the lower limits of the integrals
in (19) and (20) to k — * co. Furthermore, in carrying out the k-integrations,
advantage may be taken of the fact that R(k) and T(k) of eq. (18), which
appear as factors in f, (x), and simularly «, of (17) are expected to vary more
slowly in & than g,. Using the above observations, together with eqs. (13) and
(14), one finds, after some algebra:

2¢\'?
a=(—w-—) IT(ko)|? Im{ [2¢G® — 8c*( F° - 2k H" + kG )| GY )

o 2¢\12
<[ VI (x,0) 2o k0r dxr (25T Tk
X {fo VSCF(x,1) [2e( G-+ R(ko) G )* — 8H{{ Fi4 R{ko) Fi )

~2ko(H' + R(ko)H',)* + k2(GL+ G, })][ G+ R(ky) G ] dx}, (21)
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. 2 1/2 o0
ko= 2(—;‘7) T ko) Im[{ H® — kG® )GE][ VICF(x,t) e 2othodx g x
0

2C 1/2
w

w2 ) k)P am{ 1 VST xe) (M4 Rk L)

—ko(G' + R(k)G" )*][(G + R(ky)G" )] dx}, (22)

where ¢, ko, G%, H°, F° etc. in egs. (21) and (22) are all taken at the time
value ¢ — 1, (only the potential V,3“F is evaluated at time 7). The x-independent
quantities G°, H° and F?° are defined by:

1 1
G%=x'" cxp[ck2(1 —7,) (23)
T [e(r) £ 3in] U 1xdinse ]

ck 172 1 1
H= - ( W‘ ) exp| — ck¢ 1——%) : (24)
c—Jit\e—1iT 1 —3it/c ]
1/2 K2
Fo— L ( T ) ] 4+ 2250
2c—1tit) \e—3ir c— it
k¢ ! 25
X exp “Col‘_l_“"" (25)
51T/¢C

with r=¢—1¢,. &', H', and F| depend on x and are given by:

2
: 1 (ck 2Uc)

G, =77 exp| —ck? + , 26
* ¢+ it p[ 0 c+3iir (26)
_ ko4 172 cky £ 31 :

H= Co_lf/z( w]-) exp _Cko""( _12 ) ’ (27)

(c-f-%i'r) ¢+ 517 c+ 51T
. 2
eyt bwnd I RS L2
* 2c+qit) \e+idir c+ T
| (ckq £ 3ix)’
xexplckOJr +12 ] (28)
2!

In conclusion, in the framework of the specific variational ansatz chosen here,
the TDSCF equations for the atom collision with a metal electron consist of
the atom trajectory equation (5) combined with egs. (21) and (22) for the
parameters c(7) and k,(7) of the electronic wave function.
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3.3. Choice of initial conditions

For the incoming atom, the initial conditions were chosen to represent an
idealized experimental situation of an incoming beam of well-defined momen-
tum directed towards the surface:

palt = —o0) = mi, (1> —o0) = (2m,E)”, (29)
where E is the collision energy, and
X0 (1= —00) = o0, (30)

L.e., the initial distance from the surface was taken extremely large compared
with the interaction range. The choice of initial conditions for y (x, 1)
presents, however, some difficulty. The most straightforward approach may
appear to be to take Y. (x, { = — o) as one of the eigenstates f, (x) e 'E+f of
the electron in the energy band (with calculations carried out, in principle, for
all k-values, and with appropriate thermal averaging over all possible initial
k-states). However, such an initial condition cannot be applied in numerical
practice with the variational ansatz (12)-(13). That form coincides with one of
the well-defined k-states of (10) only, provided c(7) — co. In that case eqs. (21)
and (22) become numerically unstable, and the solutions cannot be propagated
for mncreasing time values. To avoid this difficulty, initial wave packets were
chosen that are superpositions of band eigenstates, i.e., corresponding to a
finite value of ¢(r) at 1 > — oo, but where the width of the k-distribution is
narrow (on the scale of k). The energy of such a wave packet is, to good
approximation, ;k¢. The corresponding initial c-values are of the order of 102
in atomic units. These initial wave packets are not completely delocalized as
the band eigenstates f,{x), but have a spatial extension of more than 10 A. To
cover all possible initial states in this localized set, one must sample over all
independent packets (i.e., packets that do not overlap extensively) and, of
course, over their mean energies 3 k; with appropriate Fermi- Dirac weighting,
The peak positions in x-space of the initial wave packets must be so chosen as
to sample all the metal (x < 0), but two neighbouring peak positions in the
sample set should be separated by about the wave packet width distance, to
exclude large overlap. (Such sampling of initial conditions for localized wave
packets is similar to sampling over initial particle positions in classical trajec-
tory calculations.) The wave packets are, of course, not strictly confined to a
finite region and any such two wave packets have some overlap, at least. In
principle, the effect of overlap should have been projected out in calculating
the initial states. We have, however, neglected this effect, following numerical
tests that have shown that it is unimportant. Rather than sample packets with
different peak positions at some f, 1 = — o0, the following equivalent proce-
dure 1s taken: The centre of the wave packet (12), located at point x at time ¢,
reaches the surface edge x = 0 at time 1. We therefore sample over different o



Z. Kirson et al. / Dynamics of metal electron excitation 537

values as the equivalent to sampling over peak positions at some given time 2,
t — —o0. The method employed corresponds to the following physical picture:
An independent sequence of wave packets, each representing an electron with
different initial conditions, travels towards the metal edge. At the same time an
atom undergoes (a much slower) collision with the surface. The electron and
the atom will not necessarily hit the surface region at the same time, but if both
reach, during their respective motions, a mutual distance smaller than the
interaction range, then energy transfer may occur.

3.4. Extension to many independent electrons, and the evaluation of mean cnergy
(ransfer

For a single electron with given initial conditions, the energy transfer AE
can be obtained as follows from the results of the TDSCF wave packet
calculation outlined in sections 3.1 to 3.3:

AE{xg¢) = Yki(1= + o0) — Lkd (1= — o0). (31)

where € = Yki (¢ = — o). Here, x, is the initial position of the wave packet
centre at some large negative time; x, 1s related to the 7, over which the wave
packets were actually sampled, by x, = kq1, (k, being the electron velocity in
atomic units). Energy transfer depends on the initial x, (or ¢;) since, as pointed
out in section 3.3, this parameter determines whether the wave packet and the
atom arrive at the surface region at the same time.

To obtain the average energy transfer from the atom to the electrons, 1t is
necessary to: (i) average over ¢, the initial energy of the wave packte, and x,
its initial position; (ii) sum contributions from all the independent electrons,
subject, however, to the Pauli exclusion. Straightforward considerations yield
the following expression for the average energy transfer {(AE) in terms of
transfer for sample events 4 E(x,, €):

(AEY = 2n]ffr(f)[1 ~fr(e+AE{x,,¢))] AE{x,.€) DL‘) dedx,. (32)

Here n is the electron density per unit length,

frle) = {1 +exp[(e—ee)/kpT])

is the Fermi-Dirac distribution at temperature 7, and D(¢) 1s the three-dimen-
sional electron density of states, normalized by

F
N= [0 D(e) de,

where N is the total number of electrons. The factor 2 in eq. (32) anses from
spin degeneracy. Attention should be drawn to the similarity in structure
between eq. (32) and the expression obtained for conductivity in the standard
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semiclassical theory of electron conduction in metals [27]. In actual applica-
tions, due to the fr(¢) factors only electrons from the Fermi surface contribute

to (32), so D(¢) = D{(¢g) In the integral (32).

4. Calculations and results

Numerical calculations were carried out for He, Ar and H colliding with a
Li surface, in the energy range 0-1.0 eV. The same systems were previously
studied at very high collision energies (£ > 100 eV) using the Sudden Ap-
proximation [10]. In modelling the interaction between a metal electron and
the atoms, V, (x — x,), we assumed that 1t 1s approximately the same as the
corresponding free electron-atom (gas phase) interaction. We thus ignore
screening effects, which for electrons at the close vicinity of the surface are
probably not very large. He—electron and Ar—electron effective potentials were
given by Green et al. [28] based on Hartree-Fock calculations. A suitable e-H
effective potential was obtained by Brandsen [29] from an adiabatic approxi-
mation. We fitted the potntials of refs. [8,29] to a form convenient for our
calculations. In carrying out the fitting, we used the fact that the results are
sensitive to V_,(x — x,) only in a very limited range of x — x, values: very
short (x — x, ) ranges are excluded by the fact that the atom is stopped by the
repulsive wall of the interaction with the solid in configurations where the
penetration of y.(x, ) outside the metal (x > 0) is very weak. For large
(x — x,), the potential is in any case too weak to cause significant energy
transfer. Analysis has shown that the pertinent range of (x — x, ) values falls in
the region where V,_, is attractive, and over the limited range of importance it
could be fitted by:

.V;A(x"x)\): —Aoexp[—u(xth)Z], (33)

for all three atoms. The values of the parameters 4; and p are listed in table 1.

Table 1
Parameters used for the static interaction of the atom with the metal surface, eq. (34), and

electron-atom interaction, eq. (33)

Incident Electron—atom interaction Atom-surface interaction
atoms Ay (au) p (bohr ~2) D (eV) x, (bohr)
H 0.18 0.18 18 3

Ar 0.25 0.17 0.15 8

He 0.1 0.3 0.002 7.2
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For the static atom-surface interactions Vy.(x, ), we employed the form:

Vaaa(3) = D[ (x0/%4)° = 3(xp/%0 )] (34)

widely used in the literature [1]. The values of D and x,_ for He/Li(surface)
were taken from Kohn and Sham [30] who calculated the potential for that
system using a Hartree—Fock method for the repulsive part and a polarization
approximation for the attractive component. Several electronic energy curves
for the H/Li(001) were given by Vojtik et al. [31] from Li cluster calculations.
The one-dimensional model we use is in fact somewhat questionable in this
case, since D and x, vary significantly with the position upon the cluster where
H strikes [32]. We estimated average values. As far as we are aware, quantita-
tive data on the Ar/Li(surface) interaction are not available. We very crudely
estimate D and x_ for this system based on the differences between the
polarizability of Ar and of He (for which case the parameters are known). The
values of D and x_, used in the calculations are listed in table 1.

In the calculations we carried out, the trajectory equation (5) for the atom,
and the equations (21) and (22) for the electron wave packet parameters were
solved self-consistently by numerical integration, subject to the initial condi-
tions ¢(f - — o0) = 500 bohr? and k,(t = — o) = k. As noted in section 3.4,
other kg, or € = 3k3, values do not contribute significantly to the integral
equation (32). The sampling over initial ¢, (or equivalently x,) was taken
typically over the order of 10? points. In practical terms the sampling was
dense enough so that a “smooth” numerical function AE=AFE{¢,} was
obtained. Each calculation for fixed value of ¢, takes only a few seconds cpu
on the CDC 6600. The method is therefore not expensive computationally,

4.1. Excitation and de-excitation for different initial conditions

We consider first the energy transferred to a single electron AE{ k¢, ¢, )} as a
function of the initial condition ¢;, the time when the wave packet centre
reached the metal surface x = 0. Fig. 1 shows the results for AE{ k., ¢} in the
case of He/Li(surface) at collision energies £ = 0.004 €V and L = 0.014 eV,
and fig. 2 shows corresponding results in the case of H/Li(surface) at £ = 0.1
eV. At the single electron level, before the Pauli exclusion weighting is
introduced, both excitation and de-excitation of the electron are possible, and
as seen in figs. 1 and 2 the two processes are of similar (though not identical)
magnitude. If ¢, is such that the wave packet reaches the surface region (x = ()
while the atom 1is still approaching the metal, the result will be de-excitation
since, as the electron is reflected from the surface, the atom will get nearer and
a stronger attractive interaction V,(x — x, ) will be experienced by the reflected
electron. Similarly for r,, such that the atom reaches the surface before the
clectron the attraction V,(x —x,) experienced by the electron during its
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Fig. 1. Dependence of energy ransfer to single electron on arrival ume ¢, of wave packet: case of
He /Li(surface). Sampling over 1, covers the imtial condition values for the wave packet. (———)
Collision energy £ = 4 meV. (— — -=) Collision energy £ =14 meV.
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Fig. 2. Dependence of energy transfer to single electron on arrival time #; of wave packet: case of
H/Li(surface). Sampling over ¢, covers the initial condition values for the wavepacket. Results

shown are for collision energy 10 meV.
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Fig. 3. Dependence of energy transfer on arrival time ¢, of the wave packet: effect of Pauli
exclusion: case of He/Li(surface). 4 £(r,) shown here is the energy transfer 4 £(7;) multiplied by
the Pauli exclusion factor p, (4 E). ( )} Collision energy £ =14 meV. (— — —) Collision
energy £ =4 meV.

approach to the surface is stronger, leading to acceleration and excitation. For
a many-electron system, the balance between excitation and de-excitation is
affected, however, strongly by the Pauli exclusion. Indeed at T = 0 de-excitation
of the electron is, of course, forbidden. To examine this quantitatively at
temperature 7, it is convenient to consider the quantity

AE{x,,TY=AE{x,) p,(AE), (35)

2 H + Li{Surf)

= 0l eV

folou) x 1 E3

Fig. 4. Dependence of energy transfer on arrival time ¢, of the wave packet. effect of Pauli
exclusion: case of Hi/Li(surface). A E(¢;) shown here is the energy transfer 4 E(¢;) (in eV)
multiplied by the Pauli exclusion factor p(4 E). The resuits are for collision energy E = 0.01 ¢V.
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where p,(4 E) 1s the Pauli exclusion factor

(36)

PT(AE xo} ffr(‘)[l - fr

AE{x, T} is essentially the contribution from x, to the average energy
transfer {4 E). Indeed, using the fact that the only significant contributions in

(32) are from € = €5, one can set there
AE{xy, e} =A8E{x,,ep} =AE{x,},
one then has

(AE) =2anf5{x0,T} dx,. (37)

Through the scaling x, = k4t (here ky = kg), AE, like AE can be also
regarded as a function of ¢;. Fig. 3 shows AE{t,,T} versus ¢, for
He/Li(surface) at the same collision energies as in fig. 1, and for surface
temperature 7=2 K. Simularly, fig. 4 shows AE(1,, T} versus ¢, for
H /Li(surface) at the collision energy of fig. 2 (0.1 V), and for surface
temperature 7 = 25 K. Quite obviously, the near-balance between excitation and
de-excitation in AE{t,} of figs. 1 and 2 is shifted very heavily by the Pauli factor
in favour of the excitation process. The effect of the Pauli factor is stronger
when the excitation and de-excitation at the single electron level is pro-
nounced. The effect of the Pauli factor is therefore larger for the higher
collision energy in the two calculations shown for He/Li, and the effect is
most striking for H /LI, since the single-electron excitation (and de-excitation)
probabilities are very high. The strong effect of the Pauli factor on the balance
between excitation and de-excitation indicates that temperature effects on
atom-to-metal electron energy transfer may be large. This will be confirmed 1n
detail in a subsequent section.

4.2. Electron excitation efficiency of different colliders

Table 2 shows the average excitation energy (AE ) of Li electrons due to
impact at energy £ = 0.01 eV of He, Ar and H, for surface temperature 7=10
K. Both He and Ar give extremely low energy transfer, on a scale that would
be experimentally negligible. On the other hand, energy transfer to electrons by
H collisions is substantial, and as we shall also see further below, likely to be of
significant experimental consequence (e.g., in causing high atom capture prob-
abilities). The reasons for the large differences between H and He or Ar are,
first, that H penetrates much more into regions where the density of surface
electrons, | x, t,)|* is substantial, and second, that the H-Li interaction has a
deep attractive well, and H is therefore accelerated to much higher effective
collision energies than the rare gas atoms. The simularity between He and Ar is
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Table 2
Fractional energy transfer with fixed collision energy £ = 0.01 eV for all three colliders at zero
surface temperature

H He Ar

— 0.28 0.00175 0.009

due to partial cancellation of opposing effects: He penetrates deeper into
regions of significant surface electron density, but Ar as a larger atom has a
stronger coupling to the electrons, and (because of the larger well depth of its
interaction with the metal) is accelerated more than He by V. It is of interest
to note that calculations at very high collision energies ( £ > 100 eV) and using
a completely different method (Sudden Approximation) predicted a similar
order of excitation efficiencies H > Ar > He {10]. The main new conclusions
in this section, as far as possible experimental relevance is concerned, is that H
seems of great efficiency (relative to other atoms) in exchanging energy with
ele~tron-hole pairs. It should be desirable in searches of evidence for hole-pair
excitation in molecule—surface collisions to carry out experiments with H as a
collider. Our conclusion on the very poor energy transfer in He collisions is
qualitatively 1n line with the earlier finding of Gunnarson and Schénhammer
[9] (they did not study H or Ar collisions). The potentials used here are quite
different from those of ref. [9], but for similar potentials our results are in
reasonable quantitative agreement with that study.

4.3. Dependence of electron excitation on the collision energy

In the case of H/Li(surface), (AE) is almost independent of the incident
collision energy, at least in the range 0 < E < 0.2 eV, since the velocity of the H
atom upon impact at the surface is in any case determined mainly by its
acceleration 1n the deep attractive well. We focus therefore on the result of
He/Li(surface). Fig. 5 shows for that system the fraction of the collision
energy transferred to the electrons (AE)/FE as a function of the collision
energy in the range 107° < E < 1.0 eV, and for several values of the surface
temperature. For T = 0 K, the fractional energy tranfer falls off monotonically
as E increases, 1.e., although energy tranfer is greater at higher collision
energies, the effect of the transfer on the dynamics of the atom (of which
(AE)/E is some indicator) is more significant for slow collisions. For T > (
K, the behaviour is different: (4 E) /E first increases sharply with £, reaches a
maximum, and then falls off monotonically and slowly, the behaviour in that
range being as in the 7= 0 K case. The higher the surface temperature, the
larger 1s the E-value at which the maximum occurs. The explanation for the
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Fig. 5. Fraction of collision energy (A E') /£ transferred to electrons versus E. Results shown are
for He/Li(surface) for several surface temperatures 7. ( y T'= 0 K, TDSCF calculation; {—
— —) T =25 K, TDSCF calculation; (--—--) T = 50 K, TDSCF calculation; {------ yT=0K,
perturbation calculation; (— —) T = 25 K, perturbation calculation.

temperature effect on (4 E) /E is that, as surface temperature increases, energy
transfer from the electron to the atom plays an increasingly important role, and
reduces the average energy transfer (AE) (which for He/Li is positive,
corresponding to net excitation, for all T values shown). At sufficiently low
energies E — 0 for given T > 0, electron excitation and de-excitation are nearly
balanced, with (AE)Y/E — 0. As E increases, electron excitation increases very
rapidly compared with de-excitation, leading to a steep rise of (AE)/E with
increasing E. For sufficiently large E, the electron de-excitation becomes
unimportant and the close balance between excitation and de-excitation disap-
pears. (AE) which corresponds to excitation sull increases with collision
energy but more slowly than E itself, thus in this range (4 E') /E falls off as in
the T = 0 K case. The lower T is, the larger is the net excitation probability at
given E, hence the shift in the maxima in fig. 5 with ncreasing 7

4.4. Atom trapping at low energies due to metal electron excitation

Trapping of the atom will occur if the energy transferred to metal electrons
exceeds the initial collision energy. The TDSCF seems to be the only approach
available so far that is capable of calculating such trapping correctly; In
particular it can follow the dynamical evolution of the atom-electron system In
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a trapping event (perturbation-type approaches cannot provide such a descrip-
tion of trapping). H atoms in particular are expected to give a pronounced
effect, since for this projectile (AE) 1s independent of E for £ < 0.2 ¢V. (The
effective collision velocity with the metal 1s dominated by the acceleration of
the atom in the deep potentials well.) For sufficiently low E, a regime where
(48 E) > E is thus expected. The well-depth 2D of the atom-metal interaction
1s of critical importance 1n the trapping, so we carried out calculations for
trapping in H collisions for two values of D: 1.9 and 0.5 eV. In the calcula-
tions, trapping was considered as a collision during which the atom carries out
at least one oscillation in the attractive potential well of its interaction with the
surface. The trapping probability versus the collision energy P(E) was calcu-
lated as the probability of finding an electron (at energy €) in the range of
values that lead to the trapping event:

P(E)=2n[ "or(4E{x,)) dxy, (38)

1

where p,(ALE) 1s the Pauli exclusion factor, eq. (36), and AE(x,)> F for
X, > Xg > Xy

Fig. 6 shows the trapping probability at T =0 K. Trapping probability
exceeds 10% for collisions at energies lower than 70 K, and exceeds S0% for
£ <20 K in the calculation with D =1.9 eV. In the case of D =0.5 eV, the
trapping exceeds 50% only for £ <5 K. The steepness of P(E) versus F
becomes very large as E — Q. The results suggest very major trapping effects due

% .
P Ha+ Li {Surf)

T=0K

05

0 l.r,il_ l
BO B0 40 20 O
E(K)

Fig. 6. Trapping probablity as function of collision energy for H /Li(surface). Results shown are
for surface at T =10 K. Collision energy £ 15 given in K. ( ) Results for calculation with
potential well depth 2D =1 eV. (— — —) Results for calculation with potential well depth
2D=138eV.
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to electron—hole participation in low energy atom—surface collisions for systems
where the interaction potential is of the order of an eV or more. The experimental
relevance of this depends, however, on establishing whether and how this
conclusion is affected by the inclusion of phonon effects (which, perhaps, may
give rise to even larger trapping effects or which may cause fast desorption).
Studies of this question seem very desirable.

Trapping takes place also in the calculations on Ar/Li(surface), but the
effect becomes large only at energies £ < 0.5 K. Trapping probabilities for He
remain small even for lower collision energies. Unlike the case of H, metal
electron excitation in rare-gas collision 1s too 1nefficient to induce trapping in
collisions energies of practical interest.

Another interesting aspect of the calculations involves the time evolution of
the trapping events. This requires propagating the TDSCF solutions beyond
the primary trapping event (the first bounded vibration of the atom in the
potential well of its interaction with the surface). It was found that the
collisions leading to trapping almost invariably leave the atom just slightly
below the dissociation energy (typically, E after the first collision is —107?
eV), at a highly excited level of the atom-surface potential well. As the atom
carries out vibrations, it gradually loses more energy to metal electrons.
Cascading of the wibrational energy in the well continued in the TDSCF
calculations for about (typically) 1000 vibrations, at which stage the atom was
relaxed to the bottom of the potential well. The pattern of H (vibrational)
energy lost as a function of time to the surface electrons during the relaxation
1s shown in fig. 8. We note that in this calculation each encounter of the atom
with the surface (during its vibration) is considered as an independent collision
process with new, independent wave packets.

4.5. Effect of surface temperature on the switchover from electron excitation to
de-excitation

The influence of surface temperature in shifung the balance between
excitation to de-excitation of the metal electrons in the collision process was
already discussed briefly for He /Li(surface) in section 4.2. We examine now
more detailed results on this in the more striking example of H collisions. Fig.
7 shows (AE) (energy transfer from electrons to atom) as a function of the
surface temperature for fixed collision energy £ =0.01 eV. {(AE} increases
monotonically with T throughout the temperature range. Up to about T = 200
K, atom collisions cause more excitation than the de-excitation of the electron
and (AE) <0. As surface temperature increases, contributions of energy
tranfer from metal electrons to the incoming atoms begin to dominate over the
electron excitation processes, and the total (AE) keeps increasing. Energy
transfer in the electron excitation regime is 3 X 103 eV or less. Energy tranfer
from the electrons to the atom reaches 1072 ¢V in the high 7 range.
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548 2. Kirson et al. / Dynamics of metal electron excitation

4.6. Validity of first-order perturbation theory for energy transfer to metal
electrons

As noted in the Introduction, many of the available estimates of
electron—hole pair excitation in atom-surface collisions are based on various
versions of first-order time-dependent perturbation theory, which indeed ap-
pears in view of its simplicity an attractive tool to apply. The availability of the
more refined TDSCF calculations makes it possible to test the validity of the
perturbation-theoretic (PT) treatment. In time-dependent PT appreach, the
“back reaction” of the electrons undergoing excitations on the incoming atom
is neglected. The trajectory x,(¢) of the atom then pertains to elastic scattering
and is easily computed for the potential Vy,(x, ). Substituting the trajectory
in the electron—atom coupling, first-order perturbation theory is used to
calculate transitions between the states £, (x) of the metal electrons under the
time-dependent interaction V ,(x — x,(1))-

The familiar expression for the probability of transition from 1nitial state
f.(x) to final state f,.{x) as a result of the collisions is, in atomic units [32]:

2

+ a0
P,(_ﬂ,:U_ expli( By — E )] Vi (1) d1] (39)
where
Vk’k(f):(fk'|VeA(x_xA(’))|fk>- (40)
The mean energy transfer 1§
(8Ey= AvZ(Ee = E) Py (41)
o

Av denotes the thermal averaging over initial electron states, and the k'
summation is an integration over all-final states. In the calculations the
integrals (39) and (41) are carried out numerically. Comparison between the
PT results and those of TDSCF is shown in fig, 5 for the variation of (AE)/E
with E in the case of He/Li(surface) at T=0 K and T =25 K. PT seems o
yield the correct trend of the curves and is within a factor of ~2 of the
TDSCF results in the range £ > 0.1 eV. On the other hand, PT fails even
qualitatively at very low energies (£ <0.005 eV). For the 0 K case the PT
results decrease with decreasing E unlike the TDSCF (4 E') /E which mncrease
in that direction. Mainly, the failure of PT at low energies may be due to the
fact that the true atom trajectory at very low energies is very sensitive even (o
very small amounts of energy transferred, so that use of an elastic trajectory
x,(1) leads to serious error. Next, in the present problem PT is in error in
always yielding higher electron excitation than de-excitation due to the fact
that V,., (1), for given initial k, is larger for E,. > E, than for E;. < E, (simple
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consequence of overlap properties of the f,(x)). Since temperature effects are
mainly reflected in the balance between excitation and de-excitation, PT is
qualitatively wrong on the T-dependence. Finally, PT cannot describe trapping
dynamics which is definitely not first-order in the coupling, and where the
changes 1n the atom trajectory due to energy transfer are extremely important.

In conclusion, PT has better than order-of-magnitude validity provided the
collision energies are not too low (E > 0.01 eV in the case of He). The
approximation breaks down, sometimes qualitatively, at very low energies for
several properties and effects of importance (e.g., T-dependence).

5. Concluding remarks

In this article, a model based on the TDSCF approximation was introduced
for energy transfer between an atom colliding with a metal-surface and the
conduction electrons of the metal. A time-dependent variational principle was
employed to calculate the electron wave packets, and the resulting description
of the dynamics appears very convenient for physical interpretation.

The main results obtained were, first, that energy transfer to metal electrons
1s predicted to be of substantial, experimentally detectable magnitudes for H
atom collisions although not for rare-gas projectiles. Secondly, it was demon-
strated that at high surface temperature and extremely low collision energy,
excitation of the atom by energy transfer from the electron-hole pairs becomes
appreciable. Thirdly, atom trapping due to energy transfer to electrons was
found to occur (for H atoms) at extremely low collision energies {( ~ 30 K) and
for very low surface temperatures. Finally, time-dependent perturbation theory
was tested and found to apply provided the collision energy is not very low,
but to break down qualitatively otherwise,

The results obtained in this work must be viewed as tentative in part, since
phonons were not incorporated in the treatment. This has been a limitation
also in previous studies, and we believe that it will be extremely important o
include both phonons in future investigations and to elucidate the role aud
effects associated with each of the two types of modes.

Another limitation of the present study to which attention is called is that
the dynamics was treated at the independent electron level, even the Pauli
exclusion being introduced only in the summation over final and nitial states
(but not included in the dynamics itself). It seems to us that this is a reasonable
approximation for the conditions and systems examined here. Estimates of
Paul: effects on the dynamics, should, however, be very useful in providing a
test for the validity of the independent electron dynamics model.
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