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The non-markoffian generalization of Kramers® theory of activated rate processes is further generalized to the case of
position dependent friction in the low{riction limit. A Smoluchowski equation for the action (or energy) of a particle
moving in a potential under the influence of position dependent noise and damping Kernel is derived and is used to obtain

the escape rate.

1. Introduction

There has recently been a revival of interest in the
theory of processes involving thermal activation.
Kramers’ theory of activated rate processes [1] is of-
ten used to describe such processes in many branches
of the physical sciences. _

In a recent series of articles [2—5] we have gener-
alized Kramers’ theory in several directions: We have
calculated the escape rate of a particle moving in a
potential well under the influence of non-markoffian
noise and damping [2,3] and have applied the result-
ing formalism to the problem of thermal desorption
[4] . We have also obtained expressions for the steady-
state escape rate valid in the entire friction range
(while Kramers’ theory yields expressions only for lim-
iting cases) for single [5] and double (6] potential
well models. Some generalizations of the Kramers’
theory were also provided by other works [7—10].

In this note we further generalize the theory in the
low-friction regime to account for the case of posi-
tion dependent noise and friction. Kramers’ work as
well as most of the work that followed it use as start-
ing point the Langevin equation

¥+ M-1dv(x)/dx + yx = M-1R(t), (1)
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(R(1P=0, (RE)IREN=2yMETS(ty - 13), (2)

or the equivalent Fokker—Planck equation

oP  oP 1 dV(x) 3P _ a(kTaP
stV M T w T T\ M

UP) ,(3)

with the friction y independent of x. In these equa-
tions x and v are the position and velocity of a particle
of mass M moving in the potential ¥ (x) under the
influence of the random force R(7) and the friction ¥y
(related by the fluctuation —dissipation theorem [2,3]).
P(x,v,t)is the probability distribution for the mo-
tion of the particle in its phase space, & is the Boltz-
mann constant and T the temperature.

In many situations the interaction of the particle
with its surrounding thermal environment depends on
the particle position. This is most clearly the case in
desorption of an adatom from a surface [11—13] but
is probably true also for isomerization and other chem-
ical reactions in condensed phases where the reac-
tion coordinate may be exposed differently to the
thermal environment for different molecular configu-
rations.

In this case egs. (1) and (2) are replaced by

X+ M7V Av(n)ldx + v(x)%x =M~ 1R(x, 1), 4)
(REP =0, (R(IR(E)N =270 )MKT3(t, 1), (5)

and lead to eq. (3) with vy replaced by y(x). The func-
tional form and the magnitude of y(x) have been stud-
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ied for differential physical cases by d’Agliano et al.
[13]. However eq. (3) with Y = ¥(x) has never been
solved in any but the high damping limit , in which
case it may be reduced to the Smoluchowski (diffu-
sion) type equation for the probability distribution in
the position space

aPx,t) o 1 (kT 3 _1 ¥ (x)
3t “a?[@(ﬁf“é}”“ dx )P("")]((;,)

This leads to the steady state escape rate

r=wolkT/2m1/2

X( fdx 7(x)exp(—-Mw]23x2/2kT)) -

X exp(—Eg/kT) , (7

which under the approximations used by Kramers
(deep well and parabolic forms of the potential near
the bottom and near the barrier top) results in

r= (mﬂwBﬁnyB)exp(—EB/kT) , (8)

where wj and wy are the frequencies associated with
the second derivatives of the potential at the bottom
and at the barrier top respectively, £y is the height of
the barrier top above the well botton and where vy =
¥(xg), xp being the position of the barrier top.

As stated above, we provide here a solution for the
escape rate in the other extreme Limit — the Jow.
damping limit . Starting with a non-markoffian genera-
lization of eqs. (4) and (5) we derive 2 Smoluchowski
type equation for the action J of the particle {analog
of the corresponding equation derived by Kramers in
the markoffian constant friction case) and evaluate
from it the escape rate as the mean first passage time
to reach a given threshold energy. As we have argued
before [2 3], this procedure is the classical analog of
the master equation (in energy space) approach to
chemical Kinetics and to desorption processes, which
s also valid only in the small damping limit.

2. The model
In contrast to the markoffian case [egs. (4), (5) and
3)], there is no rigorous statistica mechanical derivation

f a non-markoffian equation for brownian motion with
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position-dependent friction. In what follows we use
as starting point the generalized Langevin equation

{
¥+ M1dVx)/dx + [ drz(x(0), x(r), 1 — 1)igr)
0

=M IR(x, n, (9)
and require that R and Z be of the forms
R(x(1), 1) = f(x(2)) o(2) , (10)
2 xX(0), t = 1) = fle (N3Nt -7y, (1 1)
with

@ p(rN=MkTz(t- 1), (12a)

and

7Efdtz(r). (12b)
0

‘While no rigorous derivation of eqs. (9)~(12) from a
microscopic theory is available we note that these
equations reduce to eqs. (4) and (5) in the markoffian
limit [2(2) = 298 (£)] with y(x) = v/2(x). Moreover
we demonstrate in the appendix that the non-markoffian
form (9) is valid in at least one realistic case,

3. The energy equation

Inserting eqs. (10) and (11) into eq. (9) we get
xX=uv,

b= M1 dV(x)/dx

t
— 1) [dr2(r = 1) fGe(m) o(r) + M f(x(t))(p(;;.
0 1

These can be transformed into equations of motion
for the action J and the phase *. This procedure (see
appendix A of ref. [3]) leads to

* The transformation (x, v) ~ (J, @) is defined from the
hamiltonian associated with the deterministic part of the
motion,



Volume 102, number 6

J = M(0x/3¢) flx)
t
X (ﬁ farz@—n o) + M7 p(r)) :
0
6 = w(J) — M(3x/a)) f(x)
t
X ( -fdrz(r - '.r)f(x('r))u('r)+M'_1 p(t)) . (4
0

Introduce the transformation x - G(x), where

G(x)=fdx'f(x'), (15)

then we have in terms of G
(0x/B¢)f = 8G[ap, (3x[a))f=0G/aT, fo =G.(16)
Thus egs. (14) lead to

t
J = M(3G[d¢) (~fd1'z(t* NG () +M‘p(t)) ,
0

$=wl/)

, (7

— MG (— f drz(t - )G () +M~ p(t)) .
0

Eqs. (17) are identical in form to the equations (ref.

{31, eqs. (II1.1}) that constitute the starting point of
the reduction procedure used in the constant friction
case, the difference being that G(x) and G(x) replace
x and v. The reduction procedure that leads to a dif-

fusion equation for the energy is carried out by first

introducing the transformation G (x) ~ G{/, ¢},

G(x, x) > G/, ¢) according to *

G, 9)= 2o G, ()exp(ing), (18)

n=—om

o

CU.¢)= 2 inw(T)G, () exp (ing) (19)

f=—os

and then following exactly the same steps as described
in the constant friction case [2,3]. This leads to a dif-

* The expansions (18) and (19) rely on the assumption that
G(x) is an analytic function of x.
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fusion equation for the probability (/) to find the
particle with the action J of the same form as in that
case

AP(J, )fat = (3/3)) [e(/) (kT 3/ + w(I))PU, f)lfzo)

where the function e(J) is given by

ey =2M Zw)l n2(G,(NEESW)) . @1)

where

55(w) = f dez(t) cos(net) . (22)
G

Eq. (20) is equivalent to the energy diffusion equa-
tion {using d£ = w(J) dJ}

AP(E, 1)/t = (3/E) [D(E) (kT3[IE + Nw(EWE, DI,

where (23)
P(E) = P)/w(E) (24)
and

D)= e)wl) . (25)

4. Discussion

The diffusion equations (20) and {23) are identical
in form to those obtained inthe constant friction case.
The difference enters in the definition of e(J), eq.
(21) where the functions G, (/) replace x, (). Obvi-
ously, for constant friction f(x) = | and G(x)=xso
the present results reduce to those obtained before.
[Note that G is defined only up to an additive con-
stant which however does not contribute to e(J).]

In the matkoffian case z(f) = 278 (£) and Z,{w) = 7.
Eq.(21) then reduces to

o0

e(J)y=2My 24 n?{G,|%. (26)
n=l

In the constant friction case G, = x,, and using the

identity [3)J = 2MwZ nzixn|2, we get

e() =v//wl), 27)

which is the original Kramers result.
[t isinteresting to note that all these different cases
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are characterized by the same form of diffusion equa-
tion, with different functions e(J/). This can be under-
stood by realizing that in the low friction limit there
isonly one rate of interest: the average (over a period)
rate of energy (or action) loss. Using the loss term in

eq. (13),
i

Ohoss = ~f@) [drz(~Dfx(m)o(r) . (28)
0

to evaluate (£ Noss = Mu (1)), (the bar denotes aver-
ages over a period leads to (using eqs. (15) and (19)

and some of the principles inherent in the reduction
procedure) [2]

ENoss= —€W) w2} . (29)

€(/) may be obtained in this way and the rest of
the structure of eqs. (20} and (23) may be guessed
from the principle of detailed balance.

Finally we note that the procedures described pre-
viously to obtain the function €(J) in the constant
friction case may be extended also to the present case.
This includes the direct calculation of the functions
x, (/) (which is feasible e g. for the Morse oscillator)
[2.3] which may be then used to obtain G,,(/), or
running deterministic trajectories at a given energy
and evaluating €(J) numerically from [4]

e(7) = Mjw?)] f dt2()GO)G (1), (30)
0

where the bar again denotes average over the initial
phase, .

The results obtained above may be generalized
[14] to the case where the random force R and fric-
tion kernel Z of eq. (9) are given by the expansions

RO =20 fo(x(0)pa 0,

(with (0,) = 0 and (p, (1) pg(r)>= MR Tz, 4(t — 7)) and
z=2 ?fa(x (tN2ag(t — D)),

where {f} is a complete orthonormal set of functions

on the relevant x domain. In this case eq. (20) is still
valid with e{J) given by [14]

€= 2w L2 Gy U)o (@G0,
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where G, (x) = [¥dx’ f(x") and Goplyandzgy, , (w(/))
are obtained from 7 (x) and Z,p(t) by equations
similar to (18) and (22).

5. The escape rate

Eq. (23) implies the following expression for the
mean first passage time to reach a particular energy £
starting from a lower energy E:

mpp(Eg > E)

E E"l -
1 exp (£, /kT) exp(—£5/kT)
== [dE) ——~— [dF, —— 7
k:rEfo 1 T D@E) J 2 T E,) 61

For deep enough wells this time is insensitive to the
choice of £ provided the latter is not taken too close
to £. In the low-friction limit Tﬁlr:p(EO - Fz) may be
identified as the steady-state escape rate out of the
well. This identification relies on the assumption
(usually involved in energy master equation theories
of rate processes) that reaching the threshold energy
is a sufficient condition for the process to occur. This
assumption is expected to be valid for very low fric-
tion (see refs, [2,3] for a further discussion of this
point). .

For very deep wells, ie. £y > kT the integrals in
eq. (31) with £ = Eg may be evaluated approximately
by replacing the upper limit in the £, integral by oo
and by pulling w(¥;) =~ w, and D(E;) ~ D(£p) out
of the integrals. This leads to

r=rhp(Ey > Ep) = [wyD(ERY/kT) exp(—FEy /ki(";.z)

In the constant friction case D(£) = v/g where /g
is the action at the barrier. In that case eq. (32)is

identical to the result of Kramers for this limit. In the
present situation D(£g) should be calculated from
eqs. (21) and (25). Note that in both cases there are
no non-markoffian effects in the very deep wells limit
since e(J/), eq. (21) is calculated at w(/p)=0.

6. Example

As an example to the procedure described above
we calculate the low-friction escape rate (inverse
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mean first passage time) for a particle in a Morse po-
tential well,

V{x)=D{1—exp[—(x - xg)/a]}?, (33)
for which
w() = wy(l —wyJ/2D), (34)

x(I,8) =xg+aln{[l —(1 =A%)/ 2cos ]/}, (35)
where

A=1-wy//2D (36)
and where wy, is the bottom frequency

wy =(2D/Ma?)1(2 (37)
For the function f(x) we choose

_ 1+4
fx) = exp(xfa)+ 4’

which, for 4 > 0 is a monotonously decreasing func-
tion in x 2 0, The functions V(x) and f(x) are shown
in fig. 1. Eqs. (15) and (35) lead to
1 —(1— aH12
( Yécos¢ ) 39)
1+ B22 — (1 - A 2¢os¢

(38)

GU.8) =a 1;" m(

x/q

Fig. 1. A schematic representation of the potential V (x) and
the function f(x) used in the present work. Full line, Morse
patential V(x}/D ={1 — exp[—(x — x9)/a]}? versus x/a where

Xp/a = In(10). Dashed lines, f(x) = (] + A)/[exp(x/a) + A] ver-

sus x fa for several values of 4.
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Fig. 2. The parameter § (=Kwq/y) versus the bath correlation
time for several values of 4. Solid, dashed, dot-dashed and
dotted lines correspond to cases of A = 1000, 100, 10 and
zero respectively .

[where B = A exp(—xg/a)], which may be used to get
the functions G,,(J). We get

G ()2 = (a(ln;,q))z[((l-l_i?m)n

( (1-AH1/2 )n]Z 40
1+BN2+ M1 +2B+B\)/2] |7 (40

Eq. (26) then yields e{/) which is used to evaluate the
mean first passage time, eq, (31). The transmission
coefficient K = r/rrgp (where r = Tﬁ}:P and rpep =
(wq/2m)exp(—D/kT), the latter being the transition
state theory rate) is proportional to the friction y in
the low friction limit considered here. In fig. 2 we
plot § = Kwg/y versus wyr, for several values of 4.
The parameters of the Morse function (33) were taken
to be D = 10kT and x4/a = In(10).

The case A - == corresponds to f(x) = 1 (position-
independent friction). Smaller values of A correspond
to lower effective friction (i.e. the cycle averaged rate
of energy loss) and to smaller escape rates as seen
from fig. 2. The dependence of the escape rate on the
bath correlation time 7 is in accord with the results
obtained and discussed in refs. [2 3].

Appendix
Consider a particle (mass M, position x, velocity v)

521



Volume 102, number 6

coupled to a bath made of harmonic oscillators
(masses m;, position measured from equilibrium Yis
velcoity U;, frequency w;). The hamiltonian is

H=3Mo2+ V(x)+4 2mu? + Ulx, ()
H

where U = 3 Z;m,w? [v; — G(x)}2. Thus the coupling
is represented by an x-dependent change in the equi-

librium positions of the bath particles. The equations
of motion are

¥ =M1 ( dV(X)+ _Emf-w,-z g%g_f_) (G(x) *yi)) »

dx
(A.1)
¥ =~y Gl (A2)
The solution o eq. (A.2) is given by
¥i(t) =70y cos (w; 1) + w; ! §{0)sin(w;?)
+ w; j’ dr GGx () sin [w,(t — 7)] . (A3)
0

Inserting this into (A.1}and integrating by parts yields

!
2= —m7 B - for 20 x(r), 1~ 1)2(r)
0

+MARGE, 1) -M-1 % G(x(0)) E ml-w,-z cos(w;t),

’ (A4)
where R(x, 1) = (dG/dx)p(¢) and

p(5) = 2ameo? [y(0) cos(eo;t) + o 3,(0)sin (wyt)]
i (A5)
and where

Z(x(t),x(r),t — 1)
= (8G/ax)1 o (4G AN )y y2(r = 1),

2(t— 1) =M1 27 m;wlcos fwlt - 7)]. (A.6)

As in other calculations of this kind [15] we take
¥;(0) and y{0) to be gaussian random variables satis-

fying

3i(0) = G4(0)) = 3,(0) 70 = 0,
EON=kT/mw? , G2OP=kTim; . (A7)
Then it is easy to show that
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() p(r)) =MkTz(t - 1) . (A.8)

Finally we notice that for a continuum of modes ; the
last term in eq. (A.4) is a transient that may be disre.
garded. Eqs. (A4)—(A.6) and (A 8) are of the form
discussed in this paper,
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