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ACCELERATED ENERGY TRANSFER BETWEEN MOLECULES NEAR A SOLID PARTICLE *
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The Forster—Dexter theory of energy transfer between molecules is generalized to include the effects of a nearby solid
state particle. It 1s found that the energy transfer rate between a donor and acceptor molecule may be enhanced by many
orders of magnitude when the molecular transition {requencies lie in the vicinity of the resonance frequency of the particle
and when the particle possesses sharp features, Due to increased damping near the particle, however, this may or may not
lead to increased acceptor molecule radiation.

Inrecent years considerable attention has been focused on elementary molecular processes occurrin g in the proxim-
ity of small solid state particles or rough surfaces. It was found that the cross sections or rates for these processes
could be dramatically altered from what they would be in the absence of these particles. Included in such studies
are: surface-enhanced Raman scattering [1] from molecules on rough surfaces, in colloidal suspensions, or on
island films; the modification of fluorescence lifetimes and yields near island films [2]; photochemical reaction
rates [3]; and non-linear optical effects [4]. In all of these phenomena particularly strong modifications occur if
the molecular resonance frequency coincides with the resonance frequency of the solid state particle. Stated
simply, the reason for this is that under such conditions the molecule and solid couple very strongly and are able
to share their electrodynamic properties readily. Thus, for example, the electric field in the vicinity of a particle
which is resonating with light at a particular frequency can become very large and this field can affect processes
going on in a nearby molecule. Likewise, the physical shape of the particle can act in such a way as to increase the
field near an adjacent molecule.

In this paper we investigate the process of energy tranfer between molecules and ask how its rate is modified
by the presence of a nearby particle. Energy transfer between free molecules is described quite well by the stan-
dard Forster--Dexter theory [5]. In that theory it is the dipole—dipole interaction which is responsible for the
energy transfer process. Our objective will be to see how this picture is affected by the presence of the particle.
We shall see that it is possible to define an enhancement factor for the energy transfer rate and that this factor may
be very large in practise, even for substantial intermolecular separations,

Our goal will be to study the influence of a small solid state particle on the energy transfer between two nearby
molecules. A simplified model will be introduced to enable us to study the general order of magnitude of the ener-
8Y transfer rate and to draw general conclusions concerning trends. In this model the particle will be taken to be a
prolate spheroid with semi-major axis equal to 4 and semi-minor axis equal to 4. The molecules will be taken to be
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polarizable point particles lying along a line passing through the major axis on opposite sides of the spheroid. We
will also restrict our attention here to the case where the dipole moments are oriented parallel to the major axis.
Relaxation of the above constraints will be relegated to future work.

The prolate spheroidal coordinates of an arbitrary point in space are (£, 7, ), the coordinates of the center of
molecule 1 (the donor) are (¢4, 1, 0), and those of molecule 2 (the acceptor) are (¢,, —1, 0). The particle occupies
the space £ < £ = a/f where f = (a2 — b2)}1/2. The complex dielectric constant of the particle is €(w). Non-local
electrodynamic effects will be neglected in our description.

In the absence of the particle, the energy transfer rate, kg, is determined primarily by the dipole—dipole inter-
action in accordance with the Forster—Dexter theory. Thus

ko= (211/;»6) ? [Kigfol[mg By —3py F B, 7l Ifda’a>|26 (efd te —€p— E;‘d) , (D

a

where 7 is the intermolecular displacement vector, | f4) and {7} are the excited and de-excited donor states, respec-
tively, and | f,) and [i,) are the corresponding acceptor states. The energies of these states are denoted by eg,, € ,,
€f, and ¢€; . Atomic units (A = e = m = 1) will be used throughout this work. Since collinearity is assumed, we re-
place the gipole—dipole interaction, Uy = (g B, — 3By 7 H,° F)/r3 by —2u4u,/r3. In spheroidal coordinates,
=f(&4 + £,); and the distance of the molecules from the origin are rq = f£4 and 7, =fE,.

Next let us calculate the energy transfer rate in the presence of the spheroid, k. It will be assumed that both
the spheroid’s size and the intermolecular separation are sufficiently smaller than the wave length of light (for the
transition | fy) = i4)) so that retardation effects may be neglected and an electrostatic approximation to electro-
dynamics will suffice. The problem then reduces to the solution of Laplace’s equation for the electrostatic poten-
tial produced by two dipoles in the presence of a spheroid. We must find the modified dipole—dipole interaction
operator and evaluate the appropriate matrix element for use in eq. (1).

The potential at an arbitrary point in space is

® = ?Anpn(z)Pn(n), E<ty,

= ?Bngn(z)mn) v d b, E>Ep, )

where 4, and B, are a set of coefficients to be determined by matching boundary conditions, and &4 and ®, are
the potentials produced by the point dipoles:

@4 = (ualheg) 20 [(2n + DI} 0P (L] Pr(m) (3a)
D, =~ (uafhy,) 20 (24 DI (0P, (E2) A (EL)/0E] Po(). (3b)

Here E_i denotes the lesser of ¢ and §; = r;/f and £>"_ denotes the larger of the two. The metric coefficients (we fol-
low the notation of ref. [6]) have been denoted by 4, . Employing the boundary conditions that potential and
normal component of electric displacement vector at the particle surface be continuous allows us to solve for 4,,
and B,

A, = [0+ DIFEG — DQuE)PrlEo) e + €,)] (aCnlE)lhyy — ()" 1@ (k) ] (4a)
where
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€, = — P, () @, (£0)/0, () Piy) - (9
The interaction energy between the dipoles, as modified by the presence of the spheroid, is
U=s—pyg Ed=—p, -E2, (6)

Here E® denotes that part of the electric field at the position of dipole 7 arising from the presence of the other
dipole. It is obtained from egs. (2) —(4) by omitting the terms proportional to y; and evaluating the negative of the
gradient. After some lengthy algebra we find

U= (ugtalg jhe.) E [(27 + DIA P 0, (£82)
+ 2 ()" 12+ DIFTICL = (e + E] PalEa)/QnE0)) (attalhe e JOEDE) (7)

Here £d<"‘~ denotes the lesser of &4 and £, and £d>a denotes the greater of these. The first term in eq. (7) may be eval-
uated using the sum rule:

(Fa + £)° 20 (n + )P0 = 1. )
n
We form the ratio of U to the free dipole—dipole interaction, Uy, to get

U=A(w)Uy, (9

where A may be called the interaction energy amplification factor and is given by

A(w)=1+ 3;1 (4 D" (L = e + €)] IPo(E0)/Qn(E0)) Or(E0) CuE) (kg + £,)° . (10)

Having obtained the expression for 4 for the case of a spheroid, let us now specialize to the case of a sphere.
As the spheroid approaches a sphere, b > a so f > 0 and g = oo Likewise £3 > >0 and &, — *. After some algebra
we find the following expression for 4:

A(w)=1+ %[(r(.1 +r,)al 3 @1 (—)(n + 1)2(a2/rdra)”+2(e - Df(et+?,), (1)

where 2, represents the limit of €, as £y = >
& =(n+1)n. (12)

Note that molecular properties enter into these results only through the w dependence of e(w), which should be
calculated at the donor frequency.

The sums appearing in eqs. (10) and (11) are infinite sums of the form 21 T, Inevaluating these sums we re-
Place the sums by a finite number of terms and check to see that convergence is achieved as the number of terms
is increased. In order to accelerate the convergence it was found that the sum T+ Ty g+ (0T 5 +4Ty
+ T'\){8 converges rapidly even in cases where Ty + ...+ Ty converges only very slowly, so this method of acceler-
ation of the convergence was adopted throughout the numerical work.

The basic theoretical results are embodied in eqs. (10) and (1 1) in which expressions for the energy transfer
rate enhancement factor are given. The reasons for the enhancement are simple to state. A fluctuating dipole in
the donor molecule induces a fluctuating dipole in the dielectric spheroid. This dipole may be much larger than
the molecular dipole of the donor. This will be especially true if a resonance frequency of the spheroid coincides
with the molecular transition frequency. The sharpness of the spheroid, determined by the aspect ratio a/b, also
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plays a role in enhancing the dipole moment. Finally the proximity of the molecule to the spheroid is important

in determining the degree of enhancement. Once this sympathetic dipole moment is established in the spheroid,

it produces an electric field which couples to the acceptor molecule and drives an upward transition. The strength

of this electric field can be much larger than that field which would have existed had the spheroid not been present.
In the free molecular case, where no particle is present, it is customary to express the energy transfer rate, kg,

of eq. (1) as an integral over frequencies of the product of the acceptor absorption cross section, o{w), and the

donor emission rate per unit angular frequency, G(w):

ko =(3c420r%) [ dew Gw)o(w)lw?. (13)
When the particle is present, the energy transfer rate, k, is given by
k=Q@ct2m0) [ dw [G(w)o(w)wTIA(W)?, (14)

with 4(w) given by eq. (10). The transfer rate enhancement factor may be defined as
p=kjkg. (1s)

In order to obtain estimates for the above rates it is convenient to adopt lorentzian models for o(w) and G(w).
Thus

4n2 ol |2 Ya/27
o(w) = fic 2 2’ (16)
(wa - OJ) + (73/2)
and
43 ugl? Yal2nm
w) = —— - (17)

33 (wg — w)? +(r4/2)2
where |y, ]? and | 11412 denote the square of the transition dipoles for the acceptor and donor, w, and wy denote
the resonance frequencies, and v, and 4 denote the lorentzian widths, and are typical of the inhomogeneous
broadening that is present. Insertion of eqs. (16) and (17) into (13) and (14) gives

721TC6 0 0 (73 + 7d)/2ﬂ .
= r s 18
0 hzrs(wawd)?’ ndtna (twq — W)+ (r, t 14)%14 (19
and
ke~ [(wq — w,)? + (7, + 74)2/4] :[, w (o~ (2l [ — ) ¢ ok (19)

where F?,d and FP , denote the free radiative decay rates of the donor and acceptor molecules.

Consider a procéss in which the donor molecule is excited and its energy is transferred to the acceptor mole-
cule via the particle. If one wishes to monitor the modified transfer rate experimentally, one could examine §,
the ratio of the emission from the acceptor with the particle present to the emission from the acceptor without
the particle. The presence of the particle modifies not only the energy transfer rate, but also the radiative and
non-radiative decay rates of the particles [2]. Thus, in our model, the radiative rate of the acceptor is

T, =Tralt+ {[1 - e(wy)]/[e(wy) + €1} £001(8)/Q 60 1?, (20)

and the non-radiative decay rate of the acceptor is
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Fpea = e — G120 Pa/0]) Im E n+ DL+ §)/[e(w,) + &1 P (o) @n(E) [Q4(D12,  (21)

where l"?nr o denotes the non-radiative decay of the acceptor in the absence of the particle. The acceptor radiation
may be written as the product of the transfer yield from the donor and the acceptor emission yield

fr,a = [k/(Fr,d t Fnr,d + )] I1r,a/(rr,a t Fm,a) (22)
(where we are neglecting back-transfer from the acceptor to the donor). The ratio § is then
S=1 175, (23)

where the superscript “0” denotes the absence of the particle.

Another quantity of possible experimental interest is T, the ratio of the initial growth of acceptor emission in
the presence of the particle to that in the absence of the particle. This quantity is obtainable from a time-resolved
spectroscopy experiment. One may readily show from rate equation considerations that

T=(,/Ti)e. (24)

Since the radiative rates are themselves enhanced, according to eq. (20), one would expect an even greater enhance-
ment for T than for p.

Fig. 1 illustrates the variation of the energy transfer rate enhancement factor, }JA(w)|2, with positions rq and
r, of the donor and acceptor molecules situated along a line passing through the major axis, In fig. 1 we idealize
matters somewhat and take the acceptor and donor molecules to be identical. Note that [A4(w)|? is a symmetric
function of r4 and r,. Curves A and B correspond to a slightly prolate silver spheroid with 2 = 100 A and 6 = 63,92
A possessing a dielectric constant € appropriate to bulk silver at a photon energy of 3.25 eV. It is assumed that
the molecules are in resonance with the dipolar mode of the sphere. |A(w)|? varies roughly between 102 and 103
depending on the particular locations of the molecules. Generally, the enhancement factor falls off as either the
donor or acceptor molecule is taken away from the sphere. It is interesting to note that significant enhancement

105-
1l!i4
A
103
2 .

10 Fig. 1. Energy transfer rate enhancement factor, | 4(w)|?, as
a function of acceptor position, ry, for various donor positions
rd. Curves A and B are for a mildly prolate silver spheroid and

S C and D are for a more prolate silver spheroid. The curves cor-

10‘ ) ) respond to cases where the molecular resonance frequency

100 300 r. {A) 500 700 coincides with the dipole resonance of the particle,
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Fig. 2. Energy transfer enhancement ratio p, as a function of Fig. 3. Absolute energy transfer rate, &k, as a function of donor
donor distance, 74 for fixed acceptor distance, 7,. Curve A distance, rq. A and B correspond to resonance and non-reso-
corresponds to a resonance case and B to a non-resonance nance cases, respectively.

casc,

factors persist out to several sphere radii, illustrating the long ranged nature of the effect.

In curves C and D we present similar curves for R as a function of r, for various values of r4, but for a more
prolate spheroid. The size of the spheroid is given by 2 = 100 A and b = 29.82 A, We again assume resonance with
the longitudinal dipole mode. We note that now the enhancement factor may exceed 10 as r4 approaches the
spheroid, The increase in enhancement over the case of the sphere is due to the “lightning rod effect” — the con-
centration of field lines near the tips of a sharp object.

In fig. 2 a plot is made of the encrgy transfer enhancement ratio, p, of eq. (19) as a function of 4, the donor
distance from the center of a silver spheroid. The molecular parameters were taken to be wy = 26000 cm™ L w,
= 25000 cm~!, v4 = 100 cm~! and v, = 100 cm~1. The acceptor distance was held constant at r, = 150 A. Two
curves are shown. In curve A the spheroid semi-axes were taken asa = 100 A and b = 57.14 A. The dipolar reso-
nance of this spheroid occurs at w = 25500 cm~! and thus overlaps somewhat with both the donor and acceptor
molecules. In curve B the semi-axes are a = 100 A and b = 40 A, corresponding to a case of non-resonance between
the spheroid and the molecules. As expected, resonance leads to an increased transfer enhancement.

In fig. 3 the absolute energy transfer rates, k, are plotted as a function of r4 for fixed r,. Again the trend noted
for fig, 2 applies.

A study was made of the acceptor emission ratio, S, given by eq. (23). In general, 5 was found to be quite in-
sensitive to the value of ry for fixed r,. For a high quantum efficiency donor—acceptor pair (Fgl,d = ng . =0,
I‘?d = F?}a =0.001 cm~1) near the resonating spheroid of fig. 2, § was found to be equal to 0.049. As the quan-
tum efficiency was lowered, S was found to increase. Thus for ng,d =T a=001 cm~! (and the same radiative
rates as above), corresponding to a 10% quantum efficiency, $ = 0.53. For F?u,d = I‘?u,a = 0.1 cm—!, correspond-
ing to a 1% quantum efficiency, $ = 4.4. This trend of increasing § with decreasing quantum efficiency may be
traced to the role played by non-radiative damping to the spheroid. For low quantum efficiencies, where the in-
trinsic non-radiative damping dominates over the spheroid contribution, it is the accelerated energy transfer that
is important and S is larger than 1. For high quantum efficiency cases, however, the reverse is true and the non-
radiative damping to the spheroid quenches the acceptor emission. A similar phenomenon has been noted in the
case of fluorescence on an island film.

Finally we note that in computing the growth rate ratio, 7', of eq. (24) one must know Iy o/ 1"2 a2+ 1his ratio is
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44 for the case of our resonant spheroid of figs. 2 and 3. Thus fig. 2 may also be interpreted as a graph of T versus
rq provided that this factor is included.

In summary, we see that the dynamics of energy transfer in the neighborhood ofa particle is strongly modified
by the presence of a particle and is sensitive to detailed molecular parameters.
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