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The optical response of small clusters made of two-level molecules is investigated with particular
emphasis on the near-resonance region. It is seen that the dielectric-function concept is still useful
for describing first-order properties such as particle polarizability and particle-absorption profile;
however, near resonance the dielectric response is strongly affected by dephasing and by the
energy-level shifts resulting from clustering of molecules in space. Finite-size effects on the dielec-
tric response are also more pronounced near resonance. Second-order response (light scattering) can-
not be described by the dielectric function if dephasing processes are important (as they usually are
near resonance) and different response functions must be used for different observables. For a clus-
ter of N molecules the light-scattering cross section is made of two contributions: a coherent part
(proportional to N2) which may be described by the dielectric-function concept and an incoherent
part (proportional to N). Implications for surface effects on the optical properties of molecules ad-

sorbed on such clusters are considered.

I. INTRODUCTION

The response of small dielectric particles to an incident
electromagnetic field has long been a subject of consider-
able interest.! Research in this subject has mounted recent-
ly with the discovery of a number of unusual electromag-
netic phenomena associated with small particles, such as
enhanced absorption, Raman scattering and fluorescence
of molecules adsorbed on such particles,? unusual behavior
of fluorescence by molecules embedded in such particles,®
and enhanced far-infrared absorption by small metallic
particles.*>

Theoretical treatments of these problems have taken
one of the following two routes: The first is to associate
with the particle a dielectric function e(w), taken either to
be identical to that of the bulk material, or otherwise
corrected (for metallic particles) by adding an imaginary
contribution to € due to finite-size effect (scattering of the
electrons of the walls). The second route is to treat the
particle as a microscopic quantum-mechanical system and
to evaluate its dielectric properties from first principles.
This second route has so far been followed only for metal-
lic particles, modeling them as systems of free electrons
subject to the constraint that they remain within a finite
volume. Such studies have been carried out mostly with
regard to the far-infrared absorption by small metallic
particles.’

In this paper we investigate some other aspects of the
dielectric response of small particles. We consider the
particle to be a cluster of two-level atoms or molecules in-
teracting with each other via the usual dipole-dipole in-
teraction operator. The usual approach to the dielectric
response of such a system consists of the following steps:

(a) Consider each atom to be represented by a classical
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polarizable point particle with polarizability a(e).
(b) Solve (for ;) the system of coupled equations

£;=a(0) |Eulrj0)+ M- |, (1.1)
<

where £ is the dipole induced on the atom j at position
7, Eex(Tj,) is the @ component of the external radiation
field at position T;

E(T,0)= [ doe E(T)0), (1.2)

and where K’Ijj’ is the dipole-dipole interaction tensor. In
the long-wavelength (electrostatic) limit, where the linear
size of the cluster is small relative to the radiation wave-

length, the T; dependence of Eex may be disregarded and
M;; is given by
- L 3ujj/ujj'—I
= 3
[7y01

where Tj;=1;—T;’, Ujp=T;/|ry |, and where 1 is the
unit tensor. Unless otherwise stated we assume in what
follows that the long-wavelength limit is valid. We also
omit the notation concerning the & dependence of the cal-
culated quantities.

(c) Having found ; for all sites j, the average polariza-
tion in the cluster is

(1.3)

’

— 1 — _4—-» —
szz,u,sz’Eex , (1.4)

J
where 7~ is cluster volume. The response tensor K is de-
fined from this equation. Note that P and K depend in
principle on all the positions {r;}.
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(d) Find a relation between the average field E in the
particle and the incident field E,,. For clusters of ellip-
soidal shape such a relation may be found from the identi-
ty®

E=E, —47LP . (1.5)

For an ellipsoid with axes a,b,c in the x, y, and z direc-
tions, L (the depolarization tensor) is diagonal and is given
by

(s+a?)~ ! w=x
L,=+abc fowdsRis) X (s+b22):11, w=y (1.6)
(s4+c%)™, w=z
where
R(s)=[(s+a*)(s +b (s +cH)]'?. (1.7)

The factors L; satisfy 3 ;L;j=1. For a sphere Lj=r1.
Equations (5) and (4) lead to

- < >

E=(1—47LK)E, . (1.8)

(e) Average Egs. (4), (5), and (7) over the positions T; of
all atoms subject to any given constraint on these posi-
tions. Denote the average quantities by (P), (E), and
(K). In terms of these, Egs. (1.4) and (1.8) take the
forms

(B)=(K) Ea, (14)

(E)=T—47L-(K))E,,, (1.8")
which together imply

(B)=X-(E) (1.9)
with the susceptibilityjf given by

X=(K)-T—darL-(K))". (1.10)

(f) The dielectric tensor € is now obtained from

E=1+4m¥=144n(K)-T—4aL (X)), .11

The following points should be made in connection with
this derivation:

(1) The Clausius-Mossotti (CM) [or the equivalent
Maxwell-Garnett (MG)] approximation for € is obtained
by considering a sphere geometry (i:{f) and by taking
(K):nc{f, where r is the number density and «a is the
polarization of the atoms. It should be noted that taking
K=nal in @ is equivalent to assuming Y, j ﬁjj'-ﬁ =0
in (1). This is the same assumption used in the Lorentz
local-field argument.

(2) The above procedure for evaluating € is used in a
very similar form to evaluate the dielectric response of
molecular films or of metal island films. The main differ-
ence lies in the fact that instead of Eq. (1.5) one must re-
late E to E,, by a different procedure.

(3) While for infinite three-dimensional systems the as-
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sumption Yy, 7 ﬁjjr- & =0 may hold approximately (exact-
ly for an infinite cubic lattice) due to cancellation of con-
tributions of opposing signs, for finite particles (as well as
for films) it is no longer applicable.

(4) The fact that 3 . Mj;-u;+0 for small clusters sug-
gests that the dielectric tensor € may depend on the cluster
shape. This in turn implies that for small clusters of po-

larizable atoms or molecules the response tensor K (polari-
zability per unit volume of the cluster) is a more funda-

mental quantity than €. K may be calculated directly
from the equation describing the coupled dipoles [Eq. (1)]
and its knowledge enables us to calculate the absorption
and scattering cross-sections associated with the particle.
These are given by

4 A © A
aa=7ﬂa)VIm(e,'K-e1), (1.12)
d 4
Jq%= | = | 718K 2, (1.13)

where &; and &; are unit vectors associated with the in-
cident and scattered polarizations, ¢ is the speed of light,
and 7 is the cluster’s volume.

A large body of work now exists’ which studies several
effects that lead to corrections to the procedure described
above. The main effort has been directed towards study-
ing the implications of nonisotropic polarizabilities (as is
usually the case with molecules), of the presence of per-
manent dipole moments on the molecules, and of rotation-
al relaxation associated with such permanent dipoles. In
the present work we address other effects which become
important when the incident radiation .is close to reso-
nance with a characteristic atomic or molecular absorp-
tion frequency. While a naive approach will use the same
formalism described above with the resonance condition
entering through the ® dependence of the polarizability
(and in fact this is often done in works on molecular
films®), there are several effects which become important
near resonance which lead to both quantitative and quali-
tative difference from the off-resonance behavior. These
are as follows:

(a) Clustering (or grouping together) of the atoms
within the cluster under consideration leads to statistical
broadening of the resonance. Every group of atoms con-
sidered separately will have a set of resonance frequencies
(due to splitting of levels) which depends on the configu-
ration. The response of the whole system corresponds to a
superposition of such contributions. This is a configura-
tional randomness effect.

(b) Dephasing due to rapid modulations of the reso-
nance frequency resulting from local thermal interactions
becomes important near resonance. Thus during the rela-
tively long time delay associated with the atomic response
near resonance, the atoms may get out of phase with each
other and the cluster under study will respond more as a
collection of independent atoms than as a dielectric body.
This is a temporal randomness effect.

The two effects discussed here have long been recog-
nized as important factors in theories of optical line
shapes.” They are not always appreciated in theories of
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optical response which use the dielectric function ap-
proach. In particular dephasing phenomena are not built
into the usual theory of dielectric response. The present
calculation takes account of both the dephasing and the
atomic clustering effects within the model defined in Sec.
II. We obtain shape- and size-dependent corrections to
the Clausius-Mossotti theory of the dielectric function due
to formation of atomic pairs [Egs. (3.22), (3.24), and
(3.27)]. We show that in the presence of dephasing the
mean dielectric function has the same form as in the ab-
sence of dephasing, the only difference being that the
atomic  decay rate y is replaced by the total atomic
linewidth I'=y +« (« is the dephasing rate). We further
show that this mean dielectric function is useful only for
calculating first-order processes such as light absorption
by the cluster and that other response functions should be
employed for higher-order processes. We calculate the
response function that is appropriate for light scattering
and show [cf. Egs. (4.9) and (4.12)] that the cross section
for light scattering is made of two contributions: an in-
coherent (“fluorescence”) part which is proportional to «
and to the number of atoms in the cluster N, and a
coherent part which, for clusters small relative to the radi-
ation wavelength, is proportional to N2. This leads to the
ratio Ny /k between the coherent and incoherent response
of a cluster of size N [cf. Eq. (4.20)] and to an estimate for
the minimum cluster size (N ~10°—10*) for which the
coherent response is larger, indicating a possibility of
enhancing electromagnetic processes associated with mole-
cules absorbed near such clusters.

This paper is organized as follows. In Sec. II we define
our model. In Sec. III we consider the average dielectric

function and the absorption line shape of small molecular

clusters. In Sec. IV we consider the problem of light
scattering by small molecular clusters and obtain expres-
sions for the coherent and incoherent scattering com-
ponents. Our conclusions are summarized in Sec. V.

|

ﬁ1+[la)o+i¢j(t)+%‘y]ﬁ’j=%ia)oa0 Eex(a))e_i“"+ E M]]"ﬁj' ’ j=1, ...,N .
I
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II. THE MODEL

Our model is a cluster made of N polarizable particles
(“atoms”) with isotropic polarizabilities a(w). We take
these polarizabilities to correspond to the Drude’s model
for the dipole induced on the atom

B+ +y T =agwiE (1) , 2.1)
where E,,(1) is the external electric field at the position of
the atom, aj is the static polarizability, y is the friction,
and wy is the resonance frequency of the atoms. Equation
(2.1) implies

2
@Dy

- (2.2)
Wp— 0 —iwy

alw)=

The atoms are located at positions t; (j=1,...,N) and
interact with each other as point dipoles [Eq. (1.3)]. Since
we are interested in the near-resonance response of the
system we may simplify Eq. (2.1) by considering its
equivalent in the rotating-wave approximation (RWA)

£+ (iog+ )T = YiwgaEe(0)e @ (2.3)

where we have now specified a particular external field
frequency and where Eex(co) now denotes the correspond-
ing amplitude. Equation (2.3) is valid for @ ~w,.

Dephasing effects are introduced by replacing w, by the
time-dependent frequency

where {¢;(#)} are taken to be 8-correlated Gaussian ran-
dom variables

(@;(t)p;(')) =K8;;:8(t —1') .

The equations of motion for the atomic dipoles are now

(2.5)

(2.6)

J'(#5)

Equations (2.6) constitute one possible starting point for evaluating the optical response of the cluster. We note that
the Drude model is known to account well for the optical response of a two-level system in the weak-field (absence of
saturation effects) limit. We also use an alternative approach based on the quantum-mechanical equation of motion for
the relevant elements of the density matrix of the coupled atom-radiation field system. We now describe this model.

Consider first a system consisting of N noninteracting two-level atoms. The ground and excited states of the jth atom
are denoted by |g;) and |b; ), respectively. The ground state |G ) and a singly excited state | B;) of the whole system
are IT; 1&g and [5;) T1; )y | 8); the latter is N-fold degenerate. The state of the incident photon with wave vector
k is denoted | k) while that of the scattered photon is denoted |k '). We take these notations to implicitly contain also
the polarizations of the photons. These photons correspond to the incident and scattered frequencies w=ck and o’ =ck’.
We are interested in light absorption and scattering by the cluster in the weak-field limit. In this limit it is sufficient to
consider these processes in the lowest order in the cluster-field coupling. In this case the only states of the combined

cluster-field system which are relevant are

D=1k ]I1 lg) » @2.7)
j

[FY=|k")T1 g, (2.8)
j

and
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|B;)=10)|b;) II lg;)
j #j
| 0) denotes the vacuum state of the radiation field.

form

H=fioy | I)I| +#iop | F)(F | +7op | BY(B| +#V; 3 |1){B;|e

+#Vis 3, | F)(B; e
j

where
fiw; =Eg +fiwy ,
fiwp=Eg +fiwoy ,
fiwg =

:~r].+hVBF2 |Bj><F|e—-lk
j

In the limited Hilbert space which is spanned by the set |I), | F), { |B;)}, the Hamiltonian may be written in the

—

—ik-

ix r’+ﬁVB,2 | BT ™ T

J+hz 2 W, | B;)(By| , (2.10)
J#J

(2.11)

(2.12)

(2.13)

(E; and E, being the ground-state and singly excited-state energies of the cluster of noninteracting atoms), and where
Vig="Vp; and Vip="Vpe are matrix elements of the atom—radiation-field coupling. The Hamiltonian (2.10) also in-
cludes interatomic coupling which we have modeled for simplicity as a term which only couples between the singly ex-
cited states of the system (coupling elements W ;) and thus causes transfer of excitation between the atoms.

The corresponding density operator is

p=pu | I)XI| +prr | F)(F| +2ij|j><j| +2(P1j | 1)<Bj| +pj | B;){I|)

+2(pFllF)<le+p]FlB YF|)+pp | F)I| +p1F|I><FI+22p,, lB )(B | .

Note that we use pj; as a shorthand notation for p;, B etc.
The equation of motion for the density operator

p= -—;2—[11, Pl (2.15)
yields equations for the evolution of the matrix elements
Pmn- These are simplified by disregarding terms which
lead to higher than lowest order (in ¥) contributions to the
absorption and scattering processes. Furthermore, these
equations are supplemented by adding terms describing re-
laxation (T';) and dephasing (T',) processes. The resulting
equations of motion are as follows:

pur=—21Im |V 3 pje B rjl (2.16a)
J
prr=—21Im |Vgr 3 prje —i¥ ,] (2.16b)
j
. i?- T
pjj= —2Im(Vigpyre =~ /)
+i 3 Wyipjy—Wigpy)) =¥y » (2.16c)
]"j#f
. . . iX¥;
p1j= —iwpprj+iVigpre
+i 3 Wyipry—1(T+n)py; (2.16d)
7

(2.14)
j
i
I
. . T T,
Prj= —iwpppr;+iVipprre —iVrp 3 pjje
<
+2 ey —1(C+npg; (2.16¢)
i
. . , iK"T,
Prr=—iopprr —iVip ZPjIe' r’—"7PF1 , (2.16f)
J
. . —iKT . iK-T,
pyi=—iVare  py+iVige " py
Wiitpii—pyj)
+i 2 (VVJUP”I Jllplll) pr’f
J1
J1#id'
G'#j) .  (2.16g)

In these equations y is the (T;) relaxation rate of the
excited atomic level (which includes, in principle, radiative
and nonradiative contributions) and I'=y +« is the sum
of T (relaxation) and T, (dephasing) rates associated with
the atomic states (the dephasing rate associated with the
excited atomic states is denoted by «; that associated with
the ground state is denoted by 77). We note again that in
obtaining Egs. (2.16) from (2.10), (2.14), and (2.15) we
have neglected terms that lead to contributions of higher
order in the cluster—radiation-field coupling.

Equations (2.16) provide an alternative to Egs. (2.6) as a
starting point for our problems. Note that Egs. (2.6) are
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written with the assumption that the cluster is much
smaller than the radiation wavelength [so that no phase

factors of the form exp(iﬁ-f’j) appear], while Egs. (2.16)
are not limited in this way. In the following sections we
shall use both approaches in discussing different aspects
of our problem.

III. THE MEAN DIELECTRIC FUNCTION

A. Effect of dephasing

Starting from Eq. (2.6) as a near-resonance approxima-
tion to Eq. (2.1), we calculate the average of the total di-

pole induced in our system by the field Eex. This is
<ﬁtot(t>>=<zﬁj(t)>E%P :
J

where 7~ is the volume and P the averaged polarization.
Rewrite Eq. (2.6) in the form

i+[A+i®n]E=FE@) .

(3.1

(3.2)

Here and below we use arrows (—, <) to indicate vectors
or tensors in the three-dimensional coordinate space. Sin-
gle underlines denote vectors and double underlines denote
matrices in the atoms space. A is a constant matrix of di-

mension 3N X 3N given by

A= iw+% T— LiopaM (3.3
with i being the 3N X3N unit matrix and & a 3N-

dimensional matrix constructed from the M;;- diadics

- ﬁu 0 23
M=, o - (3.4)
Mi; M; O
Also in Eq. (3.2), i(t) is the diagonal matrix
@1
0
()= D,()1 , (3.5)
0
Oy ()
and i (¢) and E (¢) are the column vectors defined by
wi(t)
(1)
E(t)= . (3.6)
,[[N(t)

and
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E()=Ytagwee " Eelo) |: | . 3.7)
1

With this notation we can formally solve Eq. (3.2) for g,
average the solution over the random process &, and look
for the equations of motion satisfied by the resulting (i ).
This procedure is described in the Appendix. The result-
ing equation is

i— %ia)oaoﬁ (g)= E(t), (3.8

— . r
(B)+ | lo+

where I'=y +«. Comparing this to our starting point,
Eq. (3.2), we see that as long as we are interested only in
the average dipole induced in the system, we may consider
the dephasing process as inducing an additional damping
rate. This result is well known for a single oscillator or a
two-level system and was generalized here for a system of
interacting atoms.

B. Effect of clustering
Having taken care of the dephasing effects, we now
consider spatial fluctuations. In what follows we start
from Eq. (2.1) with I'=y +« replacing y. The amplitude
of the dipole satisfies

N «>

i (0)=al0) |Ex@)+ 3 M) |, (3.9)
~
i

where
2
Qa
alw) = ——a0 (3.10)

0 —o*—iol

As discussed in the Introduction, clustering of atoms is
expected to have a strong effect on the dielectric response
near resonance. This cannot be seen in the Clausius-
Mossotti level of treatment. We therefore consider a den-
sity (virial) expansion of the induced dipole moment using
a procedure developed by van Kranendonk.!° The total di-
pole [T, (T}, . . ., Ty) induced in the N-atom system may
be written as a sum of reduced dipoles D r,...,T;)in
the form [using the notation (T}, ..., Ty)—(1,...,N),
etc.]

Bl ..., N)=[D(1)+ - -+ +D(N)]
+[D(1,2)+D(1,3)+ - - - +D(N —1,N)]

+ - +D(L,...,N), (3.11)

where!©
D(1)=iZ (1), (3.12a)
D(1,2)= & 1,2) — Froel 1) — Feex(2) (3.12b)

]3( 1,2,3)= @i(1,2,3) — @ior(1,2) — f11(1,3)

_ﬁtot(2’3)+ﬁtot( 1 )+ﬁtot(2)+ﬁtot(3) ’
(3.12¢)
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and so on. A D function of any order depends only on
o functions of this and lower orders. Any D function
of two or more atoms vanishes if any of the coordinates is
brought to infinity.

Using Eq. (3.9) for systems of one and two atoms, we
get

Eiol 1) =a(0)Eqylo) (3.13)
and
Lir(1,2)=2a T
Bt 1, lra/r
43 g B (3.14)
r} (1+a/r*)1—2a/r%
whence [using Eq. (3.12b)]
= 220 1 < 340 =
D(1,2)="F ——— |- T4+ —— [‘E .
) r® 1+a/r? { 1—2a/r3 *
o ' (3.15)
The polarization
— 1 ,o
P=— (oL .., N))
1 ~
=7ff(l,...,N),um(l,...,N)
XdTy,...,dTy (3.16)

[where f(1,...,N) is the N-body distribution for the N-
atom cluster] may be expanded in terms of the D func-
tions using Egs. (3.12). We get

| D T,

P=o ‘N [ roDar,
+LVLN7:Q [ £(1,2)B(1,2)d7d
+E(_N_—_18)_(£:2 J £(1,2,3)B(1,2,3)

Xd?ﬂi?zd?:; T

(3.17)
Equations (3.17) and (3.15) now lead to

R=nal+ YV=U 1 e 1F 1,047+ -
27"
(3.18)
J
K,=na [1+8%7 |,
41
1 (1—22)172 2ur 1 (1-23)172
Jw=—“ fO le fO dr1 fO d¢ f_leZ fO
7 /(r)? 3
I,=—grp)——— |-14+4—5C, |,
v i 1+a/r%2 1—2a/r?2 v

(212/r12)2, w=z

C, =
= (212 /r12)*], w=x
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where f(2 1) is the conditional probability distribution to
find an atom at T, given that another atom occupies the
position T;, and where

202/ [ - 3
- I+———a4

T(1,2)= — 3.19
14+a/r 1—2a/r3 (3.19)

We note that the first term in 0, implied by (3.18) is just
naE.(n=N/7") and is independent of any characteristic
of the cluster. The highest-order terms depend in general
on the cluster size and shape. In what follows we consider
in some detail the second-order contribution.

Focusing first on the case of an infinite uniform and
isotropic system, we get from Egs. (3.18) and (3.19)

K=T

na+8m(na)a
X fom drg(r)[r*l+a/r3)(1=2a/r3)]!

+0((na)?), (3.20)
where g(r) is the pair correlation function. For the partic-

ular case of hard-sphere interactions [g(r)=0 for
r <2ro, g(r)=1 for r > 2ry], (3.20) leads to
3
- - ro+a
R=nal [1+ 2 nain o | 1 0((na) . (3.21)
9 ro—a

Having found R, the dielectric tensor may be evaluated
from (1.11). For an infinite isotropic medium we use the
Clausius-Mossotti procedure [choosing T= {f in (1.1D)] to
get

e—1 4rm

e+2 3
This leads to a density (“virial”) expansion of the dielec-
tric function. Equation (3.21), if further expanded for
small a/rj, results in the conventional!! virial expansion
for e.

Returning now to Egs. (3.18) and (3.19) we consider the
case of a spheroidal cluster. Choosing a system of coordi-
nates such that the symmetry axis of the spheroid is in the
z direction and taking the length of the symmetry axis and
the normal axis to be 2a and 2b, respectively, we obtain

(3.22)

K, 0
K=| Kk , (3.23)

0 K,

where (for w=x,z)

(3.24a)
dr2(71r21w) , (324b)
(3.24¢)
(3.24d)
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and where
zp=alz;—23), (3.25a)
ria=[b2r}+ri—2rrycosp)+z3,1'%, (3.25b)
and
7="Tap?. (3.26)

For a sphere of finite volume the integral in Eq. (3.24b)
may be reduced further. For this case we get

K=na(l1+9naJ), (3.27a)
1 1+r
I= [ ar [ dyrye@)Fi(0FG),  (3.27b)
. 1—(r—y)?
Fi(y)=min [——_Zry , 2] , (3.27¢)
Fay=2- [a/tay ) (3.27d)
[14+a/(apP][1—2a/(ay)}]

with "= (41/3)a?, a being the sphere radius.

To demonstrate the dependence of the dielectric
response on the cluster size and on the statistics of the
atom distribution we show in Figs. 1—4 the functions
k(w) [which is proportional to the absorption profile per
unit volume; cf. Eq. (1.12)] and Ree(w) obtained from Eq.
(3.22). These are shown for spheres of different radii and
a given density of atoms. The model (3.2) was used for
the polarizability and the density was chosen so that
n|a| <0.1 at the peak value of |a|. These results are
obtained by numerically integrating Egs. (3.27). In Figs. 1
and 2 hard-sphere interactions were taken (with hard-
sphere radius ry). In Figs. 3 and 4 we used

80 T T T

0 1 !
-1.5 -0.75 0.0
(w-wo)/T
FIG. 1. ImK(w) as a function of frequency. Solid line: the
Clausius-Mossotti approximation (K =na). Dashed line: the in-
finite medium result, Eq. (3.33). Dotted line: sphere of radius
150 A. Dotted-dashed line: sphere of radius 15 A. The density
n is 125)(10‘ A-3 , and the molecular parameters used are
@o=2.0 A3, I'=0.033w,, and ro=3 A. The ordinate has been

multiplied by 10°.
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0.4

0.2

0.0

Re (e-1)

-0.2

-0.4

I I
-1.5 -0.75 0.0
(w‘wo)/r

FIG. 2. Re[e(w)—1] as a function of frequency for the cases
considered in Fig. 1. Notation is the same as in Fig. 1.

g(r)=exp[ —v(r)/kT] (3.28)
with
0, ¥<Frp
o(r)= 12 6 (3.29)
4D{ < _'f_} , T>rg
r r
80 T T T
"
o
<
E
fo) L | I
1.5 -0.75 0.0 0.75 1.5
(U'wo)/r‘

FIG. 3. Same as Fig. 1 with attractive intramolecular interac-
tion. The Ar-Ar interaction parameters D=145 K and 0=3.8
A were used in Eq. (3.41). Other parameters and the line nota-
tion are the same as in Fig. 1. The temperature is 100 K.
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FIG. 4. Same as Fig. 2 with the parameters of Fig. 3.

We see from these results that the size of the cluster
and the statistical distribution of molecules in the cluster
are factors affecting the optical response and other dielec-
tric properties of the cluster. These effects, which become
considerable near resonance, are disregarded if one uses
the bulk Clausius-Mossotti expression for the dielectric
function. Several other points concerning these results
should be made:

(a) The broadening of the resonance peak (relative to the
Clausius-Mossotti value) results, as discussed above, from
clustering together of several molecules. This broadening
effect is observed also in numerical simulations of random
distributions of interacting polarizable particles.!? Tt is
also related to the (configuration-dependent) splitting of
resonance lines obtained in the calculated dielectric
response of clusters of interacting polarizable particles.'?

(b) The double-peak nature of the results displayed in
Figs. 1 and 3 results from the fact that, to order (na)?
considered here, pair formation is the dominant form of
atom clustering. The more pronounced splitting in Fig. 3
corresponds to higher pair density obtained under the ef-
fect of attractive interaction between the atoms.

(c) The dielectric response of small clusters is expected
to depend also on the cluster shape (as indeed observed by
the dependence on configuration of the results of Ref. 13).
However, an integration of Eq. (3.24b), which should
show this effect, is prohibitively expensive.

(d) As mentioned above and as seen from the structure
of Egs. (3.21), (3.24a), and (3.27a), these results constitute
a virial expansion for the response function K, with the
Clausius-Mossotti result constituting the zero-order ap-
proximation. This expansion breaks down for n |a| too
large. For this reason we had to limit ourselves to rela-
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tively low densities in the calculations of Figs. 1—4.
These results should be viewed as demonstrations of the
effects discussed above which undoubtedly become more
pronounced at higher densities.

IV. LIGHT SCATTERING

Light scattering by small dielectric particles is usually
discussed using the theory of Mie.!* The input for this
theory is the dielectric function € of the material making
the cluster. As noted in Sec. I, when discussing small
clusters in terms of the optical properties of their constitu-
ent atoms it is more convenient to use other response
functions, the choice of which depends on the observable
under study. (K(w)), the polarizability per unit volume,
averaged over spatial disorder and over rapid temporal
phase fluctuations, is directly related to the absorption by
an ensemble of independent clusters. The corresponding
(elw)) may also be used, provided one keeps in mind that
it depends on cluster size and shape. In discussing light
scattering in the presence of dephasing, we avoid the
dielectric function concept and instead proceed in calcu-
lating directly the scattering cross section.

One way to proceed is as follows. Start from Eq.(A1):

t > —
Eo=[__d'Lu,r)Ew), “.1)
Le,e)=Tn-T -1, 4.2)

where F and E_ are defined in Sec. III and in the Appen-
dix. The total instantaneous dipole induced in the system
is

lz)tot(t):‘z.‘fj(t) . (4.3)
j

The total steady-state power radiated at frequency o’ is

given by the classical formula

_1 )

) ,
12 =220 g |2, “4)
4

where

fal@)=5 [ dte . @.5)
Thus to calculate the scattered power or the scattering
cross section (=Iy/[(c/87)|E |%]) for the model (2.6)
we must evaluate { | @(@’)| %), the average taken over
all temporal and spatial randomness. From Eq. (4.1) we
see that the response function of interest is

(Lt =(@H 1) Tl TOT 1) .
(4.6)

The average in (4.6) may be evaluated using the time-
ordering and cumulant expansion technique described in
the Appendix. We have succeeded in carrying out this
procedure for a dilute system where the dipole-dipole in-
teraction is neglected. Rather than providing the (rather
involved) details of this method, we proceed in a different
but equivalent route based on the quantum-mechanical ap-
proach, Eq. (2.16). For noninteracting atoms the latter
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route results in an expression for the scattering cross sec-
tion [Eq. (4.9)] identical to that obtained from the classi-
cal approach. The quantum-mechanical approach may
also be carried out for a particular model of interacting
atoms.

Consider first the case of noninteracting atoms, setting
W;=0 for all j,j' in Eqgs. (2.16). Consider further a
steady-state situation in which Eqgs. (2.16a) and (2.16b) are
supplemented by pumping and escape terms

kT (4.7a)

pu=—2Im + (P11 )pump >

Ver 2 prje
J

R (4.7b)

f.)FF =—2Im - (/.JFF Jout -

Ver 2 PFj€ N
J

The term (py;)pump Tepresents the rate of pumping due to
the incident field, while (ppr)ou; represents the escape of
the scattered photons. At steady state (SS) all the ele-
ments of p are zero, and the scattered intensity (with wave
vector k') is proportional to (ppr oy given by

. iK'
(PFF)out,ss= —2Im ' (4.8)

Ver 3 prie
J

This must be evaluated in terms of py;. Setting the left-
hand side (lhs) of Egs. (2.16c)—(2.16g) to zero and solving
the resulting set of algebraic equations, taking also for
simplicity 7—0 (no dephasing in the ground state), we ob-
tain
o o 20 V12 Vi 2

FF /out,SS w%B+(%I_\)2

2

Y ik
% 6(601:'1) ze—l(Ak) J
j=1
r/2 r—
+N—; /Tr 2 14 pr, (49
aJpB+(*2‘F) Y
where
Ak=k'—Kk . (4.10)

When dipole-dipole interactions are present, the
mathematical problem represented by (2.16) becomes
much more difficult. A simple solution may be still ob-
tained at the cost of choosing a very simple model for the
interactions Vj;. If, rather than taking the dipolar cou-

pling matrix elements we invoke the model
V=V independent of j and j’ (4.11)

we obtain, for the small cluster case (where Ak ‘T =0 for
all j) the result '
| Vig || Vis |

(prr) =2
PFF Jout,ss 513+(%F)2

X | N+ N—TL2 L= |,

B+ (2?2 v
(4.12)
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where
op=op—VIIN-1),

EFB =C()FB—V(N—1) ) (4.13)

which is identical to (4.9) in this small-cluster limit with
the only exception being the shifted frequencies. Equation
(4.12) is obtained from (2.16) (under steady-state condi-
tions, p=0) by replacing all the phase factors exp(iK-F)
by unity, and by evaluating first the auxiliary quantities
2;pry 2Py Zjpyand 3,3 . pjy.

Several points regarding the results (4.9) and (4.12) are
in order.

(a) For a single atom (N =1) we obtain

IVIBIZIVFB,Z
g8 1"r 1

i+ (2T

r/2 —
X 8(wp1)+ 5 /T ) I Y
wpp+(5T) Y

(PFFout,ss= 2

pir »

(4.14)

which is familiar in the theory of thermal redistribution
effects in resonance light scattering.!® Note that as seen in
Sec. II, I' —y =k is identical to the dephasing rate defined
in Sec. III, and that w;p =wo—, ©pp =wo—w’, where wq
is the atomic resonance frequency and w,w’ are the in-
cident and scattered frequencies. Also note that ¥,z and
Vip are products of atomic and radiation field matrix ele-
ments.

(b) In the absence of dephasing (I'=v) we obtain the
familiar'® expression proportional to the factor
| 3, expli AK"T;)|2% For a cluster small relative to the
radiation wavelength we may take AE'T}ZO for all 7,
and we get a factor of N2 For a larger isotropic system
with a random distribution of atoms we get

<

where g () is the pair correlation function.

(c) In the small-cluster limit we may get a more trans-
parent form of Eq. (4.9) by making the following
corrle7spondence between quantum and classical quanti-
ties:

2
V=122 [ are=¥Tgn, w1

zem?-?j

J

4
2 Qg W
| Ves | 'pleo)e<— o (4.162)

2
fioopr | Vip | =g | Eal@) 2, (4.16b)
where p(wg) in Eq. (4.16a) is the density of photons states
(per unit frequency) at the frequency w, (while py; is an
element of the density matrix). Multiplying Eq. (4.9) by
#iw'p(w’) (to get the energy outflow per unit time and per
unit frequency range) and dividing by the incident energy
flux (c/8m)|E(w)|? we get an expression for the
scattering cross section per unit frequency range of the
N-atom cluster



29 RESONANCE OPTICAL RESPONSE OF SMALL DIELECTRIC CLUSTERS
daﬁﬂ” 87 @o 2
do =3 o |

/27 r—y
(@' —wo)*+ (3T ¥

X |8lw—w')N*+

(4.17)
where [see Eq. (2.3)]
%" Ao

iwg—)+(+T)?

alw)= (4.18)

To get (4.17) we have also used wp=0—w) orp
=w'—wgy, and op=0'—w, where » and ' are the in-
cident and scattered frequencies.

If, in (4.17), we put N=1 and I'=y and integrate over
o', we get the scattering cross section of a single atom in
the absence of dephasing
4

lal@)|?. 4.19)

o'!(no dephasing)= Lo lﬂ
3 c
This is indeed the familiar classical result.'®
(d) Equations (4.9), (4.12), or (4.17) gives the light
scattering by the cluster as a sum of two terms: a coherent
term, proportional to N 2 in the small-cluster limit, and an
incoherent term proportional to N. The latter is also
characterized by a redistributed final photon energy: En-
ergy conservation w =¢’ is not strictly obeyed but only ap-
proximately within the uncertainty of the resonance
width. This incoherent term may be identified with reso-
nance fluorescence by the cluster atoms. In order to esti-
mate the relative contribution of the coherent and in-
coherent contributions consider the integrated cross sec-
tions. Equation (4.17) yields

Tinh Ny NT; @20
oM T TTT, '
sc,incoh 1

where k=I"—7v is the dephasing rate, while 7'y and T, are
the population relaxation time and the (proper) dephasing
time of the atom. In condensed phases T,/T,
~1073-107* so that incoherent response is predicted to
dominate for clusters made of less than ~ 1000 atoms (or
molecules). In clusters containing more than 10* atoms
coherent response will dominate unless the cluster size is
larger than the radiation wavelength. In the latter case
the factor N2 is replaced by (4.15), which is proportional
to N unless g(r) is long ranged (relative to the cluster size).
Incoherent response will usually dominate in such large
clusters unless for ordered lattices Ak is equal to a
reciprocal-lattice vector.

(e) The result (4.12) shows that Eq. (4.19) is valid also in
the presence of long-range interatomic coupling. We find
this surprising since we have intuitively expected that
stronger interatomic coupling should imply increase of the
coherent relative to the incoherent response. In view of
this result, it seems worthwhile to study this question fur-
ther in order to elucidate the effect of particle-particle in-
teraction on the yield of coherent versus noncoherent
response. It is possible that this behavior results from the
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special model of interaction used and more realistic
models should be investigated.

(f) It is of interest to speculate on the effect that parti-
cles of the kind studied in this paper may have on the op-
tical properties of molecules adsorbed on their surface. It
should be noted that an important contribution to surface
enhanced Raman scattering? (SERS) is the interaction of
the molecule with resonance excitations in the substrate
surface. While practically all SERS phenomena so far
have been observed on metal surfaces and particles, molec-
ular clusters of the kind discussed here!® may be prepared
in supersonic beams. Alternatively, small polymer parti-
cles with embedded dye molecules may be used.?’ The re-
sults of this section indicate that in order for SERS (and
other enhanced optical processes) to be observed for mole-
cules absorbed on molecular clusters, the coherent contri-
bution in (4.17) has to be dominant. This part of the
response is associated with the formation of a coherent gi-
ant dipole on the cluster, which is the source of the elec-
tromagnetic mechanism of surface enhanced electromag-
netic processes.

V. CONCLUSIONS

Many physical properties of small clusters are known to
be different from the corresponding properties of bulk
materials. In this paper we have investigated two aspects
related to the resonance optical response of small molecu-
lar clusters. We have seen that resonance absorption and
light scattering, which are sensitive both in the bulk and
in finite clusters to the nature of the molecular distribu-
tion within the medium, show a marked dependence on
the cluster size and shape. This dependence becomes
smaller further from resonance. We have also seen that
the relative yield of coherent (Rayleigh and Raman) versus
noncoherent responses of a cluster made of noninteracting
molecules strongly depends on the cluster size. We were
surprised to find that a simple model which takes inter-
molecular interaction into account gives a result for the
coherent relative to the noncoherent yields which does not
depend on the intermolecular interaction and have con-
cluded that his point deserves further study.

Even though our model uses two-level atoms or mole-
cules, it is expected to be realistic also for clusters of
larger molecules. This results from our focusing on near-
resonance situations. The main new feature that should
be taken into account for such cases is the fact that the in-
cident and scattered or emitted radiation may be in dif-
ferent spectral regions. Another point that may influence
the optical properties of clusters of larger molecules is the
possible effect of molecular clustering on the radiationless
damping of molecular electronic energy due to transfer to
low-frequency vibrations (cluster phonons). Cluster-size
dependence of this effect is expected to occur mainly for
small size (N < 100) clusters.

Surface enhanced electromagnetic processes involving
molecules absorbed on molecular particles may be ob-
served when the incident radiation is close to resonance
with the dipolar excitation of the particle and when the
coherent response is dominant.
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APPENDIX

The formal solution to Eq. (3.2) is
t > - -
En= [ aBo-T ') Ee),

(A1)

where E(t) may be expressed as the time-ordered exponen-
tial®!

U()=Texp [— fiw[l+i§(f’)]dt' . (A2)

The time-ordering operator T implies that all operators on
its right should be ordered so that later time appears to

the left. Averaging over the random process é we get

@)= [ ar@e,Ew), (A3)

|
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where the kernel (Z(t,t’)) is defined by

— [ anE+i®ie,)]

(L(l‘,t'))E(Texp

t > >

+ 1 dn[R+id)] ]) . (A4
The time-ordering prescription denoted symbolically by T
is as follows: When the exponent is expanded we get
products of integrals involving ¢, ti, ¢{,..., etc. orig-
inating from the ¢, integral, and integrals involving
ty,t5,t5,... originating from the ¢, integral in (A4).
Those integrals involving the ¢; labels always stand to the
left of those involving ¢, labels. The ¢; labels themselves
are ordered so that leftward-standing labels depict later
times. The 7, labels are ordered so that rightward-
standing labels depict later times.

By employing this ordering technique it is possible to
apply the cumulant expansion method?’ to affect the
averaging in Eq. (A4). Since by our assumption [Eq. (2.5)]
@(t) is a diagonal matrix whose elements are Gaussian
random variables, only the first two cumulants are non-
vanishing. Thus we find

(Leen=Texp [~Reu—e)—+ [* an [* ary@enBey—+ [*_an, [ ars (@i 305))

+ f_tmdt, f_t’wdtz(i(tl)'é(tg))].

With the use of Eq. (2.5) all averages in (AS5) result in a
scalar multiplying a unit matrix. At this stage the pres-
ence of T is of no consequence. We get

(Z(t,t') ) =exp[ —Z(z —t')— %K(t——t’ji] .
With the use of Egs. (3.3) and (A3) this leads to

(A6)

(A5)
I
(B(0)=[ilop—o+ +iTN— tiawM]~'E(), (A7)
where we have defined the full width I as

(A8)

I'=y+«k.
k may now be identified as the dephasing rate. Equation
(A7) is equivalent to Eq. (3.8).
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