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The transition rates associated with a particle moving in a double potential well under the
influence of thermal noise and friction is considered as a generalization of Kramers’ theory of
activated rate processes. We obtain expressions for these transition rates which are valid for all
friction and for a general {non-Markovian) interaction between the particle and its thermal
environment. Nonthermal equilibrium effects in the steady state distribution in the well as well as
effects of trajectories returning unrelaxed from the far wall are explicitly taken into account. The
results reduce to all the previously obtained results of the single well model. We use the theory to
analyze the experimental results of Hasha, Eguchi, and Jonas.

1. INTRODUCTION

In a recent series of papers” we have extended
Kramers’ theory of activated rate® processes in two impor-
tant directions: First'? the low friction limit {where the the-
ory gives a rate proportional to the friction coefficient) was
extended to include non-Markovian effects (similar general-
1zations of the intermediate and high viscosity cases were
provided by others).** Secondly,’ 2 method was developed
for calculating the steady state rate in the whole friction
range, yielding an expression for the rate that reduces to all
the Kramers results as well as to their non-Markovian coun-
terparts in the appropriate limits. This general result was
obtained for the Kramers (single well) model. In this paper
we use the same method to obtain the steady state rates asso-
ciated with a double well model (Fig. 1) associated with sim-
ple isomerization processes. Our results are valid for Marko-
vian as well as for non-Markovian processes.

Several workers have discnssed in recent years the dou-
ble well model for chemical isomerization processes.>'’ It
has long been realized ®7 that the rate of escape out of a
potential well associated with a2 double well model should be
different from that in a single well case because some escap-
ing trajectories may return to their original well after colli-
sion with the far wall. This is particularly important for low
friction situations; in the high friction limit a trajectory may
be safely assumed to relax after crossing the potential barrier
before it can return to its original well. Most of the previous
studies are restricted to the high friction (diffusion) limit.
Others are limited by the use of Markovian dynamics and by
the assumption of fast thermal relaxation in the reactant
well. The present work removes these restrictions.

There has been in recent years a substantial amount of
experimental work on the dependence of the rates of chemi-
cal isomerization processes in liquids on the solvent viscos-
ity.'*~'> The present results provide a convenient framework
for discussing these experimental results even though the
model is obviously oversimplified.

In Sec. II the model is defined and our notation is intro-
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duced. The steady state rate is evaluated in the Markovian
limit in Sec. III and in the non-Markovian case in Sec. IV.
Our results are discussed in relation to other theoretical
works and to the experimental observations in Sec. V.

Il. THE MODEL

Our starting point is the generahzed Langevin equation

1dVix) f ! o 1
praren ode(t r}x(r)+MR(t), (1)
(R(t) =0; (R(t)R (1)) = MKTZ(t, — t,), (2)
where x is the coordinate of a particle of mass M movingin a
potential ¥ (x) under the influence of a thermal force R relat-
ed to the friction kernel Z by the fluctuation dissipation
theorem (2). k is the Boltzmann constant and T the tempera-
ture. In the Markovian limit Egs. (1) and (2) become

. Ldviy) ., 1

X —Fl—_dx vx 4+ MR {t), {3)
R) =0, (R(H)R(L)) = 2yMkTS(t, — 1)), (4)
= F dtZit). 5)

The potential ¥ (x) is displayed in Fig. 1 and is characterized
by the barrier energies Ep, and Egzp with AE = Eg; — Epy
and by the frequencies characterizing the second derivatives

Xir YR Xg

FIG. 1. A schematic representation of the potential used in the present
study.
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of ¥ (x) at the barrier top (@) and at the bottom of the wells
(@or » wor)-'® The indices L and R denote left and right well,
respectively.

In what follows we shall use Fokker—-Planck equations
equivalent to the Langevin equations (1)+4). In the Marko-
vian limit Eqgs. (3) and (4) are equivalent to

dP 1 dV P ili [kT &FrP 9

o Maraw ‘o Nuwarta ‘"”] (©)

where P (x,v,t ) is the probability distribution for the position
x and velocity v = x of the particle. We shall assume that the
wells associated with the potential ¥V(x) are deep
(Eggs Eg; »kT) and that far below the barrier top on each
side the low friction condition ¥ € (e is the local frequency)
is satisfied. In this case the distribution P satisfies

Pylxnt) = % Pyt )

where P, (J,t ) is the distribution function for the action vari-
able J in the well under discussion. The index W (well) de-
notes that Eq. (7) is valid only deep in the well (the indices L
and R will replace W below to denote the left or right wells).
P (J,t) satisfies the Smulochowski-type equation

Py 4 [ J ( 3

—= kT —+ oJ )P ] 8

a =V arlog\Tar TV )Pw ®

No general result similar to Eq. (6) is available in the
non-Markovian case. However near the barrier top, where
the potential may be approximated as

M

Vix)=Eg — 'i‘wsx )
{(measured from the bottom of the left well) the following
generalized Fokker—Planck equation for P (x,v,t ) holds®'’

P — P OGP  -[kTPP 3 ]
o _ o et KoL, 9wp
at 9% o o T T )
— 2
+i‘1( “ —1)‘“’, (10)
M\ o} dvdx

where 7 and w? are functions of time defined by

)= — &

)=~ — o) (11)
w3lt)= —O@/P() (12)
o) =pi)1+0} [ drot] —wh ot 13
() = w3 L plt olt) — 1)), (14)
plt) = L ~'[S? ~ w} +5Z, - iS)], (15)
Z(—is)= r dte—SZ(t). (16)

£~ is the inverse Laplace transform. ¥ and @3 re-
duce to the time independent y and w3, and Eq. (10) becomes
identical to Eq. (6) in the Markovian limit.

The non-Markovian equivalent of Eq. (8) is'

oo sfufrgewle

3597
where
e)=2M 3 n|X,)? Re(Z, [0l)))}, (18)
Z, (@) = fw dte="'Z (1), (19)
0

and where X, are the coefficients of the Fourier expansion of
the deterministic well motion

x=x(L,p)= Y X,(J)" (20)
(g is the angle variable). In the Markovian limit e(J ) — yJ /
o(J) and Eq. (17) reduces to Eq. (8)."

Equation (17) is still assumed to be valid deep in the well
where P (J,t ) satisfies Eq. (7). As seen below, our results hold
also if the range of validity of Egs. (7), (8), or (17} shrinks to
zero.

The situation of interest for the present work is as fol-
lows: At time ¢ = O the particles occupy one (say the left for
definiteness) well and the process starts. After some incuba-
tion period we get a quasi-steady-state situation, character-
ized by an almost constant net flux of particles from left to
right. The condition E;3 kT insures the time scale separa-
tion necessary for the steady state concept to be meaningful.

Itis mathematically convenient, and of no physical con-
sequence, to make the steady state situation precise by im-
posing particle sources/sinks near the bottom of the wells.
Their function is the same on both sides: to keep fixed total
numbers of particles below certain energies E,; and E,, in
the left and right wells. The extreme case described above
corresponds to an absorbing boundary at £z and to a source
keeping a Boltzmann distribution with a constant total num-
ber of particles below E,,. This constant number corre-
sponds to the equilibrium population that would have exist-
ed in the absence of the barrier crossing process. These
mathematical boundaries just make precise a situation
which prevails to an excellent approximation also in their
absence. It is intuitively clear and will be indeed seen that the
final result for the rate should not depend on the exact values
of E,; and E, aslong as they are located close enough to the
bottoms.'®

lll. STEADY STATE SOLUTION IN THE MARKOVIAN
CASE

Asin previous work? we first write separately the steady
state solutions near the barrier top and in the wells and then
combine them together in a way which satisfies essential
continuity requirement.

A. Solution in the wells

The boundary conditions implied by the presence of
source/sink near the well bottoms are expressed by

P.(J)=Ao, exp[ —E,(JV/KT], 0<J<J,, (21)
Pr(J)=Aog exp[ — Ex()V/kT ], O<JI<Jor, (22)

where P, (J) and P (J ) correspond to the left and right wells,
respectively, Ey (J) (W =L, R) are the energies measured
from the bottom of the corresponding wells [note that E,
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may be a different function of J than Ej is; generally

Eyl)= Jddf'ww(J')

and the functions w(J) are in principle different in the two
wells). J,, and J,; are the actions associated with the ener-
gies E; and E,; defined in the previous section.

Between Ej and some E|( > E;) we assume that Eq. (8) is
valid. A general steady-state solution is

E {J
PW<J)=AWexp[— :‘T)
J [ ’
WL ould) [EWU) ]
Xi{B f daJ’ s
[ vt y v’ c*p kT

Jow IS (23)

with W= L, R. The requirement that P, (J,) is the same
when calculated from Eq. (21) or (23) implies that

W J

Ao =AW[BW + f a7 2wV

Jow YJ

X exp[EW(J)/kT]] (W=L,R). (24)

The steady state currents associated with the distribu-
tions P, {J} and Pr{J) are obtained from

J d
i = — kT -2 J]P J), 25
Jw VwW(J)[ L rouu)ean 0
which yield
juw=A kT . (26)

Note that Eq. (25) gives the probability current in the direc-
tion of increasing J. The actual directions of j, and j, are
determined by the signs of 4, and 4. Also note that the role
of the source/sink agents at J,; and J,, is to absorb these
currents so that no currents exist below J,, and J,; in the
corresponding wells as indeed implied by Eqs. (21) and (22).

B. Solution near the barrier top

Here the Kramers procedure' may be followed leading
to the steady state distribution

Py(x,v)=F, exp[ — [% v+ V(x)]/kT}

v — Ha + 1)x 2

Mz

[ 1t o Z cxp 2kT
(27)

where

a=\TF(@s/77 —}. (28)

The current associated with Pg(x, v) is calculated from
Jjg = J= _ dvvPg(x,v). The result is

. kT)3/2 27 ( Ey )
= F,| — — . 29
Is 2( M at1 A\ T kT 29)

Note that a positive j, describes a current in the positive x
direction (from left to right). The actual direction depends on
the sign of F,.

The expressions obtained above for the probability dis-
tribution in different sections of the system are characterized
by eight parameters: A, , A, B, , Bg, F\, F,, Ey; , and E .

These are determined below so as to affect smooth transi-
tions between the different expressions.

C. Parameter determination

To determine the eight parameters listed above we ap-
ply the following continuity requirements?:

(a) Continuity of the distribution at the points
(EyL, v =0)and (E g, v =0). Using Eq. (7) this yields for the
left well

M

— P ) =PplXy,v=0) (30)
2

and similarly for the right well
M
— Prl/ir) = Pp(X g, v =0). (31)
27

In Eqs. (30) and (31) J, ;- and X, (W = L, R ) are related to
the energy E,, by

Eyy = fj'wwwu)df (32)

0
and

1 ’2(EBW_E1W)
Xy =+ — - . 33
= @g M (33)

In Eq. (33) the positive sign is for W = R and the negative for
W=L.

(b) Continuity of the derivatives (with respect to energy)
of the probability distribution taken with v =0 at E,; and
Eg:

a d
[8E B(x v )]Em/ [HE W( )]EIW ( )

Using Eqs. (32) and (33) this leads to

(2 rwee=o], (S,

_ aJ (35)
wpZM(Ey —E,;) (i)
and
ad ad
— | =—Pyx,v=0) — Pe(J)
[c?x ]Xu. _ [BJ ]Jm ) (36)

orir)

wpy2M(Epp — E\r)
(c) Equality of currents, namely
Js=JjL= —Jr> (37)
Egs. (30), (31), and (35)(37) provide six continuity con-
ditions. The rational behind them is discussed elsewhere.” In
addition the ratio
do= Aor@or (38)
Aor@or
is assumed to be given. This is the ratio between the popula-
tions of the left and right wells that is obtained if an infinite
barrier is imposed between them. '® To a good approximation
this remains the population ratio in the steady state estab-
lished after this barrier is removed to allow the beginning of
the process.
Since w,;, and @y, the frequencies at the bottom of the
potential wells, are known, a knowledge of g, gives with Eq.
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(24) an additional relation between 4,; , B,; , Az, and B 4.
The last necessary condition is normalization: the net rate r
is defined as the normalized current

r=j/N, (39)
where
N= J.w dv Jw dx P(x,v) (40)

and thus contains no free parameters.

Carrying out the procedure described above involves
calculations and approximations similar to those done in
previous work.? For the sake of completeness the essential
points are given in Appendix A. The final result is

r= 9. — 4 [7e +q.7% +1l$(§L +’§R)rK_,RlL | -, (41)
g, +1

where
g, =N /Ny (42)

is the steady-state population ratio (¥, and N are defined
by Eqgs. (A18) and (A19) and are given by Eqs. (A20) and
J

“w _dE E
TS e = B+ Runte — Eyess( - £

3599
(A21).

QL
, = eAE/kT ) 43
4 QR ( )

is the equilibrium population ratio {Q, and @, are the wells
partition functions defined in Eqgs. (A14) and (A15)]:

Tw 1 leJ @wl) exp[ EW(J)] Jde’
(1]

kT J,,, v kT
EW(JI)]
— W=LR 44
X exp[ T ( ) (44)

are the mean first passage times to reach J,,, starting from
Jow- given refiective barriers at J = 0 in the corresponding
right (W = R) or left (W = L ) wells,

(T 2d-2)

—| + w5 — = Jexp| — 45
2wy ( ( 2 ) P kT “3)
is the Kramers’ left to right rate for a single well model in the

intermediate to high friction range, and finally [with R,
defined by Eq. (A7)]

Yk RL =

kT

5y =

[t
exp| — —
o wwlE) kT

where 7(x) = 0 for x <0 and 7(x) = 1 for x > 0. The match-
ing point energies K, (W = L,R ) are obtained as the solu-
tions of Eq. (A9).

The rate r, Eq. (41) corresponds to the net flux (defined
to be positive for net flux going from left to right). The transi-
tion rates from the left to the right well (5, } and from the
right to left well (7, ) are obtained as the g, — « andg, — 0
limits, respectively,
rre =ng, — o) = [7, +g.72 +1(S, +SR)"I€R]L]—I(:" )

7

rir =rg, —0)= [LTL +72 +1(0S, +§R)rl€LlR]—l )
where 7, , » the right to left Kramers’ single well rate is ob-
tained from Eq. (45) by replacing w,; and E,; by o,z and
Epy in Eq. (45). Note that these rates satisfy the detailed
balance requirement

rir/Tre =4. - {49)
Also note that the total current /N, + N) may be written

[using Eqs. {41), (43), and (49)] as N, rx; — N, thus exhi-
biting the usual chemical kinetics behavior.

IV. STEADY STATE SOLUTION IN THE NON-
MARKOVIAN CASE

As discussed in previous works,> the steady state es-
cape rate associated with the non-Markovian model, Egs. (1)
and (2) may be derived in exact analogy to the Markovian
case using Eqgs. (10) and (17) (with dP /3t = Q) as starting
points for the corresponding barrier and well regions. The
formal forms of the results (41), (47), and (48} remain the

, (46)

|
same and the following changes enter in the definitions of the
parameters 7, (W =L, R)and rg g, :

(a) 7, and 7 are given by equations similar to Eq. {44)
with yJ /w (/) replaced by €, (/) [Eq. (18)]. Thus,

1 f"w dJ CXP[EW(J)

T —_—
Y kT s €qld) kT

XLJdJ’exp[—EZ;I)}. (50)

(b) The joining points E, - and the corresponding x,,
Jiw (W = L, R)are given by equations similar in form to Eq.
(A9), again with the replacement of ¥J /@ . (J) by €,/ ),

E;, —FE
exp(——E——B IW)
kT
E;, —E
_ [gEEw kT (51)
kT 6W(JIW)L')W(J1W)‘/;[E+ 1)
and with @ defined by
2
a=_%2 (52)
r:—e?
— ) — 2
r= —tim| 2% 4 (—”(')) + w%(t)] 2,
t— oo 2 2 w% (t)
(53)

where ¥{t) and w3 (¢) are defined by Egs. (11) and (12). It is
easy to show that @ reduces to a [Eq. (28)] in the Markovian
limit.
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(c) The Kramers rates 7, 5, and rx , » are given by equa-
tions similar to Egs. (A32) and (A36),

@WoL E,
_ oy ( _ ) , 54
Tk RL _— o €Xp kT (54a)
@WoR Egpp
= Ay e ( et ) , 54b
Tk,LR — o CXp! xT (54b)
Ao = lim [ [@ Ty - ] (55)

Ao may be calculated* as the largest (real and positive) root
of the equation
A%} 4 AZy(~id}=0, (56)

where Z, is defined by Eq. (19).

Equations (41), (47), and (48) with the parameters de-
fined above provide readily calculable expressions for the
rates associated with the non-Markovian double well prob-
lem.

V. DISCUSSION

For definiteness we focus our discussion on rg,, the
steady state transition rate from the left to the right well
given by

ree = {70 + 9.7 +1(S, +S rKRL]—l (57)
where 7, and 7, are given by Eq. (44) in the Markovian limit
and by Eq. (50} for the non-Markovian case, and are identi-
fied as the mean first passage times to reach E,,, starting
from E,,, (W = L, R)in the stochastic motion governed by
Eqgs. (8) (Markovian) or (17) (non-Markovian), given a reflect-
ing barrier at £ = Q; rx p; is given by Egs. (45) (Markovian)
or (54)—(56) (non-Markovian) and is the Kramers single well
escape rate; S, and Sy are parameters defined by Eq. (46).
The joining points energies E,; and E,; which appearinr,,
Tr, S, ,and Sy are determined by the continuity conditions
and are given by Eqgs. (A9) (Markovian) or (51) (non-Marko-
vian). In the Markovian case it is easy to show that the solu-
tions £, to these equations are monotonically decreasing
functions of the friction ¢ and that E,,,, — E,, for y —0
while E, ,, — 0 for ¥ — oo. The latter holds also in the non-
Markovian case [where ¥ is defined by Eq. (5)].

For large friction, ¥ — 0, 7, and 7, in Eq. (57) de-
crease (since E,, and E,; do). At the same time S, and S,
become unity so

rrRe —>rxre (¥ — o) (58)
This implies, as is intuitively expected, that for large friction
the double well nature of the potential surface does not affect
the escape rate: a trajectory which passes from left to right
will relax in the right well before bouncing off the far right
wall.

The situation is quite different in the low friction limit.
In this case E,x — Egg and E,; — E,,, thus S, S, —0
and

1
TL +q.TR
where 7, and 7, are given by Egs. (44) or (50) with E,,,
replacing E, ,,,. This result should be compared to the single

(39)

Yre —
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well result in this limit » — 77 *. The additional term, ¢, 75,
in the denominator of Eq. (59) represents the effect of the
back scattering of irajectories from the far wall by the pro-
duct well.

The following points should be made concerning these
results:

(a) Even though 7, and 7 appear to depend on the
(arbitrary) choice of E,, and E, [cf. Egs. (44) and (50)] there
is actually no dependence on these parameters provided that
E > E,y (W =L, R).Incases for which 7, and 75 are not
negligible in Eq. (57) relative to the 7 4, term, E,,;, is of the
order of Eg,,, thus E,,, should be of order kT or less. A
further discussion of this point is provided in Ref, 2.

{b) A common approximation to the mean first passage
times 7, and 7 to reach the points E,; and E| is given by
the Kramers’ expression®’

Ty o~ kT exp(El W) (Markovian) (60)

Dow 1w kT

or its non-Markovian analog
kT

Wow€wliwowld W)

Ty

E
X exp(ﬁ) (non-Markovian). {61)

It may be shown’* that the result (61) becomes identical to
result (60) for E, ;,/kT— . These results show again that
the choice of E,, is of no consequence and also provide quick
estimates for an approximate evaluation of r5, [Eq. (57)].

(c) The result (59) shows that under weak friction condi-
tions the double well nature of the potential has a consider-
able influence on the transition rate. This is due to collisions
of escaping trajectories with the far wall which causes them
to return to their original well. In fact, in the symmetric case
{(rL =7x, g, = 1) the rate (5%}is half of the value {r; ') asso-
ciated with the ¥ — O limit of the single well model. This
corresponds to a picture where an escaping trajectory goes
through a relatively long period of oscillations between the
two far walls and has equal (for the symmetric case) probabi-
lities of ending in either well.

Our results (59) and (57) give a simple expression of the
transition rate which includes the effect of this backscatter-
ing process and, more generally, accounts for the competi-
tion between the barrier dynamics which lead to transitions
from well to well and between the energy relaxation (and
accumulation) processes in the wells.

(d) The general expression (57) yields the correct single
well expression when we take Ez— oo (i.e., taking the bot-
tom energy of the right well to — c}. In this case ¢,— 0
while both Ep /kT and (Egg — E z)/kT become large, im-
plying R —1 and Sy —1 in Eq. (46). Thus we get

Y 7 +%(‘§L + l)rKRL]—l

which is the single well result for both the Markovian and
the non-Markovian cases.>?'

There are several previous works on the escape problem
within the double well model. Most of these focus on the
diffusion (high friction) limit. Of particular relevance to our
discussion are the works of Chandler®® and of Montgomery,
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Chandler, and Berne®® and the work of Northrup and
Hynes.” The numerical calculation of Montgomery, Chan-
dler, and Berne®® (based on the work of Chandler®®) is
based on a thermal equilibrium picture in which trajectories
sampled from a Maxwell Boltzmann distribution are started
on the barrier. This calculation yields a rate which becomes
proportional to the friction® for small friction due to the
backscattering effect discussed above. However due to its
underlying equilibrium nature it cannot account for the oth-
er effect which leads to a rate proportional to ¥ even in the
single well model—the deviation from equilibrium in the
reactant well which occurs in the small friction steady state
situation. Our result takes both effects into account by the
appearance of the terms 7, and ¢,7, in Eq. (57) (see also
discussion below).

Even though the calculation of Northrup and Hynes
(NH)'® is done in the diffusion (high friction) limit, their
result bears a remarkable resemblance to our more general
expression (57). To see this consider their result [Ref. 7(a),
Eq. (4.4)] in our notation:

_ kaz
1+ (kpp/ke) + (kpp/ky)

(62)

TRL

where kg; and k., are the “barrier rate constants” to go
from left to right and from right to left, respectively, while
k; and kg are rates for internal relaxation in the left and
right wells. Rewriting Eq. (62) in the form

k —1
o e e ©3)

RL

and noting that k, . /ky, is equal to the ratio ¢, between the
equilibrium populations of the left and right wells, we see
that Eq. (63) is similar to Eq. (57) where 7, 7, and 7x &, are
equivalentto k ; ', k z ', and k z;', respectively (note that in
the high fraction limit taken by NH, S, = 5, = 1).

This remarkable resemblance exists despite the fact that
the rates k; and kj are related to motion on the coordinate
axis while 7, ' and 75 ! are rates associated with energy ac-
cumulation and relaxation. The reason is that Egs. (57) and
(62) have the general form of an overall rate associated with
consecutive rate processes. To see this consider the simple

ki, kpy
kinetic scheme L;:* Iz R with the time evolution given by
L1 Kir
dL
— = —k, L+k, I, 64a
ar e+ Kpp (64a)
dar
a =kyL —(kpy + kg + kg R, (64b)
dR
~—— =kg I — ki R. 64c
dt RI IR ( )

In a steady state determined by R = 0, L = const and dI /
dt = 0 [so that additional source and sink terms are needed
in Eqgs. (64a) and (64c) respectively], Eq. (64b) yields
I=rk; kg,lky; + kg;)~ " and the steady state rate of pro-
duct formation is obtained from (dR /dt),, = kg,(I),, to be

dR) ki 1 _1)_1
—) ==k k
(dt . (k,L CEREEC
L I _ Y
=((5).(F) Fa v

L —1
— il k—1+k—1
[(R)eq ® *

which is similar to our low friction limit result (59) if we
identify 7, with k 7', 7 with k ', and (L /R),, with g,.
The NH result is thus an analog of Eq. (57) where the con-
secutive rate processes all occur in the diffusion limit. In fact,
in their later work”® Northrup and Hynes provides a deri-
vation of Eq. (62) based on a multistep master equation mod-
el which is not limited to the diffusion limit. It should be
noticed that in the NH approach the location of the “stable
state surface” which separates between the well and the bar-
rier regions has to be determined by additional assumptions
while here it is obtained as part of the solution.

In order to study in more detail the actual predictions of
our double well model and to test their dependence on the
different parameters we have employed a potential similar to
that used by Montgomery, Chandler, and Berne®®

bl — X, X<y,
V _ﬂ 2.2
(x):{EB 2 wa, YL <x<YR’ (65)
AE+-’;fwéR<x—XR)% Yy <.
\

This potential is displayed schematically in Fig. 1 where the
parameters appearing in Eq. (65) are also shown. Y, and Y,
are determined so as to affect continuity in the potential and
its x derivative. These requirements lead to the relations

X 2
Y,,,:Z_Wf).% (W=L,R) (66)
o + @Wp
_ 2(‘”& + wé JEpL _ 2(‘0& + ‘Ué Esr (67)
(U(Z)La)lez. fl’(lm ‘szfa ’
2 212 y2
AE:EBL[I—(w‘Z’L+w§)w‘;R f] (68)
(wor + @)oo X1

leaving free the choice of six parameters, e.g., Ep, @z, @y,
Wor, X, and X

In Fig. 2 we show the transmission coefficient 7/r;s1 as
a function of friction for a range of parameters which deter-
mine the shape of the potential and the time scale associated
with the motion of the thermal bath. E, was taken to be 10.7
kcal/mol (corresponding to the activation energy of cyclo-
hexane'?). The rate r is obtained from Eq. (57) and for the
function Z (¢ ) [Eq. (2)] we have used

Z () =lexp( -L) (69)
TL‘ TC
implying
Z,w)=—->L—. (70)
1 + inwr,

In the results reported below we use a symmetric double well
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FIG. 2. The transmission coefficient r/r ¢ as a function of ¥/w, for a sym-
metric double well potential with E; = 10.7 kcal/mol. (~18k 7T for T = 300
K) (a) wy/wp = 5; (b) op/wy = 1; {¢) we/wg = 0.2. The dashed line in Fig.
2(a) illustrates the weaker dependence of the rate on y obtained if 7, is taken
to increase with .

potential and denote wy=w,z = ®,, . Figures 2(a)-2(c) cor-
respond respectively tow,/@wz = 5, 1, and 0.2. In each figure
the different curves correspond to values of w7, ranging
from O to 10. In Fig. 3 we focus on one particular feature of
the friction dependence of the rate. Denoting 7,,,, this value
of ¥ [of Eqs. (69) and (70)} for which r/rg; is maximum we
plot /{10y, )/ MY max ) a8 @ function of w7, [Fig. 3(a)] and of
wy/wy [Fig. 3(b)]. The magnitude of /{10y, )/7{¥Vmax ) COTTE-
sponds to the change in the rate as ¥ increases by an order of
magnitude beyond its maximal rate value. This is the friction
range considered in the cyclohexane isomerization rate ex-
periments of Hasha, Eguchi, and Jonas.'* These authors

B. Carmeli and A. Nitzan: Activated rate processes. IV

T T
_(a) Wo/wg

o

{10y max)/ 1 {ymax)
o)
!

r10ymax) /T (ymax )
o
(8]

! | |
Q565 0 03 10

FIG. 3. {10¥ 1 /¥ max ) as a function of w7 [Fig. 3(a)] and of v/, [Fig.
3(b)] for a symmetric double well potential with E, = 10.7 kcal/mol.

have observed a dependence of the rate on viscosity which is
qualitatively similar to that depicted in Fig. 2. For 7 > 9.,
(7 being the viscosity and 7,,,,, correspond to the maximal
transmission coefficient) they report a slow decrease in the
rate with increasing viscosity: r/rgr decreases by about
2%-10% (depending on the assumed value of the TST acti-
vation volume) in the range 7 = 7., = 109 0x -

These results as well as other experimental observations
of a relatively slow decrease in the transmission coefficient
for increasing viscosity>®"!? have been attributed by Velsko,
Waldeck, and Fleming,'*® by Bagchi and Oxtoby,?* and by
Hanggi and Mojtabai®® to non-Markovian effects in the
barrier dynamics. On the other hand, Garrity and Skinner®
have argued that the results of Hasha et al.'*> may be rationa-
lized within the Markovian limit as resulting from a poten-
tial with relatively narrow wells and a very wide barrier.?’
The results displayed in Figs. 2 and 3 indicate that the situa-
tion is far more complicated.

It should first be pointed out that our numerical results
are in qualitative agreement with those obtained by Garrity
and Skinner,” however we do not agree with their interpreta-
tion. These authors observe {see Fig. 3 of Ref. 9) that the
wider the barrier the larger is the (downwards) deviation of
the maximum steady state rate from the TST result. This is
to be expected since for a wider barrier the friction plays a
more important role in reducing the rate relative to the TST
value. Then, since the rate vanishes for both ¥ — 0 and
¥ — « it follows that the rate goes to zero with increasing ¥
more slowly for wider barriers, in apparent agreement with
the observations of Ref. 13.
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This is however an “optical illusion.” To make a proper
comparison with Fig. 9 of Ref. 13 one has to follow Hasha et
al."® in scaling the rate with respect to its maximum value
and in looking at the friction dependence in a range of about
one order of magnitude beyond its maximal rate value v, .
In contrast to this, in Fig. 3 of Ref. 9 the curve with bX, = 9
isshown only in the range 7,,,,, +-1.6¥ o« {on the high friction
side).

When this is done (Figs. 2 and 3) we reach a conclusion
opposite to that of Garrity and Skinner: It is for barriers of
higher curvature (larger w,) that we get a better agreement
with the experimental result. This is most clearly seen in Fig.
3(a) where the values of /{10y,,,,)/7(¥max) are in good agree-
ment with observation for w,/wy = 0.2.

This dependence on w is in agreement with the sugges-
tion of Bagchi and Oxtoby?* and of Velsko et al.'® that the
relatively weak dependence of 7 on the viscosity is associated
with non-Markovian barrier dynamics. Indeed for larger w,
this effect should be stronger. Inspection of the results of
Figs. 2 and 3 reveals however that the situation is less simple.
It is seen from these figures that the dependence of the rate
on the friction strongly depends on the ratio wy/w, in a way
that cannot be described by considering barrier dynamics
alone [i.e., Egs. (54}~(56)}. In fact the experimental results of
Hasha et al.'? can be fitted by adjusting wy/w,. This is
shown in Fig. 4 where these results (corresponding to A ¥ 7gr

= — 1.5 cm?/mol) are shown together with our theoretical
curves for wy/wy = 0.2and wy7, = 0and 10. Obviously, for
some w7, between O (Markovian case) and 10 an excellent
agreement will be obtained. It should however be pointed
out that the experimental results may be shifted towards ei-
ther of the theoretical curves shown using a different (but
equally reasonable) guess for AV 7.

Bagchi and Oxtoby?* have interpreted the slow de-
crease of the rate with solvent viscosity using the barrier
dynamics expressions (54) and (56) and the observation that
the solvent correlation time r, increases with the viscosity.
As seen from Fig. 2 this also leads to a weak y dependence of
the rate. This is schematically illustrated by the dashed line

r/r(ymax)

0.8 _

il ]
G 1 5 10

Y/ Ymax

FIG. 4. r/7p0x VS ¥/Vmax for a symmetric double potential well with E '8
= 10.7 keal/mol and wp/wy = 0.2. The full lines are the theoretical results
obtained for different values of the parameter w, 7. The points are the ex-
perimental results of Hasha et al. (Ref. 13) corresponding to AV 7yr
= — 1.5 cm*/mol.
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in Fig. 2(a) which connects points which lie on higher 7,
curves for higher 7. The results of the present work indicate
that within the one dimensional model considered not only
the barrier dynamics but also the shape of the potential well
(expressed here by the ratio w,/wy) affect the viscosity de-
pendence of the rate.

Finally, we note that we have tacitly assumed above
that the zero frequency friction ¥ and the zero frequency
viscosity 7 are linearly related. This seems to be approxi-
mately true in the range of viscosities used in the experimen-
tal studies. See Refs. 24 and 12(b) for further discussions of
this point.

APPENDIX A

Here we outline the mathematical steps which lead to
the results in Eq. (40).

Denoting
W owld)
Cy = aJ explEy (J)/kT), (A1)
ow iz
we rewrite Eq. (24) in the form
Aow =Aw(By + Cy), (A2)
Egs. (23), (27), (30), and (31) lead to
27 —Ha+ )X, ( Mzz)
A; B, = F,(F, d —a—-},
Y 2(1+J; Z exp asz
(A3)
2 _
ARBR — E”er AE/kT[F]
— Ha + )X,
IR M22
+ dze ( —a —)] . A4
fo O\ T T (ad)
Using Egs. (28) and (33) these can be recast in the forms
27 ( kT )
A;B, = —F,| F, R, |, AS
LB =B + Mk (AS5)
21 _ kT
ArBp = 7F2e “E/"T(FI — Y RR) , (A6)
where (erf is the error function)
Ry = erf(\/(a + I(Epy — E,w)/kT), (A7)

Eqgs. (26), (29), and (37) lead to

F. 2mkT Ey
A= —"Rzm%\/m“"(— xr) B9

Finally Egs. (23), (27), (35), and (36) lead to equations for
E,, and E\ (and thus for the associated X,,, X, and J,,,
Jir)- These are

[ EBW_EIW]
exp| —a —————
kT
Egy — E\y kT

= a

. A9
kT ijwﬁ(a'l'l) A

In addition to these relations we have also [from Egs.
(38) and (A2)]

A,B, +Cy) _
Ax(Br + Cp)

@or,

% : (A10)

Wor
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To simplify the following discussion we may also use the fact
that the final result is derived by dividing by a normalization
factor. This enables us to choose one of the parameters 4, B,
or F at will. In what follows we use

A, = — A, =1, (A1)

Egs. (A5), (A6), (A8), and (A 10) can be now used to find
the remaining parameters F,, F,, B;, and By. They lead to

wkT

F =— (Ry +@qRg)+
‘ 2ang Re AR \/zMa+1)

C ex( ) C, ex( )” Al12

[‘kaJquka (A12)
where

G =gy g~ AE/T, (A13)
Wor

In what follows it is convenient to use the following quanti-
ties:

Q. = J.j 3 dx jjw dv exp{ - [%f v+ V(x)]/kT}

27 (* _dE kT

)
~ expl —— | ~ s Al4
Mo o, (E) p( kT) = May, (A1)
Qr = f dxf dv exp[ — {A—; v+ V(x)]/kT}

~ 27TkT AE/kT. (AIS)

MwOR

The quantity
q. Egl‘_._—_.wo_ReAE/kT (A16)

Or @Dy,
is the equilibrium population ratio between the two wells,
while g, defined by Eq. (38)is equal to 4y, Q, /Aoz Or - Equa-
tion (A13) is equivalent to

B. Carmeli and A. Nitzan: Activated rate processes. iV

Ny = f dx f dv P(x,v). (A19)
0 — o

Each of these is calculated as a sum of three contributions

corresponding to the E<E;; ESE,, x>X, and E>E,,

x < X, regions of phase space associated with each well. This

calculation follows the same steps of a similar calculation

described for the single well model and yields

N, =kTr, + F.F,Q, +F, |-7KT

S L (A20)

o

Ng =kTrg + FiF0p —F, | ¥ 5., (A21)
2Ma
where
2 (P dE
S, = E—E R, 9E,, — FE
Y wL(E)[”( i)+ RynE, )]
X exp( — E/kT), (A22)

27 _agnr
Sp =T ¢

M

Fx _dE
xfo S e ME — Eu) + RenlEe — )]

X exp( — E /kT), {A23)
0, x<0,
= 4
and where
Jiw E
Tw =_1_ dJ owl/) exp[ W(J)] Jde'
kT Jig, 24 kT 0
J
X exp[ - W(T )] (W=L,R), (A25)

q=4y9. . (A17) 7y (W =L, R)are the mean first passage times to reach J,
« P from J,,,,., given a reflecting barrier at J,;, = 0.
t lat ows w
Next we calculate the steady state “populations The normalized current r [Eq. (39) with
N, = f dx f dv P(x,v), (A18) N =N, + N, ]isobtained using Egs. (26), (A11), (A20), and
~ —= {A21). The result is
i
r= kT — : (A26)
KT ry = 1) + 8:85% = Si) + &3] 1Re +8.Ra) + - (C, +.C]
transparent form
g = % 2+ 1 oxplE /KT, (A27) .
= qs +1 [TL +4.7r +$(SL +SR)rKRL]_l
- —1), s

& =10 + QO )‘/1( ;'3 ) (A28) (A30)
8 =84 exp( kT) (A29a)  where

8e = qoor/ox - {A29b) g, =N./Ny (A31)

Note that rin Eq. (A26) is defined to be positive for a net
current from left to right. This cambersome (but straightfor-
ward to calculate) expression for » may be cast in the more

is the steady state population ratio,

T el )
”“RL_zm,,[ (2 +wp —jexp{ —5o) (A%
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is the Kramers’ left to right rate for a single well model, and
where
SL =8./Q:; §R =Sg/Qx -

Putting all the population on the left (g, — oo
the left to right steady state rate

rer = Mg, — )= [TL +4.7r +%(§L +‘§R)rIZI§L -t

(A33)

)** we obtain

(A34)
Similarly the right to left rate is
rig = —rg, —>0)=¢q.rz;
1 - _ —1
=['q—fL +TR +%(SL +SR)’K_,LIR] (A35)

with the right to left Kramers’ single well rate

_ Wor l)z 2__}/_]e (_EBR)
Tk 2m3[\/(2 R b ey &

(A36)
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