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A dynamic bond percolation model is defined and studied. The model is intended to describe diffusion of
small particles (ions, electrons) in a medium which is statistically disordered (as in ordinary bond percolation),
but which is also undergoing dynamic rearrangement processes on a timescale short compared to the
observation time. The model should be applicable to polymeric solid electrolytes, where the orientational
motions of the polymer (which are responsible for configurational entropy) cause the dynamic motion of the
medium (polymer) in which the small particles (alkali ions) diffuse. The model is characterized by three
parameters: an average hopping rate w which appears in the master equation for hopping, a percentage of
available bonds f, and a mean renewal time 7, for dynamic motion of the medium to rearrange the
assignments of closed and open bonds. We show that the behavior is always diffusive for observation times
long compared to 7., in agreement with experiment on polymeric solid electrolytes. We also derive a closed-
form expression for the diffusion coefficient. For observation times smaller than the renewal time there is no
diffusion, again in accord with the behavior of polymeric solid electrolytes below the glass transition
temperature. The diffusion coefficient is a monotonically increasing function of the inverse renewal time and
hence of the free volume, the configurational entropy, and the temperature.

. INTRODUCTION

Percolation theory is extremely useful in understanding
transport processes in disordered media, and has been
recently used in the interpretation of the free-volume
behavior of transport properties of several disordered
materials (polymers, molten salts).' Both bond per-
colation and site percolation models are usually used to
discuss transport in a rigid, but disordered, material,?
There are many experimental systems, however, in
which the structure of the host material is itself under-
going change at the same time that transportis occurring.
A simple case is afforded by a micelle in which one
might be concerned with ionic or electronic motion be-
tween the center and the periphery, while the micellar
structure itself is changing, both through wagging of the
molecular chains about the center and (possibly) through
molecular addition and separation. 3 Another example
might be diffusion of solvent particles in an emulsion.
An especially important example is that of ionic dif-
fusion in soft polymeric solid electrolytes. In poly-
(ethylene oxide) - NaSCN, for instance (called
PEO - NaSCN henceforth), the Na” are largely tetrahe-
drally coordinated by polyether oxygens, but at the
same time that Na' are hopping from one fourfold co-
ordination site to another, the oxygens themselves,
along with the polymeric backbone, are undergoing
large-amplitude wagging and even diffusive motions. =9

In contrast to the case, for instance, of ion-conducting
or electron-conducting glasses, in which the diffusion
process occurs by hopping in a rigid disordered medi-
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um, '° the three cases cited above involve transport in a
dynawmically disordered structure. From the viewpoint
of an individual hopper this means that, if the local en-
vironment at any given time does not permit a hop, that
environment will evolve such that, after a certain aver-
age waiting time, the hop will no longer be prohibited.
As far as we are aware, there has not been adequate
theoretical consideration of this latter situation, which
occurs for several experimentally well-studied cases.
The present paper is devoted to the definition and pre-
liminary study of a dynamic bond percolation model
(DBP) to describe precisely such transport situations.
The particular case which will be referred to is that of
polymeric ionic conductors, but many other systems
seem susceptible to a similar analysis {see Sec. V). We
show that such a model is the natural extension of the
static bond percolation model to systems in which the
host structure is evolving.

Static percolation theory describes transport in sys-
tems in which hops between sites are either forbidden
or allowed with specific fixed probabilities,? In the DBP
model, these probabilities change with time because of
the structural evolution of the host. A more careful
definition of DBP is given Sec. II, in which the (master)
evolution equation for the diffusive particles in DBP is
also given. Some formal properties of DBP are given in
Sec. II. In particular, we show that the two charac-
teristic times of the model, the average particle hopping
time 7,,, and the average system evolution renewal time
Tren have quite different roles in the dynamics. For ob-
servation times ¢ much greater than 7,,,, the process is
diffusive, even if it is not diffusive for {<7 . On the
other hand, when the average time 7., is much less
than 7,,,, the hopper (in one dimension) will be equally
distributed along connected sites, so that a fixed mean-
square distance, depending only on the fraction of filled
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bonds, is found. We also derive closed-form expres-
sions for the mean-square displacement at arbitrary
times, and for the diffusion coefficient. Section IV
presents some numerical results which confirm by
simulation, for a one-dimensional model, the formal
results of See, III. It also includes data concerning the
diffusion coefficient dependence on bond hopping prob-
abilities, on 7., and on the percentage of available
bonds. Finally, Sec. V contains a brief discussion of
the model and its possible applications, especially to
polymeric solid electrolytes,

One issue of nomenclature will be necessary in our
discussion: we will call a “bond” between sites (7,)
available or open or filled if an ion can hop between the
ends of that bond, and call it unavailable or closed if the
hop cannot occur.

{Il. THE DYNAMIC BOND PERCOLATION MODEL:
MOTIVATION AND DEFINITION

We consider the problem of classical particles moving
in a dynamically disordered medium. For the particular
application to polymeric solid electrolytes, the medium
is the polymeric solvent (or host), but in general it can
be any rearranging material, Because the actual amor-
phous polymer is of complicated geometry, we adopt a
dynamic lattice model. A space lattice is imposed on
the system, such that the stable positions for the moving
particles (which we call ions) are at the lattice sites.
Then for any given fixed configuration of the medium, the
dynamics of the ions are characterized by a (kinetic)
master equation. If P,(#) is defined as the probability of
observing a particle at site 7 at time #, the master equa-
tion for the time derivative 15‘ reads, in one dimension,

Pt)= ’Z;'{P,(t)w,_{ -P(thw,. )} . (1)

Here w;,.; is the probability per unit time of hopping
from site 7 to site j; it is related to 7,,,, the average
waiting time for a hop to occur, by

NeWTyop =1, (2)

where 7, is the coordination number, equal to 2 in the
one-dimensional case. Then for a bond percolation
situation, with only nearest-neighbor hops and with some
bonds unfilled, ;. ;is given by

w or 0, when (7, j) are neighbors (3)
Wwi.y= <0, when {,7) are not neighbors (4)
1=(w,. 01+ Wyayn) , fori=j. (5)

For neighboring sites, we take

{0 , bond (,5) not available

Yi-s= lw, bond () available . ©®

We denote by f the fraction of available bonds, so that
osfs<1. (7

The master equation (1) describes a continuous-time
hopping model with the time that the particle actually
takes to hop off site ¢ distributed according to some
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probability distribution that is continuous in time. For
some of the formal developments that follow, it will be
convenient to assume instead a discrete distribution.
That is, in place of the differential equation (1), there
would be a difference equation that physically describes
a hopper on a given site trying jumps at instants of time
each separated by exactly A7, For observation times
t> A7, the difference between the continuous and dis-
crete distribution of hopping times should be of little
consequence. The discretfe distribution is sometimes
more useful for mathematical manipulation (Sec, III);
although it is physically unreasonable, we suspect it is
adequate for the short At limit in which it is used.

Equations (1)-(7) define a static bond percolation
model, which has been exhaustively studied and fruit-
fully applied to a number of experimental and theoreti-
cal problems in the dynamics of statistically disordered
systems,? We wish to generalize it to consider dynamic
disorder.

For ionic conductors, the static model corresponds to
a hopping model, such as has been extremely useful in
characterizing framework rigid-lattice species. '

The probability w is determined by the energy barrier
for hopping from one stable solvation position to another;
this is in turn determined by solvation energies and
ultimately by the strength of the ion- medium bonding.

1t is reasonable to assume an activated form for w:

w=wgexp(-E,/kpT) . (8)

For media such as noncrystalline polymers in which the
solvation sites each have a different environment, there
will in fact be a distribution of activation energies E,,
but we can to a first approximation neglect the width of
this distribution, and assume a single activation barrier.

The percolation aspect of the problem results from the
static disorder in the medium. For rigid glasses, for
instance, or for any fixed geometry of a polymer, the
hopping route between ¢ and j may be blocked by a local
structural defect or an adventitious impurity. The sim-
ple choices (3)-(6) imply that all hops are either allowed
or fully blocked., The master equation (1) with prob-
abilities given by Eqs. (3)—(6) defines a static percola-
tion problem. In one dimension, it cannot result in dif~
fusion, since the first jump that is blocked (w =0} will
stop the ion.

The important aspect of the DBP model is the inclusion
of the dynamic structure changes in the host material
in which the hoppers are located. For a solid electrolyte
of polymeric type, for instance, the polymer chains will
themselves move, From the viewpoint of ion motion,
this means that the solvation geometry in the neighbor-
hood of any given ion will evolve in time, as the motions
of the polymer bring other regions of the chain near the
ion. [There are also higher-frequency vibrations,
whose role, for our purposes, is either unimportant or
is involved in providing the activation energy of Eq. (8). ]
As these chain reorientations change (or renew) the
solvation environment of the ion, the hopping probability
changes; some channels become opened and some be-
come closed. If we assume, as in Eq. (6), that the hop-
ping rate w;.; for anavailable bond is a single value, then
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the renewal process resulting from the polymer motion
simply reassigns the values of w and 0 to different bonds
during a characteristic average polymer motion time,
or renewal time 7,,,. To model this mathematically,

we assume each renewal to occur abruptly at some time
Tren after the previous renewal. It is convenient to make
two assumptions: (a) The renewal times occur, as do the
hopping times, with a given distribution, Again, it is
reasonable to take this time either as a continuous or as
a discrete random variable; (b) There is no local cor-
relation of jumping probabilities; i.e., the w,.; are re-
calculated randomly for each site pair, subject only to
the overall constraint that a fraction f has value w, a
fraction (1 —f) has value zero.

While (a) is generally reasonable, (b) is often not, since
structural changes in the host material might well be
closely correlated when sites are close together. How-
ever, (b) should remain valid for times long enough so
that the average distance which an available bond moves
is larger than the average separation of such bonds.
More importantly, the model contains the combination of
local hops and dynamic renewal processes which char-
acterize the ionic polymers and several other systems
(see Sec. V).

Some limiting results of the present DBP model are
clear:

(i) For T,ep/Tyop<< 1, the physical process should cor-
respond to hopping in a homogeneous {nonpercolative)
system, whose dynamics are described by (1, 2) but
where

w;,,~fw , for neighboring sites . (9

This is because the local hopper will be able to sample
several values (each one w or 0) within the hopping time;

(ii) When T, is very large compared to a typical time
for a jump to occur, the behavior for time ¢<7,,, will be
fixed by the sfatic percolation problem. For one dimen-
sion, this means that the mean-squared displacement
(x® within this time will attain an asymptotic maximum;
for higher dimensions, the behavior depends on how f
compares to the value of f at the percolation threshold,

The DBP model in one dimension is described by the
static percolation model master equations (1)-(6), with
the extra feature that, after a renewal time 7, the
choice of which bonds are available and which are not is
randomly reassigned. When the renewal time 7., is
much greater than the observation time ¢, the DBP
model reduces to the ordinary bond percolation picture,
but for £>7,,,, we believe that it contains important ex-
perimentally realized behavior absent in static percola-
tion theory.

Hi. THE DBP MODEL: SOME FORMAL RESULTS

We derive here some formal results for the DBP
model of hopping motion on a dynamically rearranging
lattice. For simplicity, we first assume the time axis
divided into intervals of equal length A7, with a hop at-
tempted at each endpoint, and we assume a single fixed
renewal time T, these restrictions will later be re-

t‘en’
laxed. We seek the averages of observable quantities
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taken over an ensemble of systems with various possible

bond assignments and hopping sequences,

(i) First, we will show that, for time #<7,,,, the mean-
square displacement is given by the simple expression

2 2

h-a*
as t-=, where d is the lattice spacing. To prove Eq.
(10), consider a chain of bonds which are all filled (open
channels), with k bonds to the left and ! bonds to the
right of the site of interest. Then if f is the probability
for a bond to be open (available), the probability for
this arrangement of open bonds is

problk+1) =(1 =f 2%,

where the first factor accounts for the closed (unavail-
able) bonds to the left and right of the (£ +) consecutive
ones. Now within this configuration, for the limit 2~
all sites will be visited equally, independent of 2. Then
averaging both over configurations and over sites within
each configuration, we find

wf 1 5
(=1 -r) Zk)Zl:f’* '{,HM m}:k (md)z}, (12)

where the quantity in brackets is merely {x?) for the
(2 +1) consecutive sites. Equation (12) can be rewritten

as
nz) (13)

which, after several rearrangements, becomes

(10)

(11)

D=0 P DT L (B

n=0 n=0

2 2
(=2 (16' L3 mim®+ 3m2 + 2m) (14)
m=0
Using differentiation identities, such as
2 mfr=f Zf'"— = = (15)

m=0 8flf ’

we can replace the sums in Eq, (14), whence Eq. (10)
follows directly. Note that, as expected for the broken
chain in one dimension, (%) [Eq. (10)] is finite for
infinite time unless f=1 (all bonds available). Thus,
any break in the one-dimensional chain blocks dif-
fusion.

(ii) Our second formal result is that, for many renewal
processes (i.e., t/T,., =N>2), the behavior will be dif-
fusive (with (x¥) « ¢), independent of its behavior for
t<T.on. At the end of a given renewal cycle, we assume
that the bonds are randomly reassigned, independently of
the location of the particle. The process is then fully
Markovian, and P***V(r+3), the probability for occupa-
tion of site #+¢ at the end of cycle N+1, depends only
on P)(;), Thedifference equation for evolution of the
system is then

P(N+1)(l)=z P(N)(i)P(l)(l_i) . (16)
i

This is the version of the Smoluchowski—Chapman—
Kolmogorov equation'* appropriate for renewal pro-
cesses.

We can use Eq. (18) to find (+®, the mean-square
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displacement. Formally, for one dimension,
(g =d? 2, 12PH1(]) (17)
1
=d®) D 1PPW(H)PYY] - j) (18)
1

=d?) D {(1- P+ i+ 20 - PGPV - )
| I §

(19)
= [}: P“’”(i)] [2 (1 -i2P(1 —i)] (20)
i =i
2 .2 Ny . 1 R

+d [z‘:z Pt ’(z)] [lz.;P( N1 - z)]

+2d° [Z E (1-3) P ()P Y1 -i)] (21)
{ I=i

=<x2)1+(x2),,+2(x)1(x),, . (22)

Here ( ), denotes the ensemble average at the end of the
kth renewal cycle and {x}, ={x)4 = 0 by symmetry. Thus,
Eq. (22) is simply

<xz>m1 = (xa>1 + (x% (23)
or, more generally,
(Py=N-(H . (24)

Thus, the mean-squared displacement after a number
N of renewals is proportional to the time; this behavior
is diffusive for {>7,,, as was to be shown,

The result (24) holds in any number of dimensions (the
proof is similar to that given here for one dimension).
It holds whether or not <xz>1 itself obeys a diffusion equa-
tion. A result similar in structure to Eq. (23) holds also
for any specific sequence {T‘} of unequal renewal times

(Pyy = Zj (1) .

(iii) The third formal result is a closed-form summa-
tion expression for p{"(7), the probability to be at site i
after » hopping intervals (each of length A7) with no re-
newals. When used with Eq. (24), this result deter-
mines the diffusion coefficient for the process with given
f and w, without requiring a numerical simulation. The
actual formula is given by Eq. (42) and its derivation
proceeds as follows: We consider one-dimensional
hopping on a chain of open and closed bonds, as defined
by Eq. (24). We consider a bond configuration S(%, j),
defined to have available bonds from site & to site j,
with closed bonds from site (- 2-1) to — % and from j
to (j+1). The relative probability for the occurrence
of this configuration is (1 -f)?f**/. Then we can con-
struct a replica lattice with which to calculate directly

(25)
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FIG. 1. Replica lattice construction
for the calculation of {x*) for a one-
dimensional static percolation pro-
PY blem. The original chain has avail-
able bonds from site —k to site j, as
do all replica lattices.

p(i). As shown in Fig, 1, this replica lattice con-
sists of the original (- &,7) chain and a series of replicas
of (- &,7); the hopping probability w is the same between
all sites on the enlarged lattice, and the sites are labeled
from (- %) to () on the original chain and all replicas.
Instead of regarding the chain as terminating at - &,

we now allow a hop from - & (on the original chain) to

- & (on the first replica). Then p{’(i), the total prob-
ability of being at either site ¢ or any one of its replicas
after » hops, is required, since the mean-squared dis-
placement (%) after » hops will be just

(B)=2_i%d%t") ,
i

in terms of this total p$"(s).

(26)

To obtain pi(i), we consider the situation after n
hopping intervals, The actual number of hops will vary
from zero to n. Define m, as the number of hops taken
to the right, m, as the number to the left, and m,
=n-(m, +m,) as the number of null hops (those in which
the particle remains in the same place). Then the num-
ber of ways to construct the sequence of hops such that
my, m,, and my are unchanged is

nl
(n=m; —m)Nm, m!

Now we have taken 717 as the probability of a left or right
hop and (1-27n) for that of a null hop, where n=wAT,
Thus the total probability for the situation (m;, m,, my) is

nl
(n-my —m) m, ! m,

p L= 2L (27)

We want to find the probability to be at site . The
hopper will be at site [= 0 if m, - m;=1. We need, then,
to sum Eq. (27) over all possible values of m, (between
0 and /). Since we require both

n=m+m,+mgy (28a)
and
(28b)

the sum over m can be replaced by one over m;, with

Eq. (28b) used to replace m, and m,. We find the range
of m; to be

l=m,-my;,

(29)

The desired probability (to be at any site I on any of the
chains in Fig. 1) is found to be

Osmy<szln=-1).

nl

1+2m — ne=l=2m
".Z,: (Z+m ) my VHn -1 - 2m,)! n 1(1 - 2n) 1

) (30)

with the range of m, specified by Eq. (29).
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We now need to sum the expression (30) over all the
replica sites of any given site on the original chain, in
order to obtain the correct probability of being at a
given site on the original chain. Then the probability of
being at site Z on a chain of bond configuration S(%, )
after » hops is

n!
g» g,: G+ m)m 1 (n-1-2m)1 "

l*2m1(1 _ zn)n—l=2ml ,

(31)

where {I} denotes site 7 and all of its replica sites; the
sums in Eq. (31) have a finite number of terms for finite
n. Examination (if careful!) of Fig. 1 shows that the
following replicas of site I have to be considered:

1+2u(j+R+1), (all 1), (32)
2j+1-1+2u(j+Ek+1), forl>0, (33)
—(2e+1)=1-2v(j+k+1), fori<0, (34)

where v=0, 1, 2,....

With these results, we can find the overall p{*(I) by
summing Eq. (31) over the relative probability f##(1 —f )¢
of finding S(k,j). Thus,

-2 3 {EZ !

w71 Ly m U em)imln =1 - 2m)!

Xan,ot '(1 _ zn)n-x '-Zrn,}fkoj(l _f)z , (35)

where 1> 0, and {I'} denotes summation over [ and its
replicas (in Fig. 1) for fixed S(k,7). The symmetry re-
lation

P =pi-D) ,

when used with Eq. (35), permits calculation for all pos-
sible sites.

(36)

The result (35) can be put into a more useful form by
removing infinite summations, which can be accom-
plished by separating the contribution of the original
chain from that of the replica chains (in Fig. 1). That
is, we separate the terms with I’ =7 in Eq. (35). We
then find that p{'*%(7), the contribution from the original
chain, is given by

;l>v°(z)=§ ,Z; (=FPren3 . T+ m)(n -
= my

-1~ Zm,)lm,l

x gt *2m(] ~ 2yt 37
Simplifying, we obtain
=P 2 A= -r -y 2 5 (38)
0 =1 =1
=(1=f)X1-pyis?
=f. (39)
Therefore,
U ; (T+m ) (n —7;1— 2m,)! m,! '
x(1 = 2n)yr2ms (40)
=020 , (41)

where p{)(1), defined as the probability of being on site
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1 after # jumps along a linear chain with all sites con-
nected, is given by comparing Egs. (40) and (41).

Then finally we rewrite Eq. (35) as

D) = £'p$°21) +[summation in Eq. (35) but with only
replicas, not original chain, included
in sum over {Z'}] . (42)

For any finite number of hops z, the sum in p{°*() con-
tains a finite number of terms. In addition, the number
of terms in Eq. (42) over m; and {1’} is also finite, since
when & and j become large enough, no nontrivial replicas
of S(&,7) exist for fixed n. One condition for this to hold,
that is for

DD =r1p , is |20i+k+ D)l >n . (43)

Two comments might be made about Eq. (42), The
first is that as f—1, the (1 —f) factor in the sum of
Eq. (35) results in pi"(7) - p{°)(1), with replicas becom-
ing unimportant, as expected, since f=1 corresponds
to the simple linear chain, The second is that the f**¢
factor in Eq. (35) makes the sum over k&, j converge
fairly rapidly for f small compared to unity, The ad-
vantage of Eq, (42) is that it permits the calculation
of (¥, in Eq. (24) by means of a closed-form summa-
tion, This summation not only is more rapidly cal-
culated than is a straightforward simulation, but is also
more useful for examining limiting behaviors.

The formal result (35) has been derived assuming that
the hops occur evenly spaced by a fixed hopping interval
Ar, For times much greater than A7, this agssumption
is not a serious one, but as pointed out above, a more
realistic assumption is that the hops occur over a con-
tinuous range of times. This is particularly important
when either the renewal time 7, or the observation time
t is of the same order as the average hopping time. We
must then consider the limit of a continuous time ran-
dom walk, ™ To this end, we take

n-0, (44)

AT =0, (45)

n—o, (46)
keeping

w=n/AT (47)
and

t=nAT (48)

constant, We also define a dimensionless time ¢ by

6=wt. (49)

The generalization of the formal results above to the
case of continuous time is now straightforward. First
we must obtain p$°(), the probability for the linked
chain (f=1). Then we can use Eq. (42) to obtain p§'’()
as a function of time. Combined with Eq, (24) this will
yield the diffusion coefficient. The last generalization,
to the case of a Poisson distribution of renewal times,
is considered at the end of this section,

To obtain p§°(l), the probability to be at site ! after
time 8, we start with Eq, (41), the result for » hops.
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In the continuous-time limit, » will far exceed any ! or

m, which contribute significantly to Eq. (41). Now
consider the factor
n
(1 - 2n)™teim = (1 - Zzal [:’7] ) (1= 2y iim (50)
-2 (51)
in the limit 7 -0, =constant, n—>°, Then with

Stirling’s approximation used for the n-containing fac-
torials, the second factor (41) is just

nl (NI 2m
isi-zm)l = (n)*m (52)
and thus
O Y, mEn expl-2an) (53)

m=0 (l+m,)! m,!

0
_ 20 gr*2my

m=0 " M+ ml)! ) (54)

The continuous-time result (54) is simpler in form
than the equal-hop-interval result (41). In fact, re-
writing Eq. (54) as

1>§°’(l)=e'“( > Zo %f,’:;fx (55)
myE

leads, by comparison with standard forms, to simply
P62 ()= 1(26) (56)

where [; is the modified Bessel function. Bessel func-
tions appear as the solutions to several random walk
problems, as well as in the problem of Brownian dif-
fusion in a sinusoidal potential.'® Note that

200 =1 (57)
1
as implied by the identity
e®=Iy(z) + 2I,(2) + 2I(2) +« - . (58)

We also note that the present continuous-time result
is equivalent to a Poisson distribution in the limit of
small times 6, since then only the m;=0 term is a
significant contributor to Eq. (54), leading to

H
ps () = -?—, e, (59)

which is a Poisson distribution, normalized to consider
the fact that / can be negative, inwhich case [ is replaced
by |11.

The use of the replica lattice to go from p’(7) to
PpE(1), the probability to be at site 7 after (dimension-
less) time 8, follows just as ptV(7) followed from p°(2)
[Egs. (26)—(42)]. Thus, the result for a random per-
colation problem (f# 1) in the continuous-time limit is

PN =20 0 2, PO -F R, (60)
20 j=1 {1°})

where the innermost summation is over the original
chain and all replicas, or

YD) = FEp80(0) + };121“2) ’ PN =fPrEr . (61)
=0 j= .

where the sum is only over replica chains. For [>0,

Eq. (61) applies as written; for <0, |I| replaces I in
the summations. The result (60) permits evaluation of
the average squared distance of particle motion evalu-
ated over an ensemble of different configurations of open
and closed bonds. Observe that unless f=1 in Eq. (61),
PO for I~ is zero; i.e., diffusion cannot occur in
a one-dimensional chain with some empty sites, in the
absence of a renewal process.

The last generalization required is to relax the arti-
ficial constraint that the renewal times all be equal.
There exists for renewal times, just as for the hopping
times, some distribution. If we assume that the dis-
tribution of renewal times is Poisson-like and controlled
by a renewal rate A, then

Py () =ne™ | (62)

here P,,.(7) is the probability density for renewal times,
and

Froon=2"1, (63)

ren

where the bar denotes average over the distribution (62).
We can now distinguish between two limiting cases.

When the observation time Z,,,<< ™!, we have a static
percolation problem, since no renewals occur. When
tone > x"!, there are many renewal cycles occurring dur-
ing the observation time and it is reasonable to expect
that the diffusion coefficient is determined by the average
over the distribution of renewal times of {x*) and of T,,, :

@)= fo T AP, (7) (64)
so that
D=(—x2.>_;./?ren: X( 1. (65)

This is a simple extension of Eq. (24) to the case of dis-
tributed T,.,. In the limit P, (7)=5(7 - T,,,) it becomes

D={?)/Tren (66)

which is equivalent to Eq. (24)., A rigorous derivation

of Eq. (65) is provided below.

In the intermediate case A"~ £, the problem of com-
puting D becomes quite complex, since it is necessary
to compute the mean-square displacement subject to the
constraint that the observation time is the sum of the
renewal times; this situation becomes of importance in
the study of o{w), the frequency-dependent conductivity,
where the observation time is in a sense fixed by the
frequency. For dc conduction, with which we are con-
cerned here, the observation time can generally be
chosen such that f,,,> X™ = T,,, provided any renewals
occur at all. We therefore investigate this limit, de-
ferring consideration of the intermediate case.

To prove Eq. (65) for f,, > T, we first consider the
average total time elapsed after N renewals. This is

simply

Fo [ o (20 00) ProPrla) - Prslridaty -y

=N [];‘ T1Ppon(T1) dTl] [_/:Pren(s) dS]N-I (67)

=NT, , (68)
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where P_(7) is the probability density for a cycle of
length 7 and where T, is the mean renewal time
=T, (69)

Ten *

We compute £ as

— - © 2
tz = ‘/0- dTyeee ’/‘; dry (z]: TI) Pron(Tl)Pren(Tz) te 'Pran(TN)
© © (70)
= j dTl te f dTN Z ﬁPren(Tl) M ‘Pron(Tn)
¢ 0 I

+zl: Z A dtye-- _/; dty TITJPren(Tl)"'Pron(TN)

J#I

=N, + NN -1)T,)? . (71)
Thus we obtain the fluctuation as
@-@ _1 [@)-(7)
-5 [Tt - (22)

This is the usual result: the fluctuation in the macro-
scopic observable scales as the inverse square root of
the number of repetitions., By repeating the manipula-
tions of Eqs. (67)-(72)with 7 replaced by #*, we show
that the fluctuations in the mean-square displacement
also go to zero for large N, varying like N™!, There-
fore for large N, neither 2?)_1 nor 7,,, will fluctuate signi-
ficantly.

We know from Eqs. (68) and (72) that because of the
lack of fluxion, the constraint },; 7,=1{ is not necessary.
We then write [using Eq. (25)]

N
[ o '[ 121: <xz(‘rl»l Pron(Tl) o 'Pren(TN)dTl seedTy

_[”"‘ _/‘”Pren('rl)"’Pr,n(TN)dTl‘”dTN
0 )

Py =

This is just (7%)
Py =N{D, » (74)
while the observation time for N renewals is (for large N)
T=NT,, (75)
Therefore,
D:—T’;;Jz =(7?1)_1— R (76)

which was to be shown. Thus, for macroscopic observa~
tion times, the diffusion coefficient is the ensemble aver-
age of the mean-square displacement within one re-
newal time, divided by the ensemble average of the
renewal time.

The results (76) and (42), taken together, permit com-
putation of D for any choice of renewal time distribution,
hopping time distribution, and fraction f of filled bonds.
Thus, they provide a general solution to the DBP model
for one dimension, assuming only that the observation
time is long compared either to the mean hop and mean
renewal times.

(V. CALCULATIONAL RESULTS: DIFFUSION
COEFFICIENTS FOR A ONE-DIMENSIONAL CASE

For concreteness, we present here calculated dif-
fusion coefficients and mean-square displacements for
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a one-dimensional model obtained using our ensemble-
averaged solution to the master equation (1) with f,

the fraction of filled bonds, chosen arbitrarily, Re-
newal was taken as a random process following a Pois-
son distribution; i.e., the renewal process was taken as
a simple first-order rate process. The computations
then were performed in several ways.

(a) Numerical simulation. The bonds in a finite chain
were randomly assigned as open or closed, and a par-
ticle was allowed to hop, starting from the origin, fol-
lowing the equation of motion (1). The bond renewals
occurred every » hopping intervals, each of length AT
(fixed renewal time). Averages of {(x® for each value
7 were evaluated over many trials.

(b) Closed-form evaluation. The expressions (42),
(61), and (26) were evaluated, leading both to mean-
square displacements and to diffusion coefficients.

These computations were performed for a series of f
and w and, in all cases, for both fixed-time and con-
tinuous-time motion, the results of (a) and (b) agreed
to arbitrary tolerance. Therefore, we report here only
the results of (b). There are clearly three limiting
cases of interest, specifically,

. -1
(1) tobs>> Tren>w ]
(ii) ?ren>> tobs > w-l ’

o1 =
(111) £ 00> 0™ > Ty -

Case (ii) is just ordinary percolationtheory, since the
observations are made before renewal can occur. For
f#1 (some broken bonds), limit (ii) will not show
diffusive behavior but, rather, a fixed maximum value
of {(x*), as given by Eq. (10). Physically, such systems
simply will not conduct. For case (iii), the particle in
the short time Af will have a probability of hopping left
or right given by

prob =fwAt (77

{no second hop will occur, since its probability is pro-
portional to (A#)*]. Then in time Af, the average mean-
square displacement is

Z?S-= 2fwAta?2 (78)
so that
%?— =2fd*w = const. (79)

This is the case, as physically expected, of “gray”
diffusion, which is ordinary diffusion, but with the
hopping probability reduced from w to fw. For all cases,
calculated values based on numerical simulation fit

those based on closed-form evaluation extremely well
(Fig. 2).

The most interesting limit is case (i), Here, de-
pending on how large the (renewal time)/(hop time)
ratio becomes, the observed diffusion coefficient will
exhibit differing f dependencies. For very long re-
newal times, we have from Eq. (10) that

D*'(—ﬁ:—- .

1 "f) ?ren (80)
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FIG. 2. (a) Computed mean-square displacement {x%) as a
functionoftime & [Eq. (49)] for the one-dimensional walk with-
in one renewal time. The x’s are for the hop discrete-time
hopping process with hopping interval 0.2, while the continuous
curve is calculated for the continuous-time walk, Values
chosen for the parameters are f=0.2, 7=0.2. Note that, as
expected, slight differences occur until 6 >>1, The flat asymp-
totic behavior is as expected [Eq. (13)] for f=1.0. (b) The
same as in Fig. 2(a), but for f=0.05, 7=0,2.

Thus, a plot of diffusion coefficient vs inverse mean
renewal time will be linear with slope of fd2/(1 ~f)?
near the origin, and bend over to become constant

[Eq. (79)] asymptotically. This behavior is illustrated
in Figs. 3 and 4 which show the mean-square displace-
ment and the diffusion coefficient as functions of the
inverse mean renewal time; while the former mono-
tonically decreases for increasing 7, (or decreasing
1/7,..), the latter goes smoothly to the limit of Eq, (80).

Some typical numerical values are given in Table I,
along with the accuracy of a fit to the diffusive relation-
ship (#*) < f,,. For case (iii) above, the fit to diffusive
behavior is perfect. For case (ii) it fails utterly, and
for case (i), diffusion is observed over the time scale
of many renewal events.

The numerical results thus confirm all of the formal
arguments made in Sec, III, In particular, they show
that the occurrence of renewal processes can produce
well-characterized diffusive behavior, and therefore

Druger, Nitzan, and Ratner: Dynamic bond percolation theory

TABLE I. Calculated mean-square displacements
and fits to diffusive behavior; f=0.2, 1=0.2.

Normalized®
tore Tren (x?%) D variance
1000 4 74,76 0.0150 0.2X10%
200 4 14.95 0.0151 0.6x10™
1000 20 15.62 0.0032 0.1x10%
200 20 3.12 0.0033 0.003
10 10 0.31 0.009 0.16
100 0.2 40 0.08 0.2x 10714

*Defined as (Py{{x?); - Dt,}/2, (x?)}), where D is
the calculated diffugion coefficient. It measures
the accuracy of the fit to (x2) < Dt,

finite conductivity, even in one-dimensional systems
with a large preponderance of empty bonds (blocked
jumps).

V. DISCUSSION

We have defined a time-dependent bond percolation
model for the process of particle hopping in a system
undergoing dynamic motions. The fundamental notion

X e X>

9.1 (a)

—_—
8.2 LI Lt B N L L B O B B |
20

a [¥:] 30 48 58
1/TAU
.66
4 ﬂ-;—1
SR
s
N
Vo9 BZ—
(b}
\\~
0.8e LA S e 0 I B L B LD AL B A
i s 18 15 28 25 38
1/ TAU
FIG. 3. (a) Mean-squared distance calculated as a function of

inverse renewal time Type,, for f=0.2. The distance is largest
for longest renewal time. (b) The same as in Fig, 3(a), but
for f=0,05.
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FIG. 4. (a) Diffusion coefficient, calculated from Eq. (76),
as a function of inverse renewal time T, for f=0.2 and for
a delta-function renewal time distribution. For Tpe, less than
an average hopping time, the curve is flat, as expected from
the arguments gurrounding Eq. (10), while for longer T.,,, the
diffusion coefficient drops off; in a sense, time is wasted,
since for long renewal times, the particle reaches the ends of
the corrected chain and Eqs. (10) and (65) become relevant.
(b) The same as in Fig. 4(a), but for f=0.05, Note that the
ratio of asymptotic values for D of Figs. 4(a) and 4(b) is 4.0,
as expected from Egs. (10) and (65).

involves the existence of two characteristic times, one
corresponding to the average hopping of a particle

from one site to another, and denoted 7,,, the other de-
scribing the mean time for the host material to undergo
substantial structural change. This latter time is char-
acteristic for changing, or renewing, the complexion of
available and unavailable bonds between sites, and is
called 7,,,. We find that for observation times > 7,,,,
the process is diffusive, independent of the percentage
of available bonds, and of whether or not diffusive be-
havior is found within a single renewal time. An ex-
ample is shown in Fig, 5 for the case in which diffusion
is not observed within a single renewal. We derive
closed-form summation expressions for the diffusion
coefficient,

When < T,,, the problem reduces to the usual static
percolation case; for one dimension, there is no diffu-
sion. There are a large number of physical systems for
which static and/or dynamic disorder occur. Static dis-
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order corresponds to the 7,,,~* case, for which or-
dinary percolation theory is applicable. Cases for which
this is true involve, e.g., rigid glasses, highly dis-
ordered framework solids, and random metallic alloys.
For softer materials such as polymer above the glass
transition temperature, or micelles, or hydrogen-bonded
aggregates, or electrode coatings of swelled polymer,
or lipid bilayers or colloidal particles the structure of
the (disordered) host material is itself evolving with a
characteristic time, which is associated in the model
with T,,. We have described, for a one-dimensional
model, the situation with fixed, discrete times AT

and T..,, and the physically more realistic continuous-
time problem which corresponds to a master-equation
situation (first order kinetics) for each assignment of
closed and of open bonds. The distribution in 7, be-
comes unimportant for large differences between the
observation time ¢ and the average T,,,. For > T,

> Thop OF Tpon<< Tpops Simple diffusion occurs, through
expressions for the diffusion coefficients in terms of

f and w will differ.

Three parameters occur in the theory: f (fraction of
filled bonds) and the average hopping and average re-
newal times, For application to any real physical situa-
tion, these need to be related to the system under
study. For instance, in polymeric solids for which the
free-volume theory description of conductivity is found
valid, =7 the fraction f should be related to the free
volume. Standard free-volume theories may be under-
stood by comparison with a static percolation mc:’clel,l
in which local cells are either liquidlike or solidlike;
the possibility of a cell changing from liquidlike to
solidlike, which corresponds to our renewal process,
is explicitly neglected. For temperatures near the
glass transition temperature, in which the free volume
is small, the renewal process (in a sense, motion of
the free volume) may be the only realistic way to achieve
transport. In this sense, our dynamic bond percolation
model is an extension of free-volume theories.

We have found some results for a very special case
of the dynamic bond percolation model: a one-dimen-

MANY RENEWALS

X wX>

frrrrrrrrrryr oo Ty
8 28 38 40

TAU

FIG. 5. Demonstration of diffusive behavior for many renewal
times, even when behavior is percolation-length limited within
one renewal time: f=0.2, 1=0.2, renewal after every 20
hopping intervals.
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sional case with completely random renewals. For
this special situation we presented both formal and
numerical results on the diffusive behavior. Several
extensions of the present work are clearly called for:
experimentally most relevant would be extension of our
results to include the frequency-dependent conductivity,
so that comparisons with microwave conductivity could
be made (in the particular case of ionic conduction,

the microwave results of Brodwin et al. '® indicate that
the response of the polymer chains follows that of the
mobile ions for frequency above 10 GHz, which may fix
the size of the renewal time). The artificiality of ran-
dom renewals should also be improved upon: in poly-
meric systems, for instance, one expects substantial
segments of the polymer to move in concert (e.g.,
reptation), so that several neighboring sites are re-
newed together. This “correlated renewal” might give
substantially different behavior and, in particular, it
might lead to lower diffusion rates for the same num-
ber of overall bond renewals, since bottlenecks would
be less efficiently bypassed. Finally, the study of
higher-dimensional systems is important both because
they are more realistic, and because the threshold be-
havior exhibited by static percolation in two or three
dimensions might be far less important when renewal
occurs on a time scale which is not too much greater
than the hopping time (in particular, which is less than
the time for uniform filling of a local cluster),

Despite these shortcomings we feel that the present
model is of potential utility, in that it generalizes both
the (microscopic) percolation model and the (macro-
scopic) free-volume theory to include dynamic disorder
of the host material, It may help to explain experimen-
tal systems for which neither of the previous pictures
is fully adequate. Application to one particularly vexa-
tious and important system, Na' diffusion in PEO . NaX,
is just beginning in our laboratory. This species is cur-
rently of wide experimental interest for battery applica-
tions, *~7 but although an adequate qualitative picture of
complex formation is available, ® there are serious dif-
ficulties in description of the transport (failure of the
Vogel-Tammann-Fulcher equation, *!? failure of sub-
stantial ion-pair blocks to impede conductivity, ? the
microwave behavior'®) which have not yet been explained.
We feel that the important physical process of renewal
may help understand this behavior.

The actual applicationof the DBP model to polymeric
electrolytes is discussed elsewhere.?® There is an
interesting relationship between DBP and free-volume
theory‘; in particular, the renewal time describes,
in a way, the kinetic rearrangement of free volume which
is normally ignored in free-volume theories. When
small particles are diffusing in a medium of large sol-
vent species or polymer segments, the mobility can be
much smaller than that predicted by free-volume theory,
essentially because of the kinetic restriction (large T,,,).
This can be of real qualitative importance, especially
fairly near the glass transition temperature.
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