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Polymeric solid electrolytes offer a difficult problem from the viewpolnt of under-
standing the charge transport mechanism. While quasithermodynamic theories (config-
urational entropy, free volume) are useful for rationalizing the behavior of these
materials, they do not really amount to a microscoplc plcture. We have develaped a
dynamic bond percolation {DBF) model te describe ionic conductivity in these
materials. The DBP model is based on a master equation describing fon hops among
sites. The percolation aspects are included by making the bonds between sites ran-
domly open or closed. The dynamical aspect is due to the configurational motions of
the polymer, and results in the variation of the bond assignments as open or closed.
The relationship of DBP to free volume theory is sketched; this involves a specific
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consideration of kinetic effects on free-volume motion.

I. Introduction

Since their discovery by Wright [l] and early
exploration by Armand [2], polymeric solid
electrolytes have been the focus of intense
investigarion in several laboratories. Many
interesting observations have been reported,
including vibrational spectra leading to a
solvation scheme for the cations [3), thermo—
chemical studies implying a salt lattice energy
threshold for complex formatiom [2,4], network
studies showing the increase of conductivity
wirh decreasing glass transition temperature
{5], electrochemical studies showing both
negligible electrenic¢ conductivity [6] and
significant anionic and cationic motiomn [7],
microwave conductivity data indicating simi-
larity of free polymer and polymer-salt complex
response for frequencles above 0.5 GHz [8],
morphological and thermal analysis studies
indicating mesophase behavior [9], activation
studies showing an important role for salt-free
polymer in the conductivity [10], viscoelastic
studies showing an increase in glass transition
temperature with salt concentration [2,11], and
a number of new polymer hosts [11,12] in addi-
tion to the original materials, pelyethylene
oxide (PEQ) and polypropylene oxide. The
Interpretation of the conductivity in these
largely amorphous polymeric materials, which
are generally studied well above thelr glass
transition temperatures T;, is nearly always
given, following Armand [%3], in terms of the
Vogel-Tammann-Fulcher (VTF) equation of glass
sclience [l4] or, more extensively, in terms of
the free volume theory (FVT)} of Cohen and
Turnbull [15,16].

The VTF equation itself is of empirical origin,
though 1t can be derived [15] straightforwardly
in the context of FVT. The VIF equation for
the conductivity o of 2 polymer/salt complex
may be written
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c = AUT._I/Z E_EA/k(T-TO)

(n
Here Ay is a (weakly) temperature dependent
prefactor, and Ty is the so-called equilibrium
glass transition temperature [I7,18); Ep has
the form of an activation energy. Equatien (1)
predicts precisely the type of curved activa-
tion plot (1n oT vs T™1) actually observed for
many [13] of these complexes, though hysteresis
[11] and complications due to uncomplexed
polymer {10} may be observed 1In certain temper-
ature and stoichiometric regimes. Because

eq. (1) may be derived from FVT [15], and since
it characterizes the conductivity of most PEO-
salt complexes fairly satisfactorily, it 1is now
quite standard to use FVT to discuss the lonic
conductivity of polymeric solid electroltytes.
There are, however, several drawbacks to the
FVT approach. Most importantly, it 1is not
intended to apply to the diffusion of small
ions within a solid comprised of much larger
polymeric chain segments {nor, originally, to
polymers themselves, for which a configura-
tional entropy model [19-22] 1s in several
senses preferable); rather, i1t is used to
describe viscosity, thermodyanmic data, and
relaxation behavior of glass-forming materials
[15,16,23-25), While its extension to neat
polymers may, with caution, be carried out, 1its
extension to lonic motion within polymera is
more problematic. In particular, one of the
fundamental assumptions of FVT, the facile and
rapid redistribution of the free volume, may
fail to hold in the case of polymer electro-
lytes with low fluidity.

We have recently presented a microscopic theo-
retical treatment of lonic motion in polymers
[26), based on a dynamic bond percolation
theory (DBP) model. This model takes cogni-
zance of the fact that lonic hopping can eccur
on time scales faster than typical reorganiza-
tion times of the polymeric host, and that the
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pelymeric host itself accuples a position
somevhere between that of the covalent frame—
work host in typical framework solid electro-
lytes such as B alumina and the rapidly reor-
ganizing liquid host of aqueous electrolytes.
That is, there are three typical timescales in
the problem, one corresponding to the obser-
vation time tgphg, one to the intrinsic iom
hopping time 1y = w~l where w is an ion hopping
rate between neighboring sites, and one being a
polymer reorganization time Tran, which is the
timescale on which the characterization eof jump
paths between sites changes hetween open and
closed. This DBP theory 1is dynamic, which can
be an advantage, compared to FVT, for
describing the polymeriec electrolytes. 1In the
present manuscript, we should like to recap
briefly some eritical points of DBP and FVT, and
then to compare them in the context of poly-
meric solid electrolytes. By so doing, we galn
some ingight into the microscopic meaning of
some of the parameters of each theoretical
scheme, and als¢ appreciate more clearly sets
of physical conditicons under which FVT may work
or may fail,

The nature of the ionic conductivity in poly-
meric solid electrolytes is complex, depending
on such variables as degree of hydration
(3,27], impurity 1ons from the polymerfzation
procese (3], ion pairing {28], inhomogeneities
in the sample and possibly conduction by both
ion types [7]. For reasons of simplicity, we
couch our discussion in terms of a simple
limiting case in which {on pairing and anion
transport are unimportant.

IY. Brief Review of FVT as Applied to Solid
Electrolytes

The firat application of free-volume concepts
to the viscosity of glass formers and the
liquid-glass transition was given by Fox and
Flory [29]; several subsequent workers ela-
borated upon thelr ideas [18,23]. Turnbull,
Cohen and Grest [15,16,23-25] have recently
extended the free—volume ideas to deal with
thermodynamic and relaxation phenomena, as well
as viscoslty. For a substance comprised of
small molecules, they derive the empirical
Doolittle [30] equation for the fluidity

¢ (which 1s simply the reciprocal of the vis-
cosity n). The equation 1is

¢ = ¢g exp{-bvy/vg} (1

where b 18 a constant of order unity, vg is the
average free volume per molecule, defined by

VE =V - vy |, (2)
¥ being the average volume per molecule in the
liquid and vg the van der Waals volume of the
molecule. To derive (1) within FVT, four

assumptions are made [18].

l. Tt is possible to assoclate a local

volume v of molecular scale with each molecule
(or motile segment of a flexible molecule).

2. When v reaches some critical value v,
the excess can be regarded as free.

3. Molecular tramsport occurs only when
volds having & volume greater than some criti-
cal value v~ approximately equal to the molecu-
lar volume vy, form by the redistribution of the
free volume.

4. No local free energy Is required for
free—volume redistribution.

It is the fourth of these assumptions, imn par-
ticular, which can become problematic when con-
sidering fonic transpert in polymers.

The free—-volume form for the diffusion coef-
ficient may be written [15]
*

D~ gave 'V /VE | &)
where g 1s a geometric factor of order 0.2, u
is the thermal velocity, a is roughly the
diameter of the molecule and Y (related to b of
(1)) 1is an overlap factor of the free volumes,
and should be close to unity. The factor v* is
the minimum void volume that can contain the
diffusing molecule. The form (3) is derived by
Cohen and Turnbull [15], who polint out that "in
our view, diffusion occurs not as a result of
activation in the ordinary sense but rather as
a result of redistribuiton of the free volume
within the liquid.” More specifically, (3) is
derived by maximizing the number of ways of
distributing the free volume, without consid-
eration of whether all such distributions are
in fact reasonably accessible., It is this
question of accessibility (or, alternatively,
of the rate of free volume motion or inter-—
change) which appears to us to limit the valid-
ity of FVT in situations involving lonic
transport in polymeric electrolytes; it is
equivalent to the failure of agsumption (&)
above.

For the situation of small ions {(or molecules)
in a polymeric host, one can, following (3),
derive diffusion coefficients for polymer
segments and for lons; these are

*
Dgeg = Ugegdgegf exXP{-YVgey/vel (4)
&
Dion = Uion@iong exp{-Tvion/vel , (5)

where V;on' the critical void size for fons, is
considerably smaller than v:eg, the critical
vold size for polymer segments. The temper-
ature behavior of the free volume can be
approximated as [15,31]

vg = Wm(T—To) , (6)

where Ty is the temperature at which the free
volume disappears (close to the equilibrium
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glass transition temperature), & 1s the coef-
ficient of rhermal expansion, and vy is the
mean molecular volume of the species whose
motiong create free volume (in our case,
polymer segments}. Then for temperatures
fairly close to Ty, vf will, from (6), be con-
siderably swaller than vieg. Thus from (4),
the polymer motion (and free volume recrganiza~
tion rate) 1s small, while at the same time

vf 1s larger than vi{,y and therefore (5) will
predict facile jonic diffusion. It 1s just
this conundrum {predicted rapid diffusion

from a free-volume mechanism in a teamperatute
range where the free volume is not mobile)
which iwplies serious limits to free—volume
explanations for diffusion in polymeric solid
electrolytes.

II1. Dynamic Bond Percolation (DBP) Theory

A microacoplc interpretation of (3), as well as
an understanding of some limits to its applica-
bility, may be gleaned from considerations based
on a model of ion hopping within a dynamically-
disordered medium, which we have recently
developed [26) and applied to polymeric solid
electrolytes. This model, which we call dynamic
bond percolation (DBP) theory, describes the
motion of lons between sites in the dynamically
disordered polymer. It is physically motivated
by several key observations, including the
response of both polymeric host and complex at
microwave frequencles [8], the suggestion from
vibrational spectra [3]) that ion sites are well
defined in these electrolytes, and the fact that
the interesting regions for experimental study
lie above Ty, where rearrangements are occurring
on a characteristic gslow timescale.

For any fixed polymer configuration, the motion
of the ions is described by .a percolation
process; that is, by a hopping wodel with the
hopping rates between any two sites chosen as
finite or zero, depending on whether those
sites are mutually accessible (an available, or
open, bond) or not (an unavailable, closed
bond). This is the static percolation aspect
of the model. But since the polymer (for T >
Tg) 18 in motion, the various stable sites far
the ion will move with respect to one another,
thus changing the complexion of closed or open
bonds. The dynamic motion of the polymeric
host 1s then modelled by allowing the hopping
probabilities to readjust, or remew, their
values on a timescale corresponding to polymer
motion. The model then consists of a master
equation

Py = jg; {Pj(t)"j-ri - Pi(t) Y1+ } (7)

where Py is the probability of occupying an
ionic site j at time t, and the w are hopping
transition probabilities per unit time. The
percentage of available bonds is denoted f, and
we choose, for a one-dimensional model,

0 1,j not neighbors
Wi, = 0 bond (1,ij) not available (8
w bond (1,j) available .
The assignment of (1,j) bonds as avallable or
unavailable is changed at a rate {1pen)” !,
where tpan i8 the time of the remewal [32], or
solvent motion, process. For simplicity, we
have assumed that the reassignment of bonds is
random, independent of their former assignment
or that of their neighbors; this seems
appropriate for a fully amorphous polymer, but
other choices may be made [33].

The analysis of DBT has been given elsewhere
[26]. Here we review a few of the salient
points, which can then be contrasted ta FVT.
Wichin the DBP, one finds:

l. For hopping lifetime 1y (= 1n2/2w for
one dimension) such that 1 2> t1p4,, the motion
process corresponds to hopping in & homogeneous
(non-percolating) system, in which the effec-
tive hopping rate is wf.

2. For observation times tghg, such that
1h €< tobs < Trens the mean-squared displace-
ment will be fixed by the static percolation
problem, becoming

x> = Lt a2 (9)
(1-£)2

in one dimension (a = distance between sites),
and with well~defined values for higher dimen-
sion, so long as f is below the percolation
threshold.

3. For tghs »” Trans the behavior is dif-
fusive (that is, <x2> « tgypg), Lindependent of
the behavior for times shorter than Tpeqn; the
diffusion coefficient in this regime increases
monotonically with 1/tpe, (Fig. 2}, An example
of this is shown in Fig. 1, where <x2> is seen
to be linear in t, once t > 1pen. This {s to
be contrasted with the static percolation
problem defined by (7,8), (or the short-time
behavior in Fig. 1), for which no diffusion
occurs in gne dimension.

4, A closed form expression (albeit
invoelving many summations) mway be glven for
<x?> [26],

The essential differences between the assump-
tions of FVT and of DBP are: (A) that the FVT
assumption (4) is not made in the DBP model and
(B) that FVT 1s not a lattice-hopping model,
while DBP i1s. These differences become impor-—
tant when we conaider the motion of ioms in
polymer hosts.

IV. Polymeric Solid Electrolytes: FVT and DBP
Ideas

The first suggested mechanism for ion transport
in solid polymer electrolytes was given by
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MANY RENEWALS

TAU

Figure l. Mean—squared displacement of an ion
obeying the DBP model, for the case in which
(x2>1 is limited by percolation, Note that the
long-time behavior (T > Tyan) is diffusive.
Parameters: f = 0.2, wty = 0.2, renewal after
twenty hops {from [26])}.
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Figure 2. Diffusion coefficient, calculated in
DBP, as a function of inverse renewal time.

Note that the shortest renewals give highest
diffusion, since the blocking effect of unavail-
able bonds is minimal., Value of f is 0.2 (from
{26]).

Armand et al, [2] who suggested that the helical
channels in which catioens were situated pro-
vided one-dimensional motion pathways. Later,
Armand et al, {13] and Papke et al, [4]
suggested that, while the catlons were probahly
largely complexed in locally-helical regions,
their transport was very probably dominated by
motion through the disordered regiona. The
former group invoked the empirical VIF equation
(1) and the qualitative notions of free volume
transport to explain the curved Arrhenius plets
for log (oT) vs T-1, while the latter group
instead gave an explanation in terms of the
Adam, Gibbs, and Di Marzio configurational
entropy model as extended by Angell [19-22],
Most commonly, discussions are couched 1in terms
of the FVT [18] or configurational entropy
{21,22] models. Both of these, however, are
quasithermodynamic, and therefore do not
include the dynamical modeling of DBP. Our aim
here is to discuss the FVT in light of insights
provided by the DBP model,.

The typical parameters of FVT are the thermal
velocities u, the sizes of the diffusing spe-
cies, the free volume v¢ and the critical vol-
umes vggg and vf;n {of 4,5); those of DBP are
the fraction of avallable bonds f, the hopping
rate w and the renewal time Tpq,. We wish to
relate these to one another in order to under-
stand FVT on the kinetic basis of DBP. A more
complete treatment will be given elsewhere
[33]; we wish here only to review some impor-
tant polints.

If for a moment the polymer strands are con-
gldered to follow a sort of hopping motion from
one region to another with a hopping rate K,
then we could write

Dgeg = A aieg K fgop o (10)

Here » is a factor of order unity and ageg is a
typical segment area. Egq. (i0) is simply the
generalization of the definition of the dif-
fusion result for a simple random walker to
take into account (through fseg) of the fact
that not all jumps are allowed; that is, the
effective jump rate is Kfgeg rather than X,
since only a fraction fgo, of bonds are avail-
able. By comparison of (%0) with (4), we find

2 *
by asegK fseg = 2zeg B Ugeg eXp{—YVgeg/vo) .
(11}
then identifying K as “seg/asegv we find
fseg = %— exp(—Yv;egIVf ) . (12)

In the limiting case of very large free volume,
all sites should become available: limvf+m‘f -
1. Thus g = A, and we have

fgeg = exp{-Tv;eg/Vf} . (13)
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An analogous argument for the hopping ions gives

fion * exP{‘YVion/Vf} (14)

This behavior seems correct in both limits:
when vesm, f>1, since then the free volume is
very large and all sorts of motion should be
permitted. When v*IVf+w, £+0, which {s also
reasonable, since no motions will be permitted
when the free volume is too small to permit
voids of the size of the critical volume of the
diffuser.

The identifications (13,14), along with
W = Ufon/2ion (15)
provide FVT equivalents of w and f. The renewal

time Trep can be related via

fraction of
unavallable bonds ]
fraction of
available bonds

(Tren)'(“seg) = (aseg)'{

(16)
or )
1”fseg Bseg \ (?__ l)aseg
Tren ( fseg [ Ugeg ] Ugseg
7y

Verbally, (16) says that the velocity times the
time 1s the probable distance moved. Using
(l4), we can rewrite {(17) as

Ageg

*
ok ) (explrvaeg/uel=l)  (18)

Tren ™ [

As the free velume becomes larger, the renewal
time decreases, but for T not too much larger
than T4, vf i5 small and tpen 1s long.

Having assoclated the parameters of the two
approaches, we can make some comments on the
nature of the FVI description, Firstly, if (5)
is used, the actual polymer dynamics, which
should enter via ageg, ug;g, and vggg, is lost.
In particular, if vg¥g >> vi%, (which s
reasonable), the polymer may still be nearly
frozen when (5) might predict high mobility.

In the language of FVT, we have a breakdown of
the assumption (4}, that the free volume can
freely distribute itself; equivalently, we have
the situation, ignored in FVT, in which [23]
solidlike and liquidlike cells exchange volume,
or solidlike cells become liquidlike and vice
versa. These processes, which correspond to low
fluidity, are indeed relevant for polymer elec-
trolytes. In fact, in this regime the perco-
lation {s almost static, and Iin one dimension
we expect no diffusion.

If the FVT wodel (4) is accepted for the

polymer motion, but DBP is taken for the 1on
motion, some other limits may be examined (chis
seems a physically reasonable arrangement, since

the ionic¢ motions, as opposed to ionic poten-—
tials, should not influence polymer segment
motion). If the polymer motion is raplid, w
becomes u-fj,4, and

*
Dion = 8ion Yion £ = 3ion Uion exp(~y¥ion/vE).
(19

This 1s just the FVT result, which 1s indeed
appropriate to this limit. The limit is not a
very probable one, however, since it asgsumes
ufﬁn/uggg << l; usually the opposite limit
should hold, since the ions are lighter and
smaller than the segments. MNevertheless, we
see that the short tp.n limit is the FVT
sltuation.

Consider now the opposite case, in which
T-Ty is not too large, v¢ 18 smaller than or
near to VJEE, and, from (18}, 1pan Is long.

Then, from Eq. (65) of [26], we have
Dion = <x2>1/Tren » (207

where <x2>; is the average diffusion distance
within one renewal cycle. Then using (17),

1

= - 1). 21
foeq ) (21)

Dion = <x2)1useg/35eg(

for tren > time to span average connected
cluster, we have <x2)> of order of cluster size.
More exactly, using [26])

<x2> = alf/(1-f)2? (22)
appropriate for long tyan, we find

Ugegdge exP{‘ZTV;e /vg)
- - fegUseg £ (23)

*
(1 exp(—Tvseg/Vf

Dian

In this limit, Dy,, is controlled only by the
properties of the polymer; this cannot arise
from the FVI result (5). Here we use fgep,
which 1s appropriate, since polymer motion
limits <x2>.

One interesting experimental implication of the
DBP which 15 not so clear in FVT involves the
situation in which excess salt is added to a
polymer host, with resulting decrease in
fluidiry and sharp decrease in ionic conduc-
tivity; such observations have in fact been
made for polysuccinates [11,12]. The glass
transition temperature T, varied only slightly
in these experiments. Thus, from (6) vf§ changes

‘only slightly, but enough {from the Daclittle

equation) to change the fluidity. Using (3),
however, with vfﬁn > vg, the predicted ionic
conduction is still high; ics observed [12]
decrease may be attributed to long Trap brought
on by high viscosity of the polymer. This
results in slow rearrangement of free volume,
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and a breakdown of assumption (4) of FVT. This
gituation 1s easily dealt with in the DBEP
picture: the fluidity decreases, so

Tyen increases and Di,p, drops.

The quasithermodynamic theories of free volume
and configurational edtropy have been very
valuable for understanding thermodynamic and
transport properties of polymers, liquids, and
glasses. We feel that the DBP approach, by
including solvent dynamics in a kinetic
approach to the transport problem, coffers both
a useful interpretation of FVT and an attrac-
tive alternative approach to the discussion of
transport in theee materials.
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