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The escape of a particle from a potential well is treated using a generalized Langevin equation {(GLE) in the
low friction limit. The friction is represented by a memory kernel and the random noise is characterized by a
finite correlation time. This non-Markovian stochastic equation is reduced to a Smoluchowski diffusion
equation for the action variable of the particle and explicit expressions are obtained for the drift and diffusion
terms in this equation in terms of the Fourier coefficients of the deterministic trajectory (associated with the
motion without coupling to the heat bath) and of the Fourier transform of the friction kernel. The latter
{frequency dependent friction) determines the rate of energy exchange with the heat bath. The resulting
energy (or action) diffusion equation is used to determine the rate of achieving the critical (escape) energy.
Explicit expressions are obtained for a Morse potential. These results for the escape rate agree with those from
stochastic trajectories based on the original GLE. Non-Markovian effects are shown to have large effects on

the rate of energy accumulation and relaxation within the well.

I. INTRODUCTION

The dynamics of activated rate processes has been a
subject of renewed interest during recent years. Fol-
lowing Kramers, ! many studies use a mode! of a parti-
cle moving in a one dimensional potential well under the
effect of thermal noise and damping, the objective being
to calculate the rate of escape out of the well (Fig. 1).
This model has played a central role in many areas of
physics and chemistry such as chemical reactions in
condensed phases, 2 surface desorption, * diffusion of
atoms or ions in solids,* dynamics of Josephson junc-
tions, % etc.

The starting point in the Kramers model is the
Langevin equation

¥==(1/M)8V(x)/8x —vx +(1/M)R() , (1)

where x is the coordinate of the particle of mass M,
moving in the potential V(x), where ¥ and R are the
damping rate and the (stationary Gaussian) fluctuating
force associated with the coupling to the thermal bath.
The fluctuation dissipation theorem relates ¥ and R,

R(OR(#)=2vM kT 5(2) , (2)

where & is the Boltzmann constant and T is the tempera-
ture. Kramers proceeds to solve Eq. (1) for two limit-
ing cases:

(a) The high viscosity limit (¥ > w, where w is the
well frequency). In this case Eq. (1) is reduced to the
Smoluchowski diffusion equation

8p(x,t) 1 .P_{[E’M +RT 5%] p(x, t)} , G

8t ~ YM ax ax

where p(x, f) is the probability to find the particle at
position x at time ¢.

(b) In the low viscosity limit, ¥y < w, Eq. (1) is re-
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duced to a Smoluchowski-type equation for the probabil-
ity P(J) to find the particle with a particular action
J[w=w{J) is in general a function of J, and the energy
E() is given by E(J) =/’ w(J)dJ']

oPULY) 2 f I I
WU _, BJ{w(J)[ @)+ #T BJ]p(J,t)} L@

Both Egs. (3) and (4) may be used to obtain the rate
associated with the diffusion process that they describe.
This may be done by either considering the steady state
flux associated with these equations (the escape rate is
taken to be this flux divided by the population in the well)
or equivalently by considering the mean first passage
time to attain a threshold position [from Eq. (3)] x5 in
Fig. 1, or a threshold energy [from Eq. (4)] Eg in Fig.
1 (the escape rate is taken to be the inverse mean first
passage time in the steady state). The results obtained
by Kramers under the additional assumption Eg > kT
are

EB'

o X

Xo Xg

FIG. 1. A schematic representation of the potential well. xgz
denotes a position such that for ¥ > x5 the coupling to the bath
vanishes.
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- YW ‘_aE)
r e exp( oT (case A) , (5a)
E -E
oy 2B B
7=V or exp( o > (case B) . (5b)

Here 7 is the escape rate, w is the frequency at the
bottom of the potential well, and wy is the “frequency”
associated with the second derivative of the potential
at the barrier.

In addition to the results in Eqs. (5), the rate ex-
pression associated with the transition state theory
(TST)

¥= % exp(—k—?&) ()
is often used. This result is obtained by calculating
the outgoing flux at the point xz, assuming that there
is thermal equilibrium between bound and unbound par-
ticles and that E; > kT. Kramers® also obtained a re-
sult which extrapolates between the high friction limit
[Eq. (5a) and between the TST result Eq. (6)]

TR )

These results yield Eq. (6) for ¥ -0 and Eq. (5a)} for

-y..ao.

The ranges of validity of these different results for
the escape rate has never been fully explored. Equa-
tion (5a) is expected to be valid when the rate deter-
mining process is the change of the particle’s position
against the resistance imposed by friction forces.
Equation (5b) is expected to be valid when the coupling
to the thermal bath is so weak that energy exchange be-
tween the bath and the particle becomes rate limiting.
It should be kept in mind however, that if passing
through xp is our criterion for escape, the low friction
result Eq. (5b) (which express the rate in which parti-
cles attain the energy Ejy) should be corrected to

r=f Yk—ET?- exp< k};‘B> . (8)

Here f is the exit probability, i.e., the fraction of
molecules that, once attained the energy Eg, proceed to
move out of the well without going down to energies
smaller than Eg and f is expected to be close to one in
the low friction limit.

Also, as is well known, the TST result Eq. (6) may
be corrected by taking into account only that part of the
outgoing flux which originates below the energy Ep.°
This may be expressed by

e Y —Ep
r=s o exp< kT> , (9)

where s is the sticking coefficient, i.e., the fraction of
equilibrium trajectories which start out of the well and
in the direction of the barrier, which lead to capture
(defined as the event where the particle energy E goes
below Eg). We note in passing that in the low friction
limit the results Eqs. (8) and (9) should be identical,
resulting in a relation between the exit probability f
and the sticking probability s:

§=21 ——=7-=1Ff (10)

and for very low friction (f —1)

YEg
wkT °

s=27 (11)

In the last few years several extensions of the
Kramers theory were given. In particular we note
the extension of the result of Eq. (7) to a multidimen-
sional case by Grote and Hynes, " the inclusion of non-
Markovian effects in the barrier region by the same
authors, ® and the corrections to the low friction limit
(obtained as terms of higher powers in y, using how-
ever, models for thermal relaxation different from
Kramers’) by Skinner and Wolynes.® New mathemati-
cal developments have been recently reviewed by
Schuss. ®

The purpose of the present paper is to extend
Kramers’ theory in yet another direction by including
non-Markovian effects in the low friction limit.*!
Obviously, in most cases involving chemical systems
the Markovian representation Eq. (1) is not valid. As
usual it is based on the assumption that the time scale
associated with the motion of the thermal bath is much
shorter than any relevant molecular time scale. While
this assumption holds, e.g., for atomic diffusion in
solids, it is practically never realized in cases where
the coordinate x is a molecular vibrational coordinate,
because the correlation time associated with the ther-
mal bath is usually much longer than a typical molecu-
lar vibrational period. Even if x is the desorption co-
ordinate for a physisorbed atom on a surface, the
Markovian assumption is usually inappropriate: the
bath (surface motion) correlation time is often of the
same order of magnitude as the period associated with
the motion along x.'?

These observations should be of no consequence for
the escape rate in strong and moderate friction cases,
where the particle may be considered to be essentially
in thermal equilibrium within the well and where the
dynamics takes place only near the barrier top. Non-
Markovian effects may be important also for barrier
dynamics, however, this depends on the relation be-
tween the barrier frequency (renormalized by the
presence of friction) and the friction. Grote and
Hynes® have treated this case and have shown that
memory effects in barrier dynamics may lead to a
smaller effective friction and thus to a larger range
of validity of the TST result (which is the low friction
limit of barrier dynamics models). In contrast, we
focus on cases where well dynamics is important.
Among such cases are (a) the low friction limit where
energy accumulation becomes the rate determining
step, as seen by the result of Eq. (5b), (b) reactions
occurring under nonequilibrium or nonsteady state
situations, such as dissociation or surface desorption
following a temperature jump, and (c) reactions occur-
ring under the effect of time varying external fields,
such as the radiation field.

In all these cases well dynamics is important and
becomes dominant in the low friction case. Obviously
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well dynamics is governed by energy accumulation and
relaxation processes. In addition to Kramers’ low fric-
tion treatment [Eq. (5b)] and to related studies, the ap-
proach usually taken is based on a master equation for
the population of the quantum mechanical levels of the
particle in the well, where the transition rate between
any two levels is obtained from quantum mechanical
perturbation theory.’ In many situations this is a cum-
bersome and difficult task. Intuition and experience
tells us that classical mechanics should be adequate in
many such cases (when the potential well supports many
bound levels). Classical energy relaxation studies have
indeed been carried out for non-Markovian cases using
Langevin dynamic simulations.' Such simulations are
again expensive and time consuming because of the
many time scales (molecular frequency, bath dynamics,
energy relaxation, and reaction rate) involved. In
analogy to Kramers, we expect that also in non-
Markoffian systems it should be possible to eliminate
the short time scales associated with the fast molecu-
lar and bath motions and to focus on the relatively slow
energy variation. In fact Zwanzig'® has developed a
procedure for reducing the classical Hamilton’s equa-
tions of motion for a one dimensional particle interacting
with a non-Markovian heat bath. Using the assumptions
that: (a) the environment always remains in thermal
equilibrium and (b) that it is enough to keep only the
lowest nonvanishing power of the particle-bath inter-
action, Zwanzig'® has obtained a Fokker—Planck equa-
tion for the action variable of the particle. Very re-
cently Grote and Hynes'® used Zwanzig’s result to
derive explicit forms for the action and energy diffusion
equations and used it to discuss the rate of molecular
dissociation and isomerization for molecules in dense
environments in the energy diffusion controlled limit.

In what follows we describe an alternative procedure
which uses the generalized Langevin equation (GLE) as
a starting point. Our procedure leads to an equation
analogous to Eq. (4) for non-Markovian systems which
is similar to the result obtained by Zwanzig.'® This
equation may be solved analytically in some cases, or
else may be used (itself or its Langevin analog) in a
stochastic simulation which is much easier and cheaper
than that based on the full system’s dynamics.

Our model is described in Sec. II. The reduction
procedure which leads to a Fokker—-Planck equation in
energy (or action) space is presented in Sec. III. In
Sec. IV we analyze our result, apply it to some special
cases, and test its validity against a full scale Langevin
dynamics calculation.

II. THEORY
Our starting point is the GLE

o 1 8V(x) f‘ - 1

e iy A d'rZ(t—‘r)x(‘r)+MR(t) s (12)

where R is a Gaussian noise with (R) =0 and
REJR{))=Z(t, ~t,) MET . (13)

The memory function Z(¢) is characterized by the cor-
relation time which provides the time scale for its de-

cay to zero and by its Fourier components

Z0)= [ dtz(t) expl- inot) (14)
0
with
Zo(w)=£wdt2(t)=7 . (15)

For specificity we shall often refer to the simple case
Z({) =(r/7,) exp(~t/T,) , (16a)
Z () =y/(1+inwr,) , (16b)

where 7 is the Markovian friction while, as we shall
see, the actual friction (rate of energy transfer) for a
well motion with frequency w is related to the Fourier
components |Zn(w) . Apart from the overall reaction
(escape) rate our problem is characterized by the time
scales associated with Z(w), T., and w. We assume

ylor | Z (w)]) < Vr,<w . (17)

The right inequality implies that we cannot use the
Markovian starting point, Eq. (1), while the left in-
equality suggests that it should be possible to get a
Markoffian description of the energy transfer process.

Lax'" has described a procedure for deriving a
Markovian -Fokker~Planck equation corresponding to
a Langevin equation with short but finite correlation
time. His procedure can be used in principle for our
present treatment. Lax, 1 however, limits himself to
the standard second-order iteration procedure which
is not sufficient in our case as discussed below. In
what follows we use an alternative route.

IIl. THE REDUCTION PROCEDURE

We start from Eq. (12), and rewrite it in terms of
the action (J) and angle (¢) coordinates. First we show
(Appendix A) that Eq. (12) may be rewritten in the form

. 3x d 1
J=M ga[—fo d'rZ(t—'r)v(‘r)+MR(t)] R (18a)

¢ =wlJ) -M Z—;—[— j: drZ{t = 7)v(T) + AL/IR(t)] , (18b)

where v =x is the velocity and where w(J) =dH(J)/dJ, H
being the Hamiltonian for the deterministic part of the
particle’s motion. We note that the canonical transfor-
mation (x, Mv) - (J, ¢) is defined using this deterministic
Hamiltonian. This implies that x and v, considered as
functions of J and ¢, may be expanded in the form

©

KT, 0) = D, %) expling) , (192)

oW, 9) = 2, v,(J) expling) , (19b)
with

=x 5 v =0, . (20)

The expansion coefficients x, and v, are related by'®
v,(J) = inw(J) x,(J) . (21)

We further note that for a one dimensional motion as
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considered here it is always possible to choose the
origin of ¢ so that x and v are even and odd functions of
¢, respectively. With this choice we have

[Im(x,) = 0]
[Re(v,) =0] .
Inserting Eqs. (19) into Eq. (18) we get

J ==-iM Z Z nx, e’”“f drZ(t -7 v, e’

ns- ma-w©

X =X, (22)

Up==V,4

+iR(t) 2 nx, et (23)

ne-m

6= w(J)+MZ ‘"“f drZ(t -1)v,e’

NEm® Mu-o

-R() E

nu-wo

(24)

We now introduce our main approximation, based on
the time scale ordering, Eq. (17). The memory kernel
Z(t) decays to zero in times of orders T.. For such
short times we can write It -TIS 7, ,

(1) =o(t) —wlt-1) , (25)
v(7T) =0, (8) . (26)
Therefore,
f' dTZ(t - T) ‘U,,,(T) eimo [C3 U,,,(t) eim® @)
0
t
X drZ(t - ~-imwlt-7)
fo TZ(t-Te (27)
and for 1 >¢,,
f‘ drZ(t -1 v, (T)e'™ Dy (1) '™ Z (v) , (28)
0

where Z,(w) is defined by Eq. (14).

Substituting Eq. (28) into Eqs. (23) and (24) finally
leads to

-iM 2 Z Ny Uy 2 @™ iR (D) Z  nx, e,
nm-m Auew
(29)

b=wiM . 2 HvnZ, '™ _R(H) D x e, (30)

NBa® pmac ns-o

where x,=dx,/dJ. Despite their appearance these equa-
tions are not Markovian because the random force R(t)
is characterized by the finite correlation time 7.

The time evolution of the probability distribution
P, ¢,t) is determined by the equation

ISAUEED DY

5>

n=

and

fo ds R(s) o, [J(2) + AT, (s)] explin[o(8) + 50, ()]}
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Yy ( 1)" —E- " _8_ * m &
7 -1 (:{E,,)(M) () wanr@s e,
' (31)

where AW, =AW, (T) =W(t+T) - W(f) (W is J or ¢). The
limit in Eq. (31) should be understood as taking T<< 7!,
However 7 is kept larger than 7, (and w™) in order to
yield a coarse grained Markovian equation. Our task
is therefore to evaluate moments of the form
{(aJ,)"(a0,)"). The standard procedure is to use
T 3
a(n)= [ dsdW(E+s), olt+s), t+s) (32)
(1]

where J (J, ¢, 8) is given by Eq. (29) as a basis for itera-
tion in the form

aJit (r) = fo "as i ) +AI8V(s), o(t) +ApIV(s), t+5) ,
(33)

where (I) denotes the Ith iteration stage. A similar
interation procedure is used to evaluate A¢.

In the Markovian case (where 7, is the shortest time
scale) it is usually found'” that: (a) moments of the form
(A" (A¢)*) with m +k> 2 are of order ™, n= 2 and
therefore do not contribute to Eq. (31) and (b) all the
relevant terms (i.e., terms of order 7) which contribute
to the first and second moments (m +%=1 or 2) are ob-
tained at the second iteration stage. This leads to the
standard Fokker-~Planck equation.

The present, non-Markovian case is different: terms
of order T are obtained in all orders of the iteration
procedure, forcing us in principle to consider an infinite
number of contributions to Eq. (31). In order to sim-
plify our notation we introduce the following function
of J:

0,(J) =inx,(J) , (34)
Bl =dx, () /dJ (35)
B, () = iMnx, (J) v,()) Z,, [w(D)] , (36)
) =M [dx,(J)/dT | vp(T) Z,, [ 0] (37)

In terms of which Egs. (29) and (30) take the form

J=-2 Z B,.(J) expli(n +m)d] +R() D 0,(J) explind),

f ds B, [J(£) + AJ,(s)] expliln +m) [0 () + Ad, (s)]}

na-© -0 n=-° (38)
b=w+ 2 D Cpnld) explitn+m)p)
~R() 2 1) expling) . (39)
The equations for AJ; and A¢, are
(40)
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A, (T) = fo Tdsw[J(t)+AJ,(s)]+Z > fo TdsC,,,,,[J(t)+AJ,(s)]exp{i(n+rn)[¢>(t)+A¢¢(S)]}

2= M=o

no-

Equation (40) and (41) are now used for a systematic
iteration procedure as defined by Eq. (33), starting
from AJ{"(r) =0and A¢*(7) = «[J(#)]7. Details are pro-
vided in Appendix B. Here we giveonly the main intermedi-
ateand final results. Inserting AJ{®’ andA¢® into the
right-hand side of Eqs. (40) and (41) we obtain

- - .
aI(1) =7 Z B, .+ Z o, e'""f dsR(s)e'"“s ,
o

n==0

(42)

nE=w0

o «© T
API(M =wT+T 2, Cp= 2 Hoe™™® f dsR(s) e'"vs .
0

frror
(43)
Inserting these results in Eqs. (40) and (41) we obtain
Egs. (B5) and (B6) for AJ® and 4¢®. Inserting these
again into Egs. (40) and (41) leads to Egs. (B7) and
(B8) for AJ® and A¢/¥. This last interation step is
not necessary in the Markovian case. However, in
the present treatment, terms which appear in the third
iteration step make non-negligible contributions to
{Ad,) and {Ad,).

In calculating the moments {{AJ, (7)™ [a¢,(T)]*) needed
in Eq. (31) we systematically neglect terms which are
of order ™(®>1) or [2(w)/w]" (n=1). Neglecting terms
whichare of high order in 7 is implied by Eq. (31).
Neglecting terms of order Z(w)/w corresponds to the
low friction limit [Eq. (17)]. We note that Z{w)/w<1
may be satisfied even if y[:Z(w=0)] < w is not satisfied
[see Eq. (16b)]. We find that, as in the Markovian
case, only first and second moments yield terms which
are not negligible by these criteria. The final results

n==0

are
(AJ,(T)):—ZTM"z’;nZ (w—kT a%)(]xnlzz‘:) , (44)
<A¢‘(T)>=wT+TM§ n(w—kT d%)(%'—z 23) , (45)
(AT (D)D) =4tMRT D n?| x,|22° (46)
n=l
([a¢, (NP =4TMET Y %’f,l az‘ﬁ , L))
n=1
aJd(n)ag, (=0, (48)
where
Z¢= f " 4t Z(8) cos(nwt) , (49a)
0
28 f " at Z() sinfnet) (49b)
0

Inserting these results into Eq. (31) [with n> 2 terms
in Eq. (31) disregarded] and defining

e(J)=zMZnZIx"122: , (50)

- E £TdsR(s) w, [J(2) + ad, (s)] explin[o(2) + Ad,(s)]} -

(41)
|
| dx |2 5.
TW)=2MrT 3| =2} 25, (51)
~| dJ
= a 3 dx,|® 2,
QW) —w(J)+M<w(J) kT dJ>§n 5. 62
We get a Fokker—Planck equation for P(J, ¢, 1),
8P, p,t) 8 8
o —aJ{e(J)[kT aJ+cu(J):|P}
2
)
+ r(J)a—IZ— e £ (53)

3¢ 8¢ °

Equation (53) is our final general result for the action-
angle probability distribution. If at £=0, P{J, ¢)=P(J),
independent of ¢, it will remain independent of ¢ at all
time and will satisfy the equation

aP(J,¢) @ 8
T = ﬁ{i(‘]) [kT Y, + w(J)] P}

which is our final practical result.

(54)

(V. DISCUSSION

Our final result, Eqs. (54) and (50) constitutes a dif-
fusion equation for the action variable J associated with
a particle moving in a one dimensional potential well
under the influence of a heat bath characterized by Eqs.
(13) and (17). The energy H(J) is determined from

J
B = [ ar o) (55)
The time evolution of the probability distribution P(J)
is determined by the two functions w(J) and €(J). The
function w(J) is the (action dependent) frequency which
is determined by the potential function. The function
€(J) is determined by the deterministic motion of the
particle (i.e., the coefficients x, of Eq. (19a) and by the
properties of the thermal environment, through the fac-
tors Z¢.

Consider the behavior of our result in some special
limits. At equilibrium 8P/8¢=0 and Eq. (54) yields the
Boltzmann distribution

P (J)~ exp[ - H(J)/kT] . (56)

In the Markovian limit Z(¢) = 2y5(¢) and én(w) =y. We
get

e =2vM Y n?|x|? . (57
n=l

This may be simplified further by using the identiy

J=2Mw Y n?|x,|?

n=1

(see Appendix D). This leads to
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€(J) =yJ/wllJ) (58)
so that

BP 9 J

o 7 _{(wm)[” cotn] P } %9

This is Kramers’ energy diffusion equation in the
Markovian limit.!

Finally consider the harmonic oscillator limit. In
this case Eq. (19a) takes the form

I VN2 i e (60)
x(J,¢)—(-zm) (e*® +e7'?)
so that
J 1/2
x,,(J):(m—‘;) 5|"|'1 (61)
and
25c_d 3¢
eW)=2M|m|*25= < 25 . (62)
Substituting into Eq. (54) now leads to
P -, J (i 8
o Z( ) [ (kT 8J+w)P] . (63)

This result is the same as that obtained in the Mar-
koffian limit! with y replaced by the frequency depen-
dent relaxation rate

Z5(w) = (M k7)™ fo dr cos(wr) RO R(T)) . (64)
This result for the relaxation rate is the classical
analog of the energy relaxation rate obtained for the
harmonic oscillator in quantum perturbation theory. ¥
It is interesting to note that all relaxationrates Z,(w)
have the typical form of a Fourier transform of a sec-
ond-order time correlation function in analogy to results
obtained in quantum perturbation treatments. Such
treatments involve a second-order expansion in the sys-
tem-thermal bath coupling. Similarly, Zwanzig’s
derivation of a classical Fokker-Planck equation for the
non-Markovian case® involves a second-order expan-
sion in the system bath couplmg. We obtain an equiva-
lent result by expanding in Z/w. Since Z is second or-
der in the system bath coupling and w is related to the
system’s Hamiltonian [cf. Eq. (55)] the two expansions
are essentially equivalent.

In order to proceed with a solution of Eq. (54) we
need to know the functions w(J) and €(J) for the particular
potential well. In particular, to evaluate €{J) we usually
have to truncate the series Eq. (50) and to evaluate the
remaining sum numerically., For a Morse oscillator
this may be carried out quite easily. The potential is

V(x) =D {exp] - 2(x — xp)/a] — 2 exp[ ~ (x ~ x,)/al} . (65)
In terms of the action angle variables we have
H(J) = ~D(1 — woJ/2D)? , (68)
w(J) =dH/dJ = wy(1 = woJ/2D) , (67)
2T, ) =x+aln{[1 -V1-AZcos(p)])/A?}, (68)

where

B. Carmeli and A. Nitzan: Activated rate processes. |

X=1~wy,J/2D (69)
and where
wy=(2D/Ma?)'? (70)

is the frequency at the bottom.
The evaluation of x,(J) is described in Appendix E.
The result is

n
n2|x,,(J)|2=a"<——w°J—> , nz1. (71)

4D - wyd
Note that Eq. (71) implies

2, 7% %, |2 =a® wyd /(4D - 2wyd)

n=1
which together with Eq. (67) leads to the identity dis-
cussed in Appendix D. We should also note that the val-
ue of J at dissociation (to be denoted J,), which satis-
fies H(J,) =0, is

J,=2D/w, . (72)

Therefore, for J<J,; we have wyJ/(4D - w,J) < 1, where
the identity is obtained for J=J,. Thus, the series de-
fining €(J) [Eq. (50)] converges for all energies except
at dissociation, provided that Z: does not increase expo-
nentially with ». In some cases éﬁ decreases with n
rapidly enough for the series to converge even for
J=dy4.

Given the result of Eq. (71), €(J) may be evaluated
for any given model for the bath [i.e., a given func-
tional for Zﬁ(w)]. For the particular (though probably
unphysical) case

Z({t) = 2"—7:1 EAN g M (73a)
Zﬁ(w) =y exp(—-nwT,) . (73b)
Equations (50) and (71) lead to
2 exp| - w(/)7,]
W) =rd woll - exp[~ w(@) T, ]}+ w(J) {1 +exp[- w11} *
(74)

In other cases the series Eq. (50) may be evaluated nu-
merically after truncation.

Equation (54) may be used to obtain an expression for
the mean first passage time for energy relaxation or
accumulation in the oscillator. A general result based
on Eq. (54) is®
expl H(x)/kT] f" - H(y)

€(x) dy exp RT |’

(75)

rm(Jo,J)_ka dx

where Tygp is the mean first passage time for reaching
J, starting from an initial action J,. This may be used
to obtain the rate of relaxation processes within the
model or the rate of activated processes in the low
friction limit, where the energy accumulation becomes
the rate determining step. For the steady state dissoci-
ation rate, we need to evaluate the average of Ty (J,Jp)
over the steady state distribution within the well®":

sta= [ fo "B AT P o) r,“.,,(J,J,,)]'l : (76)
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For a deep enough well the steady state distribution
P, s(J) may be approximated by the Boltzmann distribu-
tion

Pgs() > P (J) =kT[1 — exp(— E/RT)]™! w(J)

X exp[~ H(J)/kT] . (77)

Using this and Eq. (75) in Eq. (76) we get (after inte-
gration by parts)

kyis =kT [1 —exp(- Ez/RkT)]
R
78

If the well is very deep (E > kT), we may further sim-
plify Eq. (78) by noticing that the main contribution to
the integral over J comes from large J, so that the in-
tegral over x may be approximated by [, dx exp(- wox/kT)
=kT/w, (w, is the frequency at the bottom of the well).

In the remaining integral,

[’B as ) . [H(J)] 1

o e \PLeT

the integrand is sharply peaked near J=Jy so that it can
be approximated by

[e(s) wg)] f dE exp(E/kT)

~kT [E(JB) w(JB)]- exp(EB/kT) .
Equation (78) then leads to

wo€{Jp ) w(Jp) -Eg

exp(—=+) -

kT
When the barrier is identified with the threshold for
dissociation (J5 =J,, Eg =E,), we have w(J)=0; however,
€(J) w(J) - yJ, when J~J,, as implied by Egs. (57) and
(58). Thus, in this limit the rate becomes

kdla

Fa =Y Tpr OXP\ %7 (79)

Note that for a Morse oscillator wyJ,=2E, while for a
truncated harmonic oscillator wyJ,=E,. More impor-
tant is the implication that in this limit of a very deep
well, the non-Markovian nature of the thermal bath does
not affect the dissociation rate (in agreement with Grote
and Hynes'®). This results from the assumption that the
steady state distribution within the well is approximated
well by a Boltzmann distribution up to energies for which
the well frequency is low enough for the Markovian lim-
it to be valid.

y Lody exp<_E¢> i

When a dissociation process is considered we usually
face the problem that, since w{J) -0 for J=J,, the low
friction limit Z/w<< 1 cannot be used close to the dis-
sociation threshold. The validity of the present approach
to this situation depends on the observable considered.
A steady state dissociation rate is often determined by
the dynamics near the potential barrier where the low
friction limit may indeed be inappropriate. On the
other hand, if the rate is associated with a nonequilibri-
um process {(e.g., following a temperature jump) the
dynamics may be determined mostly by the energy ac-
cumulation within the well, and the deviation from the
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FIG, 2. Mean first past time Tygp (0, J5) for a Morse oscilla-
tor as a function of the bath correlation time 7, for the model
given by Eq. (16). wgis the frequency at the bottom of the
Morse potential. The threshold energy is E(Jp) =2.5 kT. The
solid line results from numerical integration of Eq. (75). Full
circles results of numerical simulations based on Eq. (12).

low friction limit near the dissociation threshold may
not cause appreciable errors. We demonstrate this by
comparing Ty (0,J,) for a Morse oscillator, obtained
from Eq. (75) and from simulations using stochastic
classical trajectories based on Eqs. (12) and (13),
where the thermal bath is characterized by Eqs. (186).
The parameters used are D=2.5k7T and y/w,=0. 04.

In Fig. 2 we plot Ty as a function of 7,: the full line
is obtained from Eq. (75) and the points with error
bars from the numerical simulations. It is seen that
the agreement between the two calculations is good even
though the low friction limit should not work near the
threshold as discussed above. This is particularly re-
markable in view of the relatively shallow well used
(deeper wells present no difficulties for an evaluation
based on Eq. (75), however the simulation becomes
prohibitively costly). We note that the (CDC 6600)
computer time needed to obtain the five points in Fig.

2 was about 1000 times longer than the time necessary
to get the full line.

The procedure developed here may be used to study
non-Markoffian effects in relaxation and activated pro-
cesses associated with molecular dynamics in dense
phases. Another area where the present procedure is
useful is the problem of desorption from solid sur-
faces.'® In addition our approach may be used to dis-
cuss problems where the system interacts both with a
heat bath and with an external force. This may provide
a framework for studyingthe effect of a radiationfield on
activated rate processes. These problems will be dis-
cussed in future publications.

It should be stressed again that the calculations de-
scribed above deal only with energy accumulation and
relaxation rates, and in order to identify, e.g., the
rate in Eq. (78) with a dissociation rate, we have to
assume that the upwards flux (in energy space) cross-
ing the threshold energy for dissociation is the same
as the outwards flux (in position space) crossing the no
return point Xg. This implies that the exit probability
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f, defined in Sec. I, is unity. While this may be a
good approximation in many weak coupling situations,
J must be smaller than unity in many others. This

problem and the dependence of f on the physical param-

eters will be discussed elsewhere.
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APPENDIX A

Here we start from Eq. (12) in the form

x=v,

. 1 8v(x)
v = M o9x Q(t) s
Q(t)=—jO“dTZ(t—T)v(T)+A-17R(t) s (A1)

and show its equivalence to Eqs. (18). To this end we

introduce the Jacobian matrix

o ¥

Y= 8J 8¢ , (A2)
v By
aJ 8¢

which satisfies the following relations:

1
det|Y[=—A—4, (A3)
o &
yi-_y| % o) (A4)
v b
Y aJ

Next we use

AR

H=3Mv*+V(x) (AB)

MY 8H/8v) (A5)
MY oH/ox) + Q(¢)

is the Hamiltonian for the deterministic part of the mo-
tion. Equations (A4) and (A5) lead to

J = f; +M —Q(t)

. OH dx
¢=§J—_M EQ(t) 3

which with the definition of @(f) [Eq. (A1)] and using
8H/8¢ =0, 8H/dJ = w(J) results in Eqs. (18).

APPENDIX B

Here we provide some details of the calculation that
leads from Eqs. (40)-(43) to Eqs. (44)-(48).

First iteration

Inserting Eqs. (42) and (43) into the right-hand side
of Eq. (40) we obtain

JV(r Z Z B, expli(n+m) ¢ ]f ds expi(n + m)ws]

nz-®© mz-w

+ Z o, exp(md))f ds R(s) exp(inws) . (B1)

ns-©

Here (and below) we have suppressed the notation con-
cerningthe{ dependence of parameters like B,,,, {— (t)]},
0, 4=0lJ)]}, w{=o[d(D)]}, and ¢[=($)]. Since w-r>>lwe
we may replace

ffds expli(n + m)ws]
0

by 6, .m, leading to

(1) _r Z B,

n==0

+ Z g, exp(ing) f ds R(s) exp(inws) . (B2)

In a similar way we get from Eq. (41),

ApM(T) =wr T Z Ch,n

nz-c

- Z My exp(md))f ds R(s) exp(inws) . (B3)

na-x

Second iteration

Next we insert Eqs. (B2) and (B3) into the right-hand
side of Eqs. (40) and (41). Proceeding with Eq. (40)
we further expand functions of AJ,(s) and of A¢,(s)
about AJ{%(s) =0 and A¢{(s) = ws {e. g., B,lJ{t)+ad,(s)]
=By + B,y 8J,(s), where B,,, =B,,[J(t)] and B,,,
=(dB,n/dJ) s ¢)}- We first limit ourselves to terms up
to first order resulting from such expansions. This
leads to

AJE(1) = ad P (T) - Z Z B}, exp(i(n+m)o) _[TdsAJ,“)(s)exp[i(n+m)ws]
0

na-% mp=-0

- Z E B, expliln+m)p] ffdsz'(n+m)[Ad>,‘”(s)—ws]exp[i(n+m)ws]

-0 gp=-c0

@

+ Z exp(m¢)f ds R(s) AJ{(s) exp(inws) + Z o, exp(mqb)f dsR(s)in[ap{V(s) - ws]explinws) . (B4)
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When Eqs. (B2) are inserted into Eq. (B4) we may make further simplifications by noting that integrals of the form
f(,T ds sF(s), where F(s) is finite for s~ 0, yield terms of order 7, n> 1. Such terms may therefore be disregarded.
We obtain

AT (1) = ATM(T) - i}:i (B}, 0, —i(n+m)B,, 1) expliln+m + o] '[ds j:dis(s,) expli(n + m)ws + ilws,]

nylymu=e

3T (oo, —inc,,u,)exp[i(n+l)d>]j(;1ds ]:dis(s)R(sl) explinws + ilws,) - (B5)

nE-® |3ecd

Similarly we get

Ao (1) =20 M (1) + o' Z o, exp{ind) joﬂds fsdsxR(sx) exp(inws,)
0

n=a

+ Z Z Z [Crpo, —iln+m) C,,,,u,]exp[i(n+m+l)¢]ffds fsds,exp[i(n+m)ws+ilws,]
0 0

NE~D ME=© ]3-0

_ Z Z (110, —inp, p,)exp[i(n+l)¢]]o.fds ]:dis(s)R(s,) exp(inws +ilws;) . (B6)

NE- Iz~

Third iteration
Inserting Eqs. (B5) and (B6) into the right-hand side of Eqs. (40) and (41) we proceed to obtain AJ;*’ and A¢;*.

It is convenient to write the results in the forms

AIE(T) = AP (7) - i 2 Bimexpliln+m)¢] fds [a7{(s) — a7 V(s)] expli(n + m)ws]
0

nm-® MEew

- Z i(n+m) B, exp[i(n + m)o) ffds [202(s) = a0 (s)] exp[i(n + m)ws]
nm=o mmao 0

)

+ Z o! explin¢) fOT ds[aJ{B(s) — AT (s)] R(s) exp(inws)

+ Y ino, expling) fT ds [ap2(s) - 2o (s)]R(s) explinws) , (BT
0

na~w

897 =807+ [ "as[aTP(s) - AT+ 3 . Chm explitn s m)o] fo "ds [A2(5) - AJ(5)) expliln + m)ws]
[}

nE-® Muaw

+ 20 D #n+m)Cymexpliln+m)od] ffds[mb,‘z’(s)—A¢,m(s)]exp[i(n+ m)o]
-0 0

nE-® mu

- Y ulexpling) des[AJ,‘”(s) - 8J{Y(s)] R(s) explinws)
0

Nz

- Z inp, expling) ffds[Ad),‘z’(s) - A0 2 (s)]R(s) exp(inws) . (B8)
0

As we discuss below, terms of order 7 obtained from further iterations are small [of order 2,,/ w; 2,, is defined by
Eq. (14))and may be neglected. We therefore proceed now to calculate the moments {(AJ)"(A¢)*) needed in Eq. (31).

—
Calculation of (AJ® (7)) and (A¢ (1)) pendix C. Using Eqs. (C1) and (C2) we get [disregard-
ing t Z(w)/w
Consider first (AJ#(1)). Using (R(s))=0 and ing terms of order Z(w)/«]

((IBZ(ZS))fn(dsl()é;)C’Z(s -s,), (C=MET), we get from Egs. @Iy =7 Z (=B, .+ C2,(w)(o, o, + intt, 0.)]
o = L hud ~ 2 A
(AIPN 1) =7 Z Bunt 2 IZ_, (0!, 0, — 40, 1) =7 2 [-Mr*o|x,| *z,(w>+0n*%L2,(w)l . (B10)

. T s To get the second equality we have also used Eqs. (34)-
xexp[:(n+l)¢]C£ dsl ds,Z(s - s,) (36) and Eq. (21).

Consider now the contribution of the second term on
the right-hand side of Eq. (B7). Using Eg. (B5) it can
The integral appearing in Eq. (B9) is evaluated in Ap- be cast in the form

X exp(inws +ilws,) . (B9)
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S IDIPIP I

Ra-% Jz-® mz. pz-0

(04 0, — ko, 1))

T s Sl
X expli(k +1+m +n)¢]|C f dSI dslf ds,Z(s, - sy)
0 0 0

X explio|(n+m) s +ks,+1s,l} . (B11)

The integral appearing in this result is shown in Ap-
pendix C to be negligible within our approximations {for
n+m =0 we obtain a term of order 7%, otherwise we get
terms of order Z(w)/w]. Thus, this term does not con-
tribute to (aJ (7).

In a similar way we can show that the contributions
from the third and fourth terms in Eq. (B7) are negligi-
ble. However, the last term of Eq. (B7),

(last) = Z ino, exp(ing)

ns~<

X des [802(s)- a0 P(s)] R(s) explinws)
0

leads to a non-negligible contribution. This results
from the term containing w’ in A¢2(1) ~a¢ (1) Eq.
(B6). When inserted to (last) and the average taken we
obtain

Cco' Z Z ino, o, expliln+1)¢]

13-% pz=®

T s s1
Xf ds[ dslf ds,Z(s - s,) expliw(ns +1s,)] .(B12)
1] 0 0

The integral appearing here is a special case of the in-
tegral Eq. (C5) evaluated in Appendix C. Using Eq.

(C10) with j =2 the term of Eq. (B12) becomes
(o s Z 0,0, w =CT Z 0. (B13)
e e dJ
which, using Eq. (34), becomes
2|, [24Z,
cry, n¥lx|2%n d 2 (B14)

L

Combining the contributions of Eqs. (B10) and (B14) to
(AJP)(7)) we finally obtain

<A¢]‘(3)(T))=TM Z nz[—wlx"l22"+kT d%(lxniazﬂ)] .

" (B15)
Introducing
Z@)= [ dtz(o) costnar) , (B16)
0
Zywr= [ " dtZ(8) sin(nwt) | (B17)
[}

so that 2n(w) =2ﬁ(w) -iZj(w), Eq. (B15) may be recast
in the form

(AT () =2tM D

n=l

[ w|x,|? Z°+kT (|x| Z")]

(B18)
A similar calculation using Eq. (B8) results in
- dlx,|?
(3)() alxl 5s
(A, (T))—w‘er; (w ET dT) - zs (B19)

It should be noted that in the reduction procedure for
the analogous Markovian problem all relevant terms
are obtained in the second iteration step. Here we
found a contribution at the third iteration level. In fact,
as noted by Lax, !” terms of order 7 which are relevant
for Eq. (31) appear in the non- Markovian case in all
orders of the iteration procedure. However, examina-
tion of the contributions obtained at the fourth and higher
iteration steps shows that such terms are always multi-
plied by powers of the smallness parameter Zn(w)/w,
and may therefore be neglected. The integral 1} [Eq.
(C5)] is an example for a contribution appearing at the
j+1 iteration step. The result Eq. (C10) contains the
factor d’- 1Z (w)/dw?! which is of order [Z (w)/ @} so
that any term arising from the jth iteration step, j= 3
contains this smallness parameter. This is true also
for the contribution of Eq. (B13) arising at the third
iteration step. This, and a corresponding term in
<A¢,‘3)(1')>,Aare unique in that they also contain dw/dJ
yielding dZ,/dJ instead of dZ,/dw.

Calculation of second moments

In calculating {((ad,)%, (4¢,)%, and (aJd, A¢,) we ob-
serve that contributions arising from terms which do
not appear in AJ{" and A¢{!’ contain at least three time
integrals with one Z function or four such integrals
with two Z functions in the integrand. All such contri-
butions can be shown to be either of order 7, N> 1, or
of order [Z,(w)/w]', N> 1, and may thus be neglected
in our approximation. As an example, we evaluate in
Appendix C the contribution to {[adJ,(7)}?) arising from
the third term of Eq. (B5). The desired second-order
moments may therefore be obtained from Eqs. (B2) and
(B3). Equation (B2) leads to

([AJg(T)]2>=i: Z 0, 0y expli(n+m)o]

nE-0 m=-0

x [ "as [ ds, R(s)R(sy)) explines +inwsy) ,  (B20)
0 0

which in a way similar to that used to yield Eq. (C2)
from Eq. (C1), results in

(8d,)2) = 2TMET D, 0,0, 25 .

(B21)
==
In a similar way Eqs. (B2) and (B3) lead to
(AT, 8d) =2TMET Y, Ot n 25 , (B22)
Nz -
(86,)2)=2TMET Y Botin 25 (B23)

ne=o

Using Eqs. (34) and (35) and Eq. (22) we finally get

(8d,)?y =4TMET P n®|x,| 222 , (B24)
n=1

(AJg Ad)t) =0, (B25)

(a0,)?) = 4'erTZ %ﬂ . (B26)

In obtaining the results of Eqs. (B18) and (B19) and
Egs. (B24) and (B25) we have limited ourselves to terms
up to first order in expansions such as B, ,(J +AJ)
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=B,,J) + (dB,,/dJ) AJ + - - - [see discussion before Eq.
(B4)]. It may be shown using methods similar to those
used in Appendix C, that contributions from higher
terms are negligible, being of order 7' (x> 1) or

(Z/w) (n=1).

APPENDIX C
Here we evaluate approximately some integrals which
are used in the reduction procedure described in Appen-
dix B. Consider first
T s
I,l,('r)=f dsf ds, Z{(s - s,) exp(inws +ilws,) , (Cl)
0 0

which appear, e.g., in Eq. (B9). Introducing a new
variable x=s - s, we get

L,(m =fodds exp[i(n + ) ws] fosdxz(x) exp(- ilwx)
=ffds exp[iln + ) ws] ffde(x) exp(-~ ilwx)
0 0

- ff ds expli(n+ ) ws] dexZ(x) exp(-ilwx) .
0 s

The first term is approximately Z,(w) 5, _, 7 while the
second one may be evaluated by parts

jodds (exp[i(n+l)ws])<f7dx2(x) exp(- ilwx))

§=T

= (ffde(x) exp(- ilwx)> exp[i(n + Hws]

in+l)w a0
T exp(inws) Z_(w) = Z,(w)
+j; ds Z(s) im+Dw ~  in+ Dw
Thus,
Ly (1) =1Z,()6,,, +0[Z(w)/w] . (€2)

Next consider the integral
T s 31
I,,m(-r)=f dsexp(inws)f ds,f ds,Z(sy —s,)
0 0 0

X exp(ikws, + ilws,) (C3)

which appears in Eq. (B11). We rewrite it in the form

In;k,(T)=Ik,(T)£Tds exp(inws)

T T 31
—f ds exp(inws)f dslf ds,Z (s, - s,)
0 s 0

X exp(ikws, + ilws,) .

The multiple integral may be evaluated by parts in a
way similar to what was done above, resulting in

Ly () = m_lw‘ {exp(inwr) = 1]+ (1 = 5, ) exp(inwr)}

XL (1) = == Ly, (1) (c4)
where the two-index integrals I,, are given by Eq. (C2).
The result contains terms of order 72 or of order
Z(w)/w.

We further consider the integral

Activated rate processes. | 403

T s 81 S!_I
I,f{,’sf dsf dslf dsa'--f ds;Z(s -s,)
0 0 0 0

X exp(inws + ilws,) . (C5)
i

Rewrite it in the form

1Y) = jo‘fds expli(n+ )ws]G,(s) , (Cé)

s Sy S5-1
G,(s):f dslf dszn-f ds;F(s-s,) , (cn
0 0 0

F(s —s,)=Z(s - s,) exp[ - ilw(s - 5,)] . (c8)

Using repeatedly the relation

x y X x
fdyfdz=f dzfdy
0 0 0 z

we obtain from Eq. (C7),

s s Sq s2 $4-2
G,(s)=f ds,f dslf dszf dsa---f ds,F(s-s,) .
0 Sy Sy Sy Sy

Introduce the transformation

%,=5~8,; dx,=-ds, (1=1,2,...,j -1)

1
y=s-58;; dy=-ds,

to get

s y y y y
G (s) =f dyf dxlf dxaf dxy -+ f dx,., F(y)
0 0 %1 x2 Xj-2
] yj-l
= dy 7——F .
j[; y (7 Y] (y)
Inserting this result into Eq. (C6) we get

1 T
= G-n fo ds exp[i(n + ws]

xfsdyy"lZ(y) exp(~ilws) . (C9)
0

In order to extract the term of order t and of lowest
order in Z(w)/w we may repeat the development that
lead from Eq. (C1) to Eq. (C2) to get

oo 1 (i)f"d"‘i,(w)

Imt_ (]-_1)] 7 dwi?

(C10)

T0p,-1 -

Next consider the contribution to {[Ad,(7)]?) made by
the third term of Eq. (B5). This term has the form

kil i T s
Z Z A"',fo dsfo dsy R(s) R(s,) exp(inws + ilws,) ,

n=-o jz-x

where A, are functions of J(f) and ¢(#).
tion to {[AJ,(T)]?) contains the integral

T s T r
f dsf dslf drf dv,expliw(ns + Is; + mv + kry) ]
0 0 0 o

X(R(s)R(s,)R(») R(r,)) .

The contribu-

(C11)

Since R is Gaussian we have (R(s)R(s,)R(sp)R(s,))

= (R(s)R(sy)) (R(sp)R(s;)) + two permutations. We pro-
ceed with one of these contributions arising from the
term (R(s)R(s,)) (R(s;)R(s;3)) =C>Z(s - s5) Z(sy — 55),

(C =MET). Furthermore we consider one representa-
tive part of the integral, namely
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I

nlymk

T s sy S2
=f ds[ dslf dszf dsg
0 0 0 0

X expliw(ks + 1Sy + msy+ns3)| Z(s —s5) Z(s, ~s3) .
(C12)

This may be rewritten in the form

I,,,',,,,,=j;1ds j;sdszexp[iw(ks+msa)]2(s —-sp)glsy, s5) ,
(C13)
g(sy8,) = f ds, expliw(l+n)s,] dx exp(—iwnx) Z(x) .
N (C14)

In most situations the magnitude of the integral
JoLsp dx exp(~iwnx) Z(x) will be maximized for s, =s,.
Using this upper bound we get

s2
8(5159) =8y, ofs ~s3) [ dx exp(~iwnx) Z(x) , (C15)
0
where we have also replaced the integral over s, by
,,_,,(s —sy). Corrections to this term are of order
Z/w. Inserting into Eq. (C13) we get
I

kB, [ ds exlicti s m)s] £ (5) (c16)

f(s)=[dsaexp(—iwmsa)2(sa) szﬁs-szdxexp(—iwnx)z(x).

(C17)
An upper bound estimate on the magnitude of f (s) is ob-
tained by replacing the upper limits of the integrals
(s and s —s,) by 7. We then get

) (C18)

|Int.mkl < 6’1'" ék.-m mi[di(; Z(w)] Z(w) T
which is negligibly small because of the appearance of
dZ/dw In similar ways we can show that other contri-
butions to Eq. (C11) are small so that the term con-
taining Eq. (C11) may be neglected in the calculation

of ([ad,(T)]?).

APPENDIX D
To show that J=Mw(J)E:’,_,, n?l x,(J)| 2 we start from
8
=g o= 22 [ 0w, 0) 2L 4y

and use Eqs. (19) to get

Z E imv, (J)x,,,(J)f do exp{i(n+m)¢]

T paeo m= -

=—iM Z nv, x.,

na-°

which, using Eq. (21) leads to the desired result.

APPENDIX E
Starting from (for a Morse oscillator)

[1 —VI-az cos(¢)]
Az

2, 9)=xy+aln (E1)
we wish to obtain the coefficient x, in the expansion

o

X, )= x,exp(ing) , (E2)

x, is given by

o -1\
%, () = %jﬂ‘ do exp(- ing) x(J, ¢) = g0y, 0 + (—2—;)—

xf’dq& exp(ind)In{{1+V1 =A% cos(¢)]/A%}. (E3)

The integral in Eq. (E3) may be evaluated by using the
integral

= [ : a9 expling) 1 +4* - 24 cos(@)]=- 2. (E9)
The result is

2x2 afl-x\"?2
x,J) = [xo —1n <m>:| 8,0 - <m> . (E5)

Substituting Eq. (69) for A leads to Eq. (71).
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