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Motion mechanisms for ions in framework solid electrolytes are investigated. The results are obtained from
numerical studies on a one-dimensional model system, utilizing the method of stochastic Langevin dynamics.
We find that, for commensurate systems (for which one mobile ion occurs exactly every / lattice sites), the
mechanism always involves correlated hops, and the ion-ion repulsion decreases {always) the total

conductivity. For incommensurate systems, the conductivity changes from hopping to liquidlike as the
interaction forces are increased to dominate the potential due to the framework lattice. Different assumed
ion-ion potentials produce different correlations, both local and overall; the nearest-neighbor harmonic
forces, such as are assumed in the Frenkel-Kontorova model, will generally produce substantially different
correlation effects from the Coulomb repulsion. The frequency-dependent conductivity at low frequency is
shown to be proportional to the square of the frequency; the proportionality coefficient is positive for
correlated hopping mechanisms. A double-peaked structure in the frequency-dependent conductivity, due to

local oscillation and to long-time, long-range diffusive behavior, is observed when particle-particle

interactions are absent and damping is weak.

I. INTRODUCTION

A number of solid-state materials are known in which
diffusion of atoms, ions, or molecules occurs in effec-
tive dimensionality of one or two. Examples include
diffusion of intercalates in layered materials such as
graphite, transition-metal dichalcogenides or montmo-
rillonite clays, and ionic motion in framework super-
ionic conductors of layered (8 aluminas and gallates)
or tunnel (sodium antimonate, potassium hollandite,

B eucryptite, NASICON)! structure. In addition, dif-
fusion of physisorbed or weakly chemisorbed atoms or
molecules on metal or semiconductor surfaces at
submonolayer converges should show two-dimensional
diffusion. In all of these materials, the diffusing
species feels a one-particle generalized lattice poten-
tial, which is periodic, with the period determined by
the host lattice in which or on which diffusion occurs.
Because of the periodic potential, there will exist
stable sites, at which the diffusing particle would be
localized at very low temperatures and in the absence
of interparticle interactions among the diffusers. In
the limit of a dilute system, then, the diffusion motion
should consist of thermally activated hops among the
stable sites. This hopping model is a very attractive
and simple one, and most analyses of diffusion in
frameworks are couched in terms of hopping.

There are several phenomena which occur in these
materials which can seriously modify the hopping be-
havior., The most obvious are the interactions among
particles, both direct and via lattice polarization effects
(the latter can be nonlocal both in space and in time).
Several types of experimental and theoretical data on
solid electrolytes suggest that the simple hopping, or
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even correlated hopping, models require elaboration, %3

These include

(1) The diffusion coefficients can be as large as
those in liquid electrolytes (D~10-° cm?s™%).

(2) For heavy-metal electrolytes such as Agl, dif-
fuse scattering experiments reveal both substantial
disorder and a structure function more characteristic
of liquids than of solids. Beyeler* has remarked that
“all models which treat ion-ion interactions in terms
of occupational short-range order are incomplete, and
it is necessary to include strong deviations of the
equilibrium positions from the lattice sites”.

(3) The vibrational spectra of Agl materials exhibit
no strong change when the crystals are melted. 5

(4) While hopping models must® show a conductivity
o(w) increasing with increasing frequency for w-0,
experimental data on Agl show’ an initial drop in o(w).

(5) Continuum (Brownian) diffusion models in a
background potential are capable of reproducing many
experimental data (commensurability behavior, tem-
perature and density dependence of o, vibrational
spectra) for framework electrolytes, =

Partly on the basis of points (1) and (3), Geisel has
suggested that the conduction mechanism in solid elec-
trolytes of the Agl class might be thought of as liquid-
like. !” Although, as Flygare and Huggins'® showed in
a pioneering mechanistic model, the mobile Ag ions
follow well-defined motion paths in the crystal, and
stable sites occur among which hopping might be
imagined, nevertheless the motion appears more liquid-
like. This is doubtless partly because the anion
motion timescale is not terribly different from that of
the mobile ion (in the B8, or nonconductive, phase of the
silver halide conductors, the ionic “attempt frequency”
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is roughly 10-20 cm™!, while the totally symmetric
anion stretch frequencies are of order 100-~150 cm™ %)
partly due to strong anharmonic and coupling effects
among the modes, and partly due to strong residual
cation-cation repulsion,

In framework solid electrolytes, as opposed to the
softer, heavy-metal ones, the diffusion is nearly always
considered to be by a hopping mechanism. %20 The
timescales of cation “attempt frequencies” (~60 cm™)
and oxide lattice vibrations (> 1000 cm™) are widely
separated, no effects of strong coupling between ions
and lattice have been remarked upon widely, and o{w)
increases with w at low frequencies. Nevertheless,
continuum-type Brownian motion studies can reproduce
the behavior of these materials rather well, !>~1¢ and
thus it is tempting to speculate on possible liquidlike
conduction in these substances. Ordinarily, the distinc-
tion between hopping and liquidlike conductivity is
couched in terms of two timescales.” The residence
time 73, or time between flights, is the time a typical
particle spends in the neighborhood of a minimum in
the one-particle lattice potential V,(x) before moving to
the next minimum, while the time of flight 7, is the
time spent in the (higher potential) region between the
minima of V,(x). For hopping, 7,> 7y, while for
liquidlike diffusion 7o~ 7,, and the minima in V,(x)
assume no special importance, Microscopically,
this must mean that in the liquidlike regime the other
interactions, ion-ion repulsion and lattice polarization,
must produce an effective one-particle potential V., (x),
which is far flatter than V,(x) so that the minima in the
latter no longer dominate the diffusion. The possible
occurrence of liquidlike, very strongly correlated dif-
fusion in framework electrolytes is not merely an in-
teresting theoretical issue: at incommensurate stoi-
chiometries, if the correlations become strong enough
they can lead to a sort of rigid-chain (in one dimension)
or rigid sheet (in two dimensions) conduction, similar
in some ways to the Frohlich sliding charge-density
wave in electronic conductors, 2! which can permit very
substantial conduction even in the presence of traps
such as those introduced by charge-compensating
counterions, 2

In the present paper, preliminary parts of which have
already appeared, 15 we study the mechanism of ionic
conduction in correlated one-dimensional models for
solid electrolytes. The method is based on the stochas-
tic Langevin dynamics introduced by Adelman and Doll%
to study surface properties. By varying the strength of
the ion—ion repulsion for fixed framework potential
Vi(x), we calculate both o(w) and relevant correlation
factors. We study the effects of the range of the po-
tential and the effective range of the correlations. Our
most striking finding for incommensurate stoichiometry
is a fairly sudden change from correlated hopping be-
havior when repulsions are weak to liquidlike, very
strongly correlated motions for higher repulsion.!®
This is manifested in the flight times, in the correlation
factors, and most vividly in the actual behavior of the
ion trajectories.

Bill Flygare made several important contributions to

the study of ionic conductivity, which at the end of his life
was one of the many subjects on which he was actively
working.? His efforts in this field, as in so many
others, were marked by insight, experimental creati-
vity, and a highly unusual, idiosyncratic and enormous-
ly fruitful approach to the problem. We hope he would
have been interested in the present manuscript, which
is dedicated to his memory.

1. 1ON DYNAMICS IN FRAMEWORK SOLID
ELECTROLYTES: APPLICATION OF STOCHASTIC
LANGEVIN DYNAMICS

We wish to study the correlated motion of mobile
jons in a framework lattice. The physical systems of
interest are covalent, refractive ionic conductors of
reduced effective dimensionality (hollandites, B
aluminas, NASICON, eucryptites, antimonates, sili-
cates, etc.)! The method used will be reduced molec-
ular dynamics, or stochastic Langevin dynamics; i.e.,
we calculate the correlated motions of the ions by
solving their classical equations of motion in the
stochastic field of the framework, #

The justification for and the details of the calculation
of the frequency-dependent conductivity o (w) for frame-
work solid electrolytes have been given previously, '*-1°
Essentially the reasoning is based on a timescale dif-
ference between (slow) diffusion times characterizing
the motion of the ionic mobile ions and (fast) vibration
times characterizing the covalent framework lattice.
Then the motions of the framework are uncorrelated on
the ion’s timescale, and can be treated as the source
of random forces and of thermalizing damping. The
framework atoms in their equilibrium positions provide
a static potential. For a one-dimensional model the
static potential is assumed sinusoidal, and the ion-ion
potential Coulombic, Then we have

VTOT=ZV1(xi)+;V2(xi-xj) ’ )
A

Vl(x‘)=? cos(2mx;/a) , 2)

Vil —x,)=¢"/ | % = x,] . ®)

Here x, is the position of the ith mobile ion, moving
in a one-dimensional periodic lattice of lattice constant
a. lons have an effective charge of ¢. The bare-lattice
barrier is A; note that A should correspond to the
measured activation energy for conductivity only in
the limit of very dilute samples for which V, is unim-
portant; for higher mobile-ion concentrations, the
activation energy will exceed A for commensurate
densities, but fall below A for incommensurate ones.

The equation of motion for ¥, is then
miy = =mlx; =V {Voor}+ Ry(8) “)

where the random force R, () is related to the damping
T, (since both arise from stochastic lattice motions) by

(R((t)Rj(t+T)>=26(T)6“kaTr . (5)

The problem is a many-body one because of V,. To
solve it we use cyclic boundary conditions and simply
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integrate the coupled stochastic equations for a sys-
tem of several (in this case 30) particles.

HI. RESULTS: LOCAL AND OVERALL
CORRELATIONS AND EFFECTS OF POTENTIAL
RANGE

It has been demonstrated previously that ion-ion
interactions have significant effects on the transport
properties; this is most vividly shown by the Haven
ratio,® but the vibrational spectrum and o(w) for low
frequencies are also significantly altered by ionic
repulsion. %% QOur aims here are to characterize
the correlation effects quantitatively, to study their
dependence on the range of the potential, and to see
how they affect the qualitative transport mechanism.

To characterize the correlations quantitatively, it
is convenient to introduce a finite-time correlation
factor F, which is the analog of the Haven ratio (which
is itself rigorously zero in one dimension). Thus, we
write

F = ()Y tracer/ % pute > ®)

where ¢ is some fixed time (here 512 ps), and (¥%) is
the mean square displacement. As the correlations
become more important, F' decreases.

The Haven ratio and the correlation factors provide
a quantitative measure of the overall correlations,
These can be further characterized by a local correla-
tion function, which measures the correlation between
particle 1 and particle »n:

C,(8) = (wy(0)v,(9)) . (7

If the particles are uncorrelated, C,, =0. A relation-
ship exists between F and C,. Defining

L) = J:' C, @)t ; (8a)
then the DC diffusion coefficient is simply

Do(t’)=§1,,(t’) , (8b)
and the correlation function becomes

F=J:I C,()dt/Dy (') . (8c)

Examination of both I,(¢) and C,(¢) for systems with long
range and nearest neighbor forces demonstrates the
importance and differences between local and overall
correlations,

A. Comparison of nearest neighbor and long range
ion-ion interactions

The dynamics of charge carriers in framework solid
electrolytes strongly depends on the interionic forces.
Results are obtained from stochastic Langevin dy-
namics for systems with:

(a) nearest neighbor harmonic potentials (NNH);
V§NH(x{—xj)=K(x{ —xj)z' (6{,j+1+6{,j_1), (Qa-)
(b) nearest neighbor Coulombic (NNC);

TABLE I. Comparison of nearest neighbor and long range
forces m=1.776x10722 g, I'=1.35x10'2 Hz, A=0.1eV.

p Dint Fx100 ag/p
0.75 NNH, K=6.547x10% g2 13.8 12.45
0.75 C 7.9 18.45
0.75 NNC 14.1 14.5
0.50 NNH, K=1.94x10%* g 41.8 4,34
0.50 c 60.3 0.605
0.50 NNC 68.0 1.53
0.5 o} 5.50

NNC
V2 (x| "xj)'__@z/x{_xj). (6“ I’1+6¢vl-1) ’ (Qb)

and (c) long range Coulomb potentials as in Eq. (3).
Values of F at 512 ps and ¢ for commensurate and in-
commensurate systems are given in Table I. The har-
monic force constant was chosen so that the magnitude
of the nearest neighbor harmonic force exerted on par-
ticles separated by the equilibrium distance (r,=a/p,
where p, is the mobile-ion density per site), equaled the
force due to nearest neighbor Coulomb interactions for
the same distance.

The long range Coulomb forces for both commensu-
rate and incommensurate stoichiometries exhibited
the largest changes in the DC conductivity when com-
pared to results obtained from an independent particle
calculation. On the other hand, the nearest neighbor
harmonic forces induced the smallest changes in the
conductivity., The correlation factors for NCC and
NNH systems with p;=0.75 are about equal. For p,
=0.5 these correlation factors and conductivities vary
more significantly with different interionic potentials.

The interionic forces of commensurate systems are
responsible for diminishing the conductivity since they
pin the mobile ions to their lattice sites. The conduc-
tivity data in Table I indicate that the NNH forces do
not pin the mobile ions so well as Coulomb forces, yet
values of the correlation factor indicate larger overall
correlation for NNH than the Coulomb case. In order
to describe this behavior, the local correlation func-
tion of Eq. (7) must be examined

The maximum and minimum values of C,(¢), C7, and
C™* respectively, (n=2, 3, 4, 5) for systems with long
range Coulomb interactions are compared to results for
systems with nearest neighbor harmonic and nearest
neighbor Coulomb interactions in Tables II and III, for
incommensurate and commensurate systems, respec-
tively. (We call a system commensurate if Ip =1 for
integer I. For such systems, the equilibrium positions
are the same independent of the strength of V,.) The
most striking result in Table II is that the correlations
in the NNH system fall off more rapidly as a function
of ion-ion separation than either the NNC or Coulomb
systems. On the other hand, the Coulomb systems
exhibit the longest-ranged correlations (Fig. 1). The
correlation factor (Table I) for the incommensurate
Coulomb case is about half the value of the NNC system,
yet values of Cy?* for the NNC and Coulomb systems
are similar when » is small. This difference in F must
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TABLE II. Local correlation as a func-
tion of distance between ions for com-
mensurate systems.

A=0.1¢V, ¢=0.6, K, =1.94x10% 572,

2=3.11 4, p=0.5, m=1.776x10"2 g,
T'=1.35x%10!2 Hz, Temperature =453 K.
¢ N cpa cpie

c 2 0.164 —0.199
3 0.075 —~0.065
4 0.053
5 0.039

NNC 2 0.117 -0.168
3 0.068 —0.065
4 0.031

NNH 2 0.088 —0.068
3 0.012 —0.005

then be due to the long range correlations from the
Coulomb force.

The NNH incommensurate system (Table III) has the
weakest local correlations, negligible for distances
greater than the nearest neighbor separation, whereas
the long range Coulomb system has the strongest cor-
relations, persisting over many sites. For commensu-
rate Coulomb systems C, is dominated by negative val-
ues, while for commensurate NNH systems C, is dom-
inated by positive values, Inspection of Figs. 2 and 3
shows that I, in Eq. (8a) will be negative for commensu-
rate Coulomb systems and positive for commensurate
NNH. This large negative term is responsible for the
large value of F and is indicative of strong local cor-
relations.

N Y
2

n
FIG. 1. Distance dependence of maxima in the local correla-
tion function. (a) Coulomb interaction of Eq.(5). (b) Nearest
neighbor Coulomb interaction of Eq.(9a). (c) Nearest neighbor
harmonic interaction of Eq. (9b), The C, is defined by Eq. (7)
parameter values as in Table II.

o -

16.5—

8.8

Cz2{t)x100

~2.7

-19.9 T 7 T T ]

0 08 16 24 32 40
psec

FIG. 2. The local correlation function C,(¢), for a Coulomb
system with ¢=0.6, p;=0.5, other parameters as in Table I.

These results demonstrate that it is possible to have
strong local correlations (i.e., values of C,) and weak
overall correlations (i,e., large values of F). The
local correlations are mainly due to the interionic
forces whereas the overall correlations include the
effects of the periodic barrier and charge carrier den-
sity as well as ion-ion interactions.

IV. THE COULOMB CASE: TRANSITION TO
LIQUIDLIKE BEHAVIOR

For commensurate systems, the role of interionic
repulsion is straightforward: it lowers the overall
conductivity, raises the effective barrier, pins the ions
to their lattice sites, and blueshifts the local ionic vi-
bration frequency. For incommensurate systems, the
repulsions generally raise the conductivity, lower the
effective barrier, push the ions off their lattice sites,
and split the vibrational frequency.? Moreover, the
favored interion spacing to minimize the one-particle

TABLE III. Local correlations in incommensurate Stoichiom-
etry. Variation with strength of Coulomb potential,

q=0.4 p=0.75 A=0.2 eV T'=1.35x10"12 Hz
(other parameters as in Table II)
n Ch max” Cn mlnb L,°
2 0.131 -0.138 0.488 E-6
3 0.026 -=0.032 -0.223 E-5
4 0.180 -0.081 -0.178 E-5
5 0.040 -0.048 —-0.40 E-5
q=0.6
2 0.191 —0.148 0.297 E-5
3 0.0939 ~0,0956 2.26 E-5
4 0.0502 ~0.0278 0.241 E-5
5 0.0467 -0.397 0.106 E-5
g=0.8
2 0.296 -0.181 0.481 E-5
3 0.157 -0.138 0.449 E-5
4 0.105 -0,078 0.429 E-5
5 0.069 —0.054 0.487 E-6

*Defined in Eq.(7); the maximum value of C,(f).
"Defined in Eq. (7); the minimum value of C,{#).
®Defined in Eq. (8).

J. Chem. Phys., Vol. 78, Part I1, No. 6, 15 March 1983

Downloaded 03 Mar 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4158

C,() x100

potential (2) (which is an integer multiple of the lattice
constant @) will differ for incommensurate stoichio-
metries from the spacing favored by the Coulomb re-
pulsion (3) (which is just L/n, where n is the number
of ions in the box of length L),

X(a)(X10 )

88—

561
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25/\ N
T T T T 1
08 16 24 32 40

FIG. 3. The local correlation function C,(t), for a nearest
neighbor harmonic system, with w?=1.94x10?* 5" and other
parameters as in Table I.

The competition be-

tween these two spacings will be determined by the
minimization of the total free energy of the system.

As the height A of the lattice potential is increased,
the first spacing should dominate, while if the den-
sity p or the charge g increase, the second term should
be most important.

Thus we observe from the Langevin dynamics, that
if the effective charge g is increased from 0.4 to 0.8
{for p,=0.75 and the parameters of Table IV), then the
motion goes from correlated hopping (7> 7,, with many
oscillations occurring around each lattice before the
particle jumps, and with fairly strong correlations) to
liquidlike (1 ~7,, oscillations superposed on flowlike
behavior and very strong correlations). Figure 4 shows
a slice of the trajectories for several neighboring par-
ticles at the intermediate situation, with ¢ =0.6. For
this choice, the Coulombic potential is still much
greater than the lattice potential, but the forces due to
them are roughly similar, at 0.1 eV/A. By compari-
son, for ¢ =0.4 (correlated hopping behavior), the
Coulomb forces are smaller than those due to V;, while
for ¢ =0.8 (liquidlike motion) the Coulomb forces are
larger. For g =0.6, the behavior is intermediate;
while specific residence times can be identified for
particles at minima of V; (such as those at 57.535 A
and at 69.975 A in Fig. 4), still the overall behavior

7.430

7.190 l-

6.950 ¢+

6.710 +

6.470 ¢

5.990 1

5.750 1

i

FIG. 4. The displacement-
time trajectories, as cal-
culated from Langevin dy-
namics, for an incommen-
surate system with inter-
mediate ion—ion repulsion
strength. py=0.75, ¢=0.6,
other parameters as in
Table I. The behavior is
intermediate between the
liquidlike (g=0.80) and cor-
related hop (¢ =0.4) be-
havior of Ref. 15. Note the
hop at ¢= 600 units, but the
generally liquidlike profile
(particles not restricted to
lattice sites). Units on ¢
axis are 0,02 ps.
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is more continuous than in the weak-coupling (g =0.4)
case, and correlated hops per se can no longer be
identified.

Very rough visual estimates, based on Fig. 4 and
data presented earlier, 15 indicate that the ratio or
residence time 7, to hopping time 7, is approximately
30 for ¢ =0.4, 3 for ¢=0.6, and close to zero (no real
residence) for the liquidlike ¢ =0.8.

Thus the visual appearance of the trajectories, as
well as the correlation factors (which decrease from
0.39 at ¢ =0.4 to 0.062 at ¢ =8)'?'!% and residence times,
indicate that the behavior can change from correlated
hopping to liquidlike as the Coulomb forces increase,

In the limit of very strong Coulomb repulsions, the
activation energy for conductivity will vanish, as the
ions form a rigid lattice whose spacing is incommensu-
rate with that of the framework. The total effect of

V, then is constant as the ions move in lockstep, so
that there is no activation. This behavior is very much
like the incommensurate sliding charge density wave
which has been studied for electronic conduction in one
dimension.?® In that case, the wave can be pinned
either by the presence of defects or by disorder in the
(framework) lattice: we expect the same to be so for
the ionic motion situation. Effects of Coulomb trapping
by counterions in framework ionic conductors will be
reported elsewhere.

When the Coulomb forces greatly exceed the lattice
forces, the interionic potential may be expanded about
the equally-spaced minimum. When the expansion is
cut off at harmonic terms, the Frenkel-Kontorova
model is obtained. For this model, Geisel has shown?
the commensurability effects, and has also demonstrated
that, at least in the strong-damping limit, the full
sliding charge-density wave behavior is not obtained,
as the correlations weaken considerably after six or so
neighbors. Coulomb forces, however are longer-
ranged than the (near-neighbor harmonic) Frenkel—
Kontorova ones, and one might therefore suspect
longer-ranged correlations, Once again, it is of in-
terest to investigate both ¢, of Eq. (7)andl, of Eq. (8).
Table III shows both the extremal values of C, and the
I, for Coulomb forces inan incommensurate stoichiome-
try. Asthecharge increases, the dominantlocal (=2, 3,4)
correlations change from smaller and negative to
larger and positive. Both size and sign are under-
standable: the behavior becomes more like a sliding
wave or caterpillar collective motion as charge and
correlation strength increase. I one particle is moving
to the right at time zero, most probably nearby parti-
cles at short times are also moving to the right; this
is reflected in the C, ,, behavior. From the fact that
F <1, we deduce that, if I, is negative for small n (as
is for ¢ =0. 4), then it must be positive for larger n
(otherwise the Dy, from Eg. (8), will be smaller than
Dyracer). For very large g, as seen in Table III, the
I, are positive, and decrease slowly with n,

This behavior (conduction enhancement by correlation
effects in incommensurate situations) has one interesting
implication for experimental investigation. Groups in
Philadelphia®’ and in Evanston?® have prepared frame-

4159

work ionic conductors in which the mobile ions are
divalent. If the compensator trapping and cage po-
tentials (V,) can be overcome, we would predict that
such systems have higher conductivity than mono-
valents. Such an argument may help explain the anom-
alously high conductivity of Pb*™* in 8’ alumina.

V. DAMPING, CORRELATION FORCES, AND THE
EFFECTIVE POTENTIAL: THE MICROWAVE
CONDUCTIVITY

A few microwave conductivity results have been re-
ported for superionic conductors. The limiting be-
havior of do(w)/dw as w-0 has been of particular
interest, since Kimball and Adams® showed that the
effects of correlation, if treated in a hopping model,
will always be to make the conductivity increase for
increasing w away from the origin. Physically, this
means that the “bounceback” effect should dominate
the caterpillar effect in the low frequency limit. They
demonstrated this by calculations on short commensu-
rate chains.

Although the hopping models have many serious
difficulties for solid electrolyte applications, other
results, based on Brownian motion models, have also
demonstrated increasing conduction in the microwave.
Formally, one can show (see the Appendix) that

do(w)/dw| 4.0 =Mw ,

but the sign of the constant M is undetermined. For
interacting-particle systems, we are aware of no work,
either formal or numerical, which yields negative M.
For noninteracting particles, one can show that so long
as the restoring force at the well bottoms acts for a long
enough time, M will be positive. This holds, in particu-
lar, no matter how large the damping I may become.
Using the approximate solution provided by the Brown-—
Boveri group?® for the problem of an ion diffusing in a
periodic potential, one can show that the value of M can
become negative if the memory time over which the re-
storing force effectively acts is smaller than the inverse
frequency at the well bottom,

(10)

1.43
o 135
o
R -Y4
b
© e

(N1

1 1 1 1 1 i 1 1
5.2 104 156 208 26 3.2 364 4|6
PSEC

FIG. 5, Typical trajectory in the case of weakly damped, non-
interacting particles. Parameters in Table I, except '=1,35
x10's"!, Note the oscillatory regions (between 5 and 15 ps),

and the quasifree motion (such as from 0 to 4 ps). These re-
sult in harmoniclike and Drude-like behavior, respectively.
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28F

24+
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SIGMA (W) (x 107™%)

0.4 H L
o | 1 1 1 1 L 1 1

0 7 i4 21 28 35 42 49 56 63
w(x10'?)

FIG. 6. Computed conductivity for noninteracting particles
(as in Fig. 5). Note decrease of conductivity with frequency
(quasifree, Drude-like) at low frequency, oscillatory peak for
w24 x10!2 Hz.

When the particle—particle repulsions V, are absent,
an ion, once thermally promoted above the barrier
energy A, can diffuse a fairly long distance if ' is
small compared to thermal frequencies, Thus, one
should be able to observe in this regime, both diffusive
character (peak at »y=0) and harmonic character (peak
at w =k, /m)"?, for a local effective force constant
Eo1s. This behavior is in fact observed in our Langevin
dynamics for very dilute systems, as shown in Figs. 5
and 6; it was proposed in an early model by Huberman
and Sen, %’ who argued that the restoring forces acting on
the ions should be harmonic at short times but absent at
long times. This behavior is not expected to be common,
since ion-ion repulsion will generally prevent the free
motion over more than one or two lattice sites.

In experimental practice, most superionic conductors
exhibit oscillatorlike behavior (M >0) rather than Drude-
like behavior (M<0). The only well-documented case
for which this fails is ¢-Agl, for which Funke and
others” have observed negative M.

VI. REMARKS

Liquidlike behavior has been invoked previously for
solid electrolytes of molten-sublattice type, such as
aAgl, Our simulations, coupled with observations of
sublattice spacings in hollandite and with formal results
available in the Frenkel-Kontorova (strong-coupling)25
and Smoluchowski (strong-damping)!®!+1¢ limits, indi-
cate that simple correlated hopping, which is an appro-
priate dynamical model for framework solid electro-
lytes in the commensurate or weak-interacting cases,
may begin to fail seriously for strongly interacting,
incommensurate cases, such as Pb-g’ alumina. For:
these instances, the theory and the simulations indicate
that the ionic displacements are strongly correlated,
that the flight time and time between jumps are no longer
easily differentiated, and that the dynamics is truly
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liquidlike., It would be of considerable interest to
search for this behavior experimentally, either em-
ploying inelastic scattering to get at p*? (x, %), or
anharmonic fits to the x-ray data to look for broadened
behavior in p{x), or, perhaps, from M <0 behavior
(negative slope at origin) in the microwave conductivity.

In glass framework conductors, or in frameworks
with strong compensatorcharge trapping, effective in-
commensurability may be provided by disorder in
Vi(x). This can then lead to enkancement in the conduc-
tivity, compared to the untrapped, perfectly ordered
case. More work on these materials, both experi-
mental and theoretical, would be of real value, to
study the competing effects of disorder in V,(x), the
unperturbed, periodic V,(x) and the ionic interactions.
Glassy materials can in fact demonstrate fairly sub-
stantial ionic conductivity, 3! and the mechanistic un-
derstanding of that process, in terms similar to those
developed here and elsewhere for ordered frameworks,
remains a challenge.
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APPENDIX

The frequency dependence of the microwave conduc-

tion, We wish an expression for
dRe o(w)/dw | ,.q=do/dw . (A1)

Apart from constant term A;,, we have from the correla-
tion expression

olw) =A0f0” e“‘";(Jl(t)Jn(O)) dt . (A2)
Thus

do/dw =A0 fo T gt it ;(Jl(t) J,(0) dt . (A3)
For small , this becomes (real part)

do/dw=-w fo ) Z (D) 7, 0)) £ dt . (A4)

Since the integral in Eq. (A4) is a real number indepen-
dent of w, we can rewrite Eq. (A4) as

where M is a real number, Thus the slope of the con-
ductivity near the origin is directly proportional to fre-
quency.
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