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Results of numerical simulations of the time evolution associated with hamiltonians characterized by random coupling
matrix elements between dense manifolds of states are presented. It is shown that in the statistical limit (averaged magni-
tude of the coupling larger than the inverse density of states) the time evolution is independent of the detailed nature of
the coupling and depends only on the first and second moments of the random coupling distribution, provided that these
moments are finite, If these moments do not exist the golden rule is not obeyed. [n the symmetric random coupling model

the time evolution is independent of the choice of the initial phases.

1. Introduction

In a recent series of papers [1—6] we have investi-
gated the spectral and dynamical behavior of systems
described by (a) a dense energy level structure and (b)
random coupling elements between these levels. The
random coupling models (RCMs) are characterized
by the energy level densities o (£) and by the distribu-
tion P(V) of coupling matrix elements. A typical
model is displayed in fig. 1. The dense manifolds
0,1,2,...1, ... consist of states ({]0c)} say for the
manifold 0) which are eigenstates of some zero-order
hamiltonian 4. Information on the residual coupling
V'is provided through the distribution P(V)of the
coupling elements Vre 73 U, J are manifold indices
while a, § denote individual levels within such mani-
fold) which are assumed to be random functions of
the indices « and 8. The model of fig. 1 has been suc-
cessfully used (with Vi jg 2erounless J = * 1) to
describe the kinetic behavior associated with infrared
multiphoton excitation of large molecules [2,4,7,8].
Similar random coupling models have been used for
other problems involving intramolecular processes in
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Fig. 1. A schematic model of coupled manifolds of levels,

large molecules [9-13]. Random hamiltonians are
encountered in many branches of physics (e.g. in the
theory of nuclear spectra [14] and in theories of
random solids [15]). The typical feature in large mol-
ecule dynamics is that processes of interest involve
transitions between manifolds of states as in fig. 1.
The purpose of the present paper is to supplement
our previous work on the time evolution associated
with such RCMs by further computer simulation re-
sults aimed at strengthening some of our conclusions
on the effect of the nature of the distribution 2 (V)
on the resulting dynamical behavior. In addition, we
present some computer simulations which examine



364 B. Carmeli et al. [Random coupling models. IV

the role played by the nature of the initial state (the
combination of states from the manifold 0) on the
subsequent time evolution.

2. A review of the model and its implications

Our model is described by fig. 1, where the coupling
matrix elements Vh, Jg are assumed to be real random
functions of the state indices a and g, In the present
work we assume that no correlation exists between
Ve, s5 elements with different o and/or § ¥, so that the
distribution 2(V) completely determines the statistical
properties of the coupling elements. We note in passing
that (V) may, in principle, depend on the indices /
and J. The average

1
(V>I,J=W§§ ViaJor = deV?IJ(V) (1)

(V and N’ being the number of levels contributing to
the a and o’ sums, respectively) is the first of the mo-
ments (V") ;= [dV V" P ;(V), which determine the
distribution ®; ;(¥). It is convenient to define

U=y (2)
and
e ip = Viess ~ Ury - (3)

The assumption of no correlation stated above implies
that

(Ulall'u’ UJﬁ,J'ﬁ') = <02>f!1’ (6]',‘]‘6[!"}! 60!,36011,6'

o, 085 g8 584 ) 4)

It should be pointed out that the averages defined
in (4) or in the first equality of (1) are coarse grained
averages which involve the levels within some energy
interval €. These averages may still depend on the ener-
gy £ (which is equivalent to saying that ?;;(¥) may
depend on £). If AE is the energy scale for this depen-
dence (e.g. AF = (d In(w?)/dE)~1), 7 is the timescale
of the experiment, ¢ our energy resolution and g the
density of states in a given manifold, the following in-
equalities are assumed to hold

hp > hfe > 1 >HIAE . (5)

A more detailed presentation of the model and the as-

* See ref. (1] for a treatment of correlations.

sociated assumptions is given in paper I [3). With moq.
els characterized by the inequalities (5) numerical sim,.
ulations [5] have led to two important conclusions:

(2) The physical observables of the system depend
only on the distributions ?;;(V) and not on the de-
tailed choice of coupling elements V1o, s5- In other
words, two different sets of coupling elements whijch
are characterized by the same average properties (mo-
ments) lead to the same observables of interest, e.g_ the
time evolution on the relevant timescale 7.

(b) Noting that the distribution 2(¥) is character-
ized in principle by an infinite number of moments
(V7), a temarkable property of systems characterized
by the inequalities (5) is that the observables of interest
depend only on the two lowest moments (V) = i and
W2)=(¥?)- u? of the distribution.

Assuming the validity of conclusions (a) and (b) we
were able to focus on the particular RCM with gaussian
distribution (characterized by its two lowest moments),
and within the gaussian RCM we have shown that the
model of fig. 1 (with one initial state |0)) leads to a
time evolution of the manifold populations P;(7) =
Z, P, (1), described by

Pi(t) = ; (k7 s Py () — Ky 1 P(D] (6)

where the main contribution to the rates comes from
the variance (v2)

kI:J = QTT(02>I‘J;OI R (7)

with other much smaller contributions ¥ which depend
on u (see paper I for details). It should be noticed that
eq. (7) differs from the usual golden rule result in that
(2) = (V2) — (V)? appears instead of (V'2),

The numerical simulations reported below are de-
signed to provide more information regarding the range
of validity of conclusion (b) above. In addition, we gen-
eralise our earlier computations by using an initial state
of the form £ C,|0a) and study the effect of the na-
ture of this initial superposition on the subsequent time
evolution. Throughout this paper we employ dimension-
less units with 2 = 1.

* The u-dependent contributions are much smaller than the
v-dependent ones if u and (v?>!'? are of the same order.
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3. Dependence on the distribution of matrix elements

In paper III we have carried out simulations on the
time evolution associated with the model displayed in
fig. 1 for the case where the manifold O contains a
single level. This level |0) is the initial state of the sys-
tem. We have followed the populations of the manifolds
0,1,2, ... and have shown that the time evolution agrees
with the kinetic equations obtained for this model for
the gaussian random coupling model. Having obtained
identical (within small statistical differences) results us-
ing gaussian, rectangular and bimodal distributions for
the coupling matrix elements (with parameters chosen
so that all these distributions have the same first and
second moments) we have concluded that under the
model assumptions outlined in section 2, the time evo-
lution is governed by only the first two moments of
the distribution of coupling matrix elements.

In what follows we present the results of additional
numerical simulations which support this conclusion.
We employ random distributions given by ¥

%(=0, Vi<a,;

=3(n-DIVIT", VI=a,, (8)

where the parameter a is chosen to yield the prescribed
second moment

2y = {[(n = 3)/(n — Y D}VZ &)

By using eq. (8) with different » to generate the ma-
trix elements for the model of fig. I, we can investi-
gate the dependence of the time evolution on the na-
ture of the distribution. To generate a sequence of
coupling matrix elements which correspond to a given
distribution (V) we first form random numbers cor-
responding to a uniform distribution in the range
0<x < I, then define P(V) by [V dV (V) = x.
After generating the hamiltonian matrix in this way
we solve numerically the Schrodinger equation to ob-
tain the time evolution of the manifold populations.
Each solution is referred to as a “trajectory”.

Our results for all distributions for which the first
and second moments are finite (7 > 3) confirm our
previously reached conclusions: (a) Under the condi-

* The distributions By, (V) are characterized by zero first
moments. To simulate a random coupling with a non-zero
first moment it is sufficient to define V = u + v, where v is
taken from eq. (R) and where u = (),
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Fig. 2. Time evolution for the model in fig. 1 where the first
manifold {10,a} contains only one level and is coupled con-
secutively to two manifolds with state densitiesp, = 1, p3 =
1.5. The total number of states taken in this simulation is 75
in each manifold, RCMs are characterized by (V3> = 1.273,
(V32> =1.0 and (V) = 0. Solid line: analytical results [(eqs.
(6) and (7)), dashed line: gaussian distribution; dotted line:
Pa (V) with = 7 [cf. eq. (8)); dotted—dashed line: &, ()
withn =4,

tions outlined in section 2 the time evolution is deter-
mined by the distribution and not by the particular
choice of coupling matrix elements. This has been
shown by running several trajectories for different
choices of coupling elements (using the same distribu-
tion} and getting similar time evolution for all these
trajectories. (b) The time evolution is determined only
by the first and second moments (V) and (¥2) of the
distribution and is not sensitive to the higher moments.
Thus all distributions P, (V) yield the same time evolu-
tion provided (v2) and u = (V) are the same. We have
verified this for n = 4—11. An example is shown in
fig. 2. (c) The time evolution follows the kinetic equa-
tions derived in papers I and II. The equations are
identical to the Pauli master equation for u = 0.

The situation is different when the distribution
P(V) does not have finite first and/or second moment,
e.g. P(V)of eq. (8) with n = 2, 3, Simulations based
on these distributions show that:

(a) The time evolution is different for different
sequences of coupling matrix elements, i.e. it is not
determined by the distribution alone. This is seen in
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figs. 3a and 3b where the time evolution associated
with the simplest model of a single initial level
coupled to a dense manifold is displayed. We com-
pare for this model the time evolution obtained for
the gaussian random model and for P,(V) (n = 4,7)
with u = 0 and a given (v?), to that associated with
the n = 2,3 models in which a,, was chosen to yield

a full width at half height (fwhh) equal to the gaussian
W2 e a, =2 (W*Din@u2)l/2 In the first case
(fig. 3a) the different distributions are seen to yield
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Fig. 3. Decay of a discrete level {0 into a manifold {11,a)}
containing 150 levels with p = 5. (a): Solid line - analytical
result [Pg = exp(~T?), T = 2n<¥V?)p], dashed line — gaussian
distribution, dotted and dotted—dashed lines: P (V) with

n =4 and n = 7 respectively. (V3;)1/% = 1.21, (V3 = 0. (b):
Solid lines ~ trajectories computed using two different sets
of random matrix elements generated from Py, n=3
Dashed and dotted lines — trajectories calculated from two
different sets of random coupling elements generated from
PN, n =2,V =0, fwhh = 1.21 are used in these cases.
(c): Decay rates versus density of states. Full circles: gaussian
distribution with (V) = 0 and (V3,>¥? = 1.21. Empty circles:
P3 (V) with (V) = 0 and fwhh = 1.21. Squares (scale reduced
by factor 100): Py (V) with (¥) = 0 and fwhh = 1.21.

the same time evolution (within statistical differences
that are expected to disappear when p becomes very
large) *. This was also seen for different sets of cou-

* The different initial slopes observed in the analy tical result
as compared with the numerical simulations are “finjte-size”
effects caused by the finite energy extent (compared with
the decay rate k) of the manifolds used in the simulations.
This energy extent is given by N/p, where N and p are total
number and density of levels in the manifold. The analytical
result assumes N/p » k.
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.j pling elements taken from the same distribution. In
- the second case (fig. 3b) the time evolution depends
on the particular choice of coupling elements.
(b) As may be inferred from (a), the golden rule is
| not obeyed for the n = 2, 3 distributions. In fig. 3¢
~ we compare the decay rates calculated for a single lev-
el coupled to a dense manifold of levels for three cases
- which differ by the density of states p. According to
the golden rule this rate should be proportional to .
This holds for the gaussian distribution while it is seen
not to be the case for the n = 2, 3 distributions. The
deviations become very large for the n = 2 distribu-
-tion where most trajectories are obtained non-expo-
nential.

We have also used a lorentzian distribution in sev-
eral of the simulations and found its behavior to be
qualitatively similar to that of the n = 2 distribution.

4. The effect of the nature of the initial state

The simulations described above, which are all
based on a single initial level coupled to the {l1al}
manifold are a special case of the situation where the
initial state is an incoherent combination of states
{10c} given by the initial occupation probability
for each such state. The results described above
thould then be averaged over this initial, diagonal
density matrix.

Another situation which often arises in molecular
physics problems is that where the initial state is a
coherent superposition

U(t=0) = 27 Cyy exp(ip,)|0c) , (10)

where the C,, are the magnitudes of the initial am-
Plitudes and the ¢, are the corresponding phases.
Quack [8] has suggested that the choice of initial
phases should have a profound effect on the time evo-
lution in models of the kind presented by fig. 1.

While this is undoubtedly true in many physical situa-
tions, our results indicate that for random coupling
models with properties summarized in section 2 and
With (V) = 0 the choice of initial phases is immaterial:
The time evolution of the manifold populations given
the initial state (10) is the same as that obtained from
i initial diagonal density matrix given by P, 08 =
C[zh 6,5 as long as we use symmetric ((V) = 0) and

Fig. 4. A schematic model (two discrete levels |7) and |5}
coupled to a manifold {|L,a}}) used to study the effect of
initial phases,

well-behaved (n > 4) coupling distributions functions.

As a simple example consider the model shown in
fig. 4. We use the indices s and r to denote the two ini-
tial states and / to denote states of manifold L. The ini-
tial state is taken to be

Y(t=0)y=2-12y +2-Uleioy (11)

Fig. 5a shows the time evolution of the populations
Pg, P, and P, = X, P, for the constant coupling model
Vst = V,y = u, for two different initial phases ¢ = 0 and
¢ = 7. The evolution is seen to depend strongly on the
initial phase. In contrast, in the corresponding RCM the
time evolution does not depend on ¢ and is the same as
that which is obtained from the initial diagonal density
matrix, pg = p,, = 0.5 (fig. 5b).

This behavior can easily be rationalized. Since Ve, =
0 the two states s and r “feel™ each other only through
their coupling to the manifold L. The quantity which
determines their mutual interaction is the interference
linewidth [16] which, for an infinite timescale experi-
ment, is given by

T, (E)=2n ?; Vo V8 (E — Ep). (12)

If the timescale of interest is 7, [, involves a sum over
I states in an interval of order #/7. When the conditions
discussed in section 2 hold, this yields a finite result in
the constant coupling case and practically zero in the
RCM. Hence, in the RCM the r and s levels evolve as if
they do not feel the presence of each other.

Similar results are obtained when the coupling be-
tween two dense manifolds is considered (fig. 6). Here
we compare for the RCM (gaussian with u = (V) = 0)
the time evolution obtained for two cases:
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Fig. 6. Time evolution of the population in manifold {10,0:}
which is coupled to a second manifold {I1,¢>}. The density
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Fig. 5. Time evolution for the model described in fig. 4 with
Af =1, pf = 2. The total number of states in manifold L is
150 in this simulation. (a) Constant coupling elements Vs

= Vpr = 1.262. Solid line: ¢ = &, dashed line: ¢ = 0, (b) Same
as (a) with random coupling elements chosen from a uniform
distribution with (V3 »V2 = (P 3172 = 1.262 and (V) = 0.
Solid line: analytical result {Pg(f) = Pg(0) exp(—2n(Vipr 1),
Pr(1)=Pp(0) exp(—2n(V} Ypy £)]; dashed line: uniformly
distributed random initial phase within (0, 2#); dotted line:
constant initial phase ¢ = 0,

W(t = 0)= 22 N-12Cy exp(id,)10a)

one with all ¢, zero and the other where the ¢, are

P il-(-}' P

o £ L1

0

with ko = 2m(V2)p,, and kqp = 2n(V2)p. On the
other hand, the constant coupling case is quite sensi-
tive to the choice of initial phases. We note that the
very slow time evolution observed in the constant cou-
pling—random phase model is in agreement with a theo-
retical analysis given earlier #,

# See appendix C in ref. {4].
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5. Summary

By numerical simulations we have shown that the
time evolution associated with inter-manifold random
coupling models, in the statistical limit {characterized
by the validity of the inequalities (5)} is governed by
the nature of the distribution of coupling elements
and in fact, only by the first two moments of this dis-
tribution. This holds, provided the distributions are
well behaved in the sense that their first two moments
(V) and (¥'2) are finite. When this is not so, the time
evolution becomes sensitive to the particular realiza-

-~ tion of matrix elements, different sequences of such

- elements yield different temporal behavior. Oscillating,
- non-exponential and non-golden rule evolutions char-

-~ acterize these cases. -

~ In the symmetric ((1") = 0) RCM the time evolution
is insensitive to the choice of initial phases: only the
 initial populations matter. In other cases, in particular
in the CCM (V' = (V)) the time evolution is affected by
interference between the initially populated levels and
the choice of initial phases becomes important.
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