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Abstract. A model for thermal desorption, described by a one dimensional classical
generalized Langevin equation (GLE) for the motion of an adatom, is solved by
reducing the GLE to a Fokker Planck equation in action space. The escape rate is
obtained as the inverse mean first passage time for the particle to achieve a threshold
energy {or action). A calculation using parameters corresponding to the desorption of
Ar from W is compared with quantum mechanical results for the same model.

1. INTRODUCTION

Thermal desorption is an extensively studied phenome-
non in surface chemistry.! Theoretical descriptions of this
process have been usually based on one of the following
approaches: (a) The Kramers' theory of activated rate
processes is used to derive a rate for a one dimensional
mode! (Fig. 1) of the desorption process’ (limiting forms
of the Kramers’ result like the transition state theory
(TST) have also been used’). (b) The quantum levels of
the adsorbed particle in its (averaged) potential well are
calculated, the quantum mechanical transition prob-
abilities between these levels are evaluated and a master
equation is set using these transition rates. The one
dimensional model of Fig. 1 and the golden rule expres-
sion for the rate are usually used, and dephasing is
assumed to be fast in the timescale considered.** In
addition, simulations based on stochastic classical trajec-
tortes (SCT) have been quite useful in studying the
dynamics of “real” 3-dimensional desorption models.’

The Kramers’ theory starts from the Langevin equa-
ton for a particle in a potential well V(x):
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Fig. 1. Pictorial representation of a one-dimensional model of

an adatom bound to a surface atom: x =X — Y where X
designates the adatom position and Y 1s the coordinate of the

surface atom.
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X+ dV(x)/deryx:HR(z) (1)
where M is the mass of the particle, y is the damping
rate and R is a stationary Gaussian random force
satisfying

(R(6)=0; (ROR()=2yMkT5(1). (2)

The theory resuits in different expressions for the rate,
depending on the strength of the coupling to the heat
bath, represented by y. All these expressions contain the
factor exp(— Ep/kT) and differ in the pre-exponential
coefficient: in the low and high friction limits the rate is
linear and inversely proportional to v, respectively.
Intermediate cases result in 2 more complicated y de-
pendence. The case where y Is low enough so that all
particles which reach a certain critical position escape
from the well, but high enough to maintain a Boltzmann
equilibrium in the well region and a uvnit sticking proba-
bility, is described by the transition state theory (TST),
with a y independent escape rate.

It should be noticed that energy master equations, with
transition rates proportional to the strength of coupling
to the heat bath, correspond to Kramers’ low friction
limit. Kramers' theory in this case yields a diffusion
equation for the energy, which is the analog of the energy .
master equation mentioned above. Furthermore, the -
escape criterion is similar: a particle is considered to have "
escaped the well if its energy becomes positive (see Fig.

1). The main point of difference between the two ap- =
proaches lies in the assumption, inherent in Eqgs. (1) and
(2), that the timescale associated with the thermal b?th .
(i.e the substrate) is much shorter than that }'Jhlch-'-
characterizes the adatom. In many situations (chemisorp-"
tion or strong physisorption) the opposite is true and if
many others the two timescales are comparable.'.
energy master equation with the quantum mechanics
calculated transition rates can easily handle this situatio
as long as the level widths associated with the transitio
rates are small relative to the level spacing. Kramers
theory, on the other hand, requires modification: Eq- 1

* The timescale for the adatom motion is determined "' :
well frequency and that of the substrate by the surface
frequency.
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should be replaced by the generalized Langevin equation
(GLE)

£+ M dV(x)dx + f drZ(t-1)i(r)= M"R{t) (3)
(R(1))=0; (ROR(1)) = MKTZ(¢) (4)
L " Z(t)dt = (5)

. where Z(t)is characterized by a finite relaxation time 7, .
' The required modification of the Kramers' theory in
the low friction limit involves a reduction of Egs. (3)~(4)
to a diffusion equation for the energy, or for the action
variable of the particie. Such a reduction is possible if the
inequalities

yél/‘l’céw (6)

(w being the frequency of motion in the well} are
satisfied. The result is**

é‘ﬂt;#) = % [gu) (kTa—i + w(f)) P(J,I)J (7)

- where J is the action variable (related to the energy
through E(J)= ['w(J)dJ) and where

€)= 2M 3 ni|x, 7. (8)

In Eq. (8) Z: is given by
Zi=Zw(l)) = ] Cdi cos(na (J))Z (1) 9)

and x, are the coefficients of the expansion of the
deterministic motion

x(t)= E X, (J)exp{in (1))

where ¢ is the angle variable of the particle.

These results are still not suitable to describe a desorp-
lion process, because the coupling to the heat bath was
taken to be position-independent. In fact, since during
the desorption the atom detaches itself from the heat
- bath, both y (or Z) and R become position-dependent
¢ (and should vanish for large x). In the present paper we
apply our approach to the non-Markoffian theory of
activated rate processes® to a one dimensional model for
desorption of an atom from a surface. The model (see
insert to Fig. 1) has been used by several authors in a
similar context, most recently by Efrima et al.* who have
L used this modei to derive an energy master equation. We
us¢ our method to explore the effect of the non-
- Markoffian behavior on the desorption rate, to discuss
the use of classical vs. quantum mechanics for the
Problem and to study the effects of unharmonicity and of
. multiphonon transitions.

(10)

I1. MODEL AND MATHEMATICAL DEVELOPMENT
To represent better the physics of a desorption process
- we replace Eq. (3) by

(= -M73V(X - Y)/aX
( Y= -M.9V(X - Y)aY —w’Y

(11)

' _ (12)
- ] drZ(t - )Y () + M,'R(t)

© X is the coordinate of the adatom of mass M, and Y that
Of the surface atom of mass M,. The latter is character-
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1zed by a frequency w, and is subjected to random force
and damping (satisfying Eq. (4)) which arise from its
coupling to the rest of the lattice. The origin of coordi-
nates is taken to be the equilibrium position of the
surface atom in the absence of the adatom.

We mtroduce a transformation to the center of mass
and relative coordinates by defining

x=X-Y

y =(MX+MY)(M+M,) (13)
o= MMM+ M)
Inserting (13} into (11)~(12) we obtain
X=—pnoV(x)ox + ol (y - Mus x)
(14)

+Ler(t—r) [y(f)*ﬁi(T)]“MﬁR(‘)

*ﬁfor drZ(t —r)[)}(f)—ﬁx(f)J
+(/MM)R(1).

We note that the transformation (13) is a major depar-
ture from an earlier treatment of the same model: Efrima
et al.* have rewritten Eq. (11) as

X =~ M73/3X K Vv~ MN[aX)(V —(V)y) (16)

where (V}, = (V(X — Y)) is a thermal average over the
position of the surface atom, and where the second term
in the r.h s. of (16) provides a perturbation which induces
transitions between the levels associated with ( V). The
energy criterion for desorption is then related to a
threshold energy defined for the adatom moving in a
potential {V},. We use the energy criterion with a
threshold associated with the energy of the relative
(adatom-surface atom) motion. As we shall see, this is
not just a semantic difference and it leads to different
physical conclusions.

To proceed, we formally solve Eq. (15) and substitute
the resulting expressions for y(¢) and y(r) in Eq. (14).
The result is

(15)

v = —M“é% V(X)WL drz{r —7)o(r)+u'p@t} (17}
where
z(:)=—ﬁ[2(:)—ﬁﬁ drB(t — 1)
XL’dr'Z(f*T')Z(T’)+wEB(!) (18)
—ﬁmffn' dTB(r—f)L’dT'Z(T’)]
o(0)= ) [ @Bt~ mz(r)

+oi(yO-£x0) B()- 3 R(D)

+

1 ! o ' e '
M+M,odT(R(T),,; dr'B{t —1—102Z(r"

+ w?B(f - T)L'dr*R(f’))] (19)
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(the argument (0) denotes evaluation at ¢ = () and where

uv=i, u=y (20)
The function B(¢) is defined from
J drexp(—st)B(1)
21)

= B(;s')=s/(s2+ﬁszn(s)+%mf)
with
Z(S)ZJxexp(Lsr)Z(r)dr.

Note that B(t =0) =1 if Z(s) is zero or finite for 5 — x.
Using this and Eq. (19) we can show that

(p)=10 (22)
{e@p(t) = ukTz(1). (23)
To obtain Eq. (23) we also have to assume
(0 £ <) = (Vo =0 (24)
(w0 YOy =0 (2%)
(Y (O)) = kT/(Mw;). (26)

Equation (23) constitutes the fluctuation dissipation
thearem for the motion associated with the relative
coordinate x. Note that the need to make the assump-
tions (2426} about the initial values u(()) and Y(0)
arises from the fact that any particular nitial values give
rise to transient non-stationary contributions to p(t).
Only an initial thermal distribution for the surface atom
results in the required properties for p and z with p
taken as a stationary random force.

Equation (17) is now identical in form to the GLE, Eq.
(4), with 2 and p replacing Z and R. The Fokker Planck
equation for the action J (associated with x), Eq. (7),
applies with €(J) now given by

Ey=2p 2 n¥x, Pz
n=t

x, Is again related to the deterministic motion in V(x) by
Eq. (10), and

(27)

ifw)= Lx dt cos{wt)z (1)

may be obtained, in terms of Z, (w), from Eq. (18):
Fw) = (p/M)[n*w Z{w))
xq[n'w® - (u/M)wl ~ ne{n/M)Z (w))
+{nw (u /M) Z ()

(28)

where

=

z‘:(m)=L dt cos(nwt)Z (1)

2:,(w)=] dt sin(nwt)Z(t)
1]
are the real and the negative imaginary parts of

Z(w) =L“ dt exp(— inwt)Z(1).

Equations (7), (27) and (28) enable us to calculate the
rate of escape out of the potential well for any model
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defined by V(x) and Z{t). Consider, for example, the
model characterized by a Morse function for V(x):

V(x)= Epl[exp(—2x/a)—2exp(— x/a)] {2’9)

and by a choice of Z(t) that yields a Debye spectrum for
the motion of the surface atom in the absence of the
adatom. The latter is determined by

Y= - wlY *JI drZ{t ~ ‘T)Y +(UM)R (1) (30)
which leads to (using { Y% = kT/M,)
Clw)= [ dt cos(wt){Y(0) Y (1))

_ W Zi(w)(kT/IM,) (31)
[w— 0! — wZi{w)f+ 0(Z2(w))}

C(w) is related to the weighted density g(w) of phonon
modes contributing to the unperturbed motion of the
surface atom by

glw)= ii/{r Clw). (32)

Thus
( }ﬁg w?Z5(w)
B o — ol - wZi(@)] + W Z (@)

(33)

The function Z{w) = Z5(w)— iZ}(w) may now be deter-
mined so that g(w) is a Debye function with a particular
Debye frequency wp. In practice, Z,(w) is chosen as an
explicit function of w with several parameters (including
w,), and the parameters are determined to yield the best
approximation to the desired Debye (or any other) form
of g{w). Finally, the functions Z, () = Z%(w)—iZ}(w)
needed in (28) are obtained using Z, (w) = Z,(nw).

In this way, the functions Z;(w(J)) needed in Eq. (27)
and defined by Eq. (28) are obtained. The other neces-
sary input, the functions x,(J), may be calcuiated ex-
plicitly for the Morse oscillator:

7 _ a_z LIJ()j
‘X"(])' _HZ4ED"MQJ (34)
where w, is the frequency at the bottom of the well. The
sum in Eq. (27) may now be calculated by truncating the
infinite series and summing numerically the resulting
finite series. We note that the series in (27) converges
everywhere for J < J,=2E,/w,.
The mean first passage time for the system to reach the
threshold action J, starting from any particular J is given
by

Trre (S, Jo) = (kT)! ]JD dI'[€ (I exp| E(J'WKT)
. (35)
xf dl"exp(— E(J"VKT)

where E(J)= [}, dJw(J). At steady state this has to bé
averaged over the steady state solution P,,(J) of (7), and
the result constitutes the inverse escape rate calculate

under the assumption that once the particle reaches the
energy 0, corresponding to J = J,, it escapes.

As noted elsewhere, the function 7:(w) = Zj(nw) cOf

stitutes the classical analog to the quantum mechanical
transition rate between two levels separated by thet
energy nhw. This immediately leads to a result that .
suggests that the model employed here may be 109
limited. Since Eqs. (28) and (33) imply that 23(w) va




ishes when g(nw) vanishes it follows that multiphonon
transitions do not contribute to the rate in this model.
This result could in fact be inferred already from the
structure of Egs. (14)-(15), which show that even though
the relative adatom-surface motion is nonlinear, the
. coupling of this motion to the rest of the lattice is linear.
- This stands in sharp contrast to results of other work®
- which attempt to solve Egs. (11)-(12) without employing
- the transformation {(13).

IIl. NUMERICAL RESULTS AND DISCUSSION
In order to approximately fit the properties of the
noise R(t) and the kernel Z(t) (Eqs. (12), (30)) to a
Debye model with a given Debye frequency we have
- used the following form for Z:

2 2

Z{t)y=~ L 2+I_”Q l:cos(ﬂr) +£sin(ﬂr)] e (36a)

(T + D)2C + iw)
A+ — i+ 2iTw)

and determined the parameters [, {1, v and w, 5o that
: g(w) (Eq. (33)) will be as close as possible to the required

Debye spectrum. Such a procedure has been used before
by Shugard Tully and Nitzan." The resulting g(w) is
- shown in the insert to Fig. 2. It is a poor approximation to
the actual Debye spectrum near and beyond wp, but
practically overlaps it at the relevant frequencies (w =
wg, o being the frequency at the bottom of the potential
Vix)).

In Fig. 2 we plot In (rate) as a function of inverse
temperature" for 2 model corresponding to the desorp-
tion of argon from tungsten (M = 39.95 au, M, = 183.85
au, E, =19 kcal/mol, a =144 A-'; E, and g corres-
pond to the Morse function (29)). The spacing between
the two lowest bound levels of this system is 51 cm™

Ziw)=v (36b)
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Fig. 2. An Arrhenius plot of the desorption rate for the Ar—W
system with different Debye frequencies; wg ~ 125 cm™' is the
surface Debye frequency of W. The insert shows the actual
phonon density of states employed in the calculation, as a fit to
the Debye spectrum, which is also shown. The arrow points to
wy, the frequency at the bottom of the potential V. The five
curves correspond to the different surface Debye frequencies
used in Table 1 ((1) corresponds to the lowest, (5) to the highest
value of wp).
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compared with a surface Debye frequency of ~ 125 cm™,
so that one-phonon contributions to the rate are ex-
pected to be dominant. If we analyze the straight por-
tions of the resulting lines according to the Arrhenius
form
ke=vexp(— E,/kT)

we obtain the results summarized by Table 1. The results
are given for different Debye frequencies in order to
elucidate the dependence of E, and » on this parameter
which determines the timescale for the response of the
substrate. We note that if the substrate was modeled as a
Markofhan thermal bath with a white phonon spectrum,
Kramers’ theory predicts E, = Ep = 1.9 kcal/mol. The
deviation of E, from E; is similar to that discussed by
Freed, Metiu and coworkers.®

Qur results for wp =125 cm™ should be compared to
those obtained by Freed, Metiu and coworkers® on the
same model system. Compared to their values for v ~
L13x10" s and E,~1.56 kcal/mol we get v~
1.45x10%s™" and E, ~ 1.70 kcal/mol. It should be noted
that the calculation in Ref. 6, in addition to the difference
discussed above after Eq. (15), uses an unknown parame-
ter, the phonon width A (taken tentatively to be 100
cm™'), which does not appear in our calculation. The
dependence of the resuits on this parameter makes it
possible to get a better agreement between the two
calculations by a somewhat diflerent choice of A. The
two calculations, one based on a quantum and the other
on a classical picture, may thus be considered to be in
good agreement. This is not too surprising: there are 25
bound levels in the potential weil of this model, and a
classical description should indeed work.

The situation is different for cases where multiphonen
contributions are expected to be dominant, e g., when
some spacings between bound levels in the potential well
are large relative to the surface Debye frequency. Here,
the calculation of Ref. 6 predicts a finite rate while our
calculation pedicts zero rate or a much smaliler one
(a non-zero contribution arises from the population in
higher well levels whose spacing is small relative to the
surface Debye frequency).

This drastic difference between the two calcuiations
based on the same model is quite surprising. When a
weak coupling theory is used, the definition of the
coupling (that is, the way of dividing the system’s Hamil-
tonian 1nto Hy+ V with V being the perturbation)
should be expected to make a difference to the calculated
transitton rate unless an infinite order calculation is
employed. However, both procedures used in the present
work and in Ref. 6 look reasonable at first glance.

A further analysis suggests to us that our approach is
generally valid, while that of Ref. 6 is valid only within
the limits in which the two theories agree, that is, when

Table 1. Apparent Activation Energy E, and Pre-exporential
Coeflicient v for Argon Desorption from Tungsten {the Debye
frequency associated with the substrate is varied to explore its
effect on the resulting E, and v; the actual surface Debye
temperature of tungsten is ~ 125 ¢cm™")

wp, {cm™") E, {kcal{mol) v (s
62.5 1.75 2.05x 10+
125.0 1.70 .45 %10
169.0 1.67 G.22 x 10"
214.0 1.63 481 x 10
263.0 1.40 227 x 10"
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multiphonon contributions may be disregarded. Con-
sider again the procedure in Ref. 6, where the
adatom-surface interaction is written as

VX - V) ={(V(X-Y), t[VIX-Y)(V(X-Y)}]
(V(X - Y))y, an average over a thermal distribution of
the surface atom coordinate Y, is taken as the zero-order
Hamiltoman. In such a procedure one usually assumes
that the motion associated with Y is much faster than
that of X (see, e.g., the Born-Oppenheimer approxima-
tion where the fast electronic motion yields an average
potential for the nuclei). This corresponds to a case
where the surface Debye frequency is much larger than
the frequencies associated with the potential, 1.e., to a
situation where single phonon effects are dominant. This
suggests that for cases where multiphonon contributions
are important a zero-order picture which uses the ther-
mally averaged potential may not be justified. Another
argument which points to a similar conclusion is related
to the amplitudes of the thermal fluctuations: when the
surface frequencies are small relative to the frequency w,
corresponding to the bottom of the potential V{x), the
amplitude for the surface motion is of the same order of
magnitude as that of the adsorbed atom, and therefore
treatment of the surface motion as a perturbation may
not be justified.

The result obtained here should not, of course, be
taken to imply that muitiphonon transitions play no role
in surface desorption. It does mean, however, that to
calculate their effect correctly a better model should be
used. Such a model should include the interaction of the
adatom with more than just one surface atom, the
three-dimensional nature of the motion of the adatom
and, most importantly, the unharmonic nature of the
lattice.

For cases where one-phonon contributions are domin-
ant, the mode} used in this paper appears to be sufficient.
However, care must be taken in using the low friction
limit and the energy threshold criterion for desorption.
If the energy criterion rate 1s denoted by ke
(= o® Pl Toae(, Jp)dJ] ') the actual desorption rate is

ko = fke

where f is the exit probability, namely, the probability
that a particle that achieved the threshold energy actually
passes through xp (see Fig. 1) without falling back to
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E < 0. The validity of the energy escape criterion is thus
determined by the deviation of f from unity. The quan.
fity f itself may be determined by an independent
calculation of kp, e.g., by stochastic classical trajec-
tories.” Such a test, aimed at clarifying the range of
validity of the energy escape criterion, will be carried qut
elsewhere.
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