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A simple model representing an impurity oscillator coupled anharmonically to a lattice is examined both by
quantum mechanical perturbation theory and by stochastic classical trajectory simulations. Energy relaxation
rates are computed as a function of temperature. Classical and quantum relaxation rates are found to agree
well at high temperatures but, as expected, diverge drastically at low temperatures. If zero-point motion of the
lattice is incorporated into the classical calculation, classical and quantum relaxation rates agree quite well for
all temperatures, even for T—0. This suggests that the stochastic classical trajectory method can provide an
accurate description of relaxation phenomena even at very low temperatures.

. INTRODUCTION

The method of stochastic classical trajectories (SCT)
has been shown in recent years to be a very useful tool
for studying relaxation phenomena, energy transfer,
transport properties, and configurational changes in-
volving the interaction between a microscopic system
of interest and a heat bath.'=®* The importance of this
method stems from its ability to incorporate known
information about the microscopic subsystem and about
the bath into a numerical framework which provides a
complete nonperturbative solution for the dynamical
behavior of the microscopic subsystem. The use of
appropriately chosen noise and damping as forces
affecting the microscopic system eliminates the need to
perform large scale molecular dynamics calculations
at the easily affordable cost of giving up what is usually
irrelevant information.

While many SCT calculations are performed under
conditions for which the classical limit may be taken
for granted, an important class of relaxation and energy
transfer phenomena are studied experimentally at low
temperatures where the validity of SCT results is in
doubt. For such systems, classical mechanical re-
laxation rates generally approach zero as the tempera-
ture approaches zero, whereas quantum mechanical
rates remain finite in this limit. The following simple
example illustrates the failure of classical mechanics
in this regime.

Consider two anharmonically coupled linear oscilla-
tors, one of which is subjected to a friction force:

X+ wix = Ay*

1)
We will think of x as the “impurity” coordinate and y

as the “bath” coordinate. If at £=0,y=4=0, the x
oscillator will never feel the presence of the y oscillator

and will oscillate as if it is free; i.e., it will never
relax. In fact a linear analysis of Eq. (I.1) shows that

¥ +wiy=NAxy* — 9y .

Upermanent address: Department of Chemistry, Tel-Aviv
University, Tel-Aviv, Israel. Supported in part by the U.S.—
Israel Binational Science Foundation, Jerusalem, Israel.

J. Chem. Phys. 78(6), Part I, 15 March 1983

0021-9606/83/063959-05$2.10

this solution is locally stable, i.e., if the bath oscilla-
tor y starts with a small but finite energy, the system
will relax after some transient period to state where

vy =y =0 and x oscillates unperturbed. This behavior of
the classical system has no analog in the corresponding
quantum system, The zero point motion of the y oscil-
lator insures that the x-y coupling never vanishes com-
pletely even if y is initially in its lowest energy state.
Indeed, the quantum mechanical relaxation rate of x
may be calculated for small A using perturbation theory
and the result is always finite for finite y as shown
below.

The example above suggests that a major correction
to the classical trajectory approach will be obtained
by including the zero-point motion in determining the
initial conditions of all the oscillators in the system.
This is indeed the course taken in most classical tra-
jectory studies of gas-phase molecular processes.®

Having in mind the application of the SCT method to
vibrational relaxation of impurity molecules imbedded
in low temperature matrices, or to the dynamics of
adsorbate molecules on cold surfaces, it will be useful
to compare SCT results to quantum mechanical calcu-
lations in order to obtain a feeling for the applicability
of the SCT method to such low-temperature phenomena.

il. THE MODEL

The model we use is derived from the Hamiltonian

P2 p2
2% Ay oL 2.2
H—2 x+2 y+am,w,x

+3mywly? +Vix,y, B, P,)
with

_ mw, i )"

mew, i
(g0~ 7))

Here 2 is a coupling parameter of energy dimensionality
and Re denotes the real part. This choice of the
Hamiltonian is suggested by the simple form it takes in

(Il. 1a)

(I. 1b)
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terms of the transformed coordinates

_ fmey i
%= Ton ¥ Vohogm, *
. oyt
a; 5 Xt oo P, (I1. 2)

and similarly for a, and al. Under this transformation

the Hamiltonian becomes
=3hw, (ala, +a.al) +3hw,(ala, +a,al)

+Ala, @) +alad], (I1.3)

in classical mechanics ala, +a,a,)

In the equivalent quantum mechanical
problem al, a,, a!, and a, are the raising and lowering
operators for the x and y oscillators.

where, of course,
=2Re(ala,), etc.

The equations of motion in x — P space take the form
. P 22 - @ P ”]
[l 3 =y
x Im[(/ 2% y+\/2hm,w ,) R
. N
s _ MWy [mw, i >] ,
P = mw,x ZA\/—;‘Re[( 2% y+‘/2ﬁme,

my Y 2hm

. P 2N )"
=‘—1 - p———
Y=y~ V2hm oy [(\’ 50,20y + \/Zh'm

X( /m‘—-‘x mP)] - yy+Ry(t),
Py =—m,wly —2Na m,wyZﬁRe[( /'—";}iﬂ!y
—X X
Tt T

b el | REGREUL

where to the terms derived from the Hamiltonian (II.1)
we have added friction and Gaussian white noise terms
y and R; (¢) which act on the oscillator y, Our model
thus corresponds to the physical picture in which x
represents the system which is coupled to the thermal
bath through the y mode. The specific form of damping
taken in Eq. (II.4) is chosen so that in the a, a' rep-
resentation we get

(I1. 4)

"1 == va, ,

d; = Va; ’

where we have written explicitly only the damping
terms.

By exploiting the relationship between Langevin equa-
tions and Fokker-Planck equations, ’ we can derive
fluctuation—dissipation relations for R, and Ry,:

R, 0)R, () =fnk—f}£ 5(t), (1. 5)

R20)R, () =2kTm ,v5(t) , (IL.6)
and

R10)R, ) =R 0)R,(¢)y =0 . (1.7

Thus R,(¢) and R,(f) are independent Gaussian delta-
function correlated random functions.

The system (II.4) can be readily integrated using the
SCT method and the results compared to the quantum
mechanical evolution which may be obtained in prin-
ciple using the Hamiitonian (II. 3). This is done within
perturbation theory in the next section.

ll. QUANTUM MECHANICAL SOLUTION

Consider the following general Hamiltonian describing
a harmonic oscillator coupled to a heat bath:

=thw.lala, +a.al) +Hy +Fal +Fla, , (111 1)

where Hyg is the bath Hamiltonian and where the last
terms in Eq. (III. 1) describes the oscillator bath
interaction. F is an operator in the bath subspace.
Following a well known procedure® we can derive a
kinetic equation for the energy relaxation

%‘ti = —T[1 - exp(- fw,)] E - E,) , (II1. 2)
where 8=(kzT)* and where
fiw
E,, "o @e) =1 (I11. 3)
and
r-1 [ " 4t F OF0)) expliog)
7).
% f " #FOF ) exp(—iwg) . (1L 4)

This result is obtained in the usual Markoffian, weak
coupling limit. In our case [i.e., Eq. (IL.3)] F is
Aa) so we obtain

2
r-% f atla [al ") expliw,t) . (L. 5)

The correlation function appearing in Eq. (IIL. 5)
corresponds to the dynamics of the y oscillator coupled

to the heat bath (but not to the x oscillator). It is given
approximately by
@al @y~ @) @)y exp Gw,t - Ny|t]) . (111.6)

Moreover, the equal time moment (2} (a})') may be
obtained by using harmonic oscillator algebra
¥
Nty exp (Bhiw,) ]
@ @)y =N [——“&——exp i (1L, 7)

Using Eqs. (II.2), (III.5), (IIL 6), and (IIL,7) we
obtain finally

‘“‘ZTEQ —R(TNE-E.) , (II1. 8)
- exp(~ Bhw,)
B(T)=T [1 -exp(~ Bh'w,] k(O)W
(1. 9)
RS 2Ny
k(O)—%z NI o~ N, Fr 0P ° (II1. 10)

We note in passing that in terms of the “classical”
coupling coefficient X =x/#) ¥ /2 the coupling (II. 1b)
takes the (% independent) form
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N

_ @ _iPy
Vi,y, P, P,)=2XRe [(‘/—’-5'—:3’ +m)

x( [Ty iP, )] (I1.11)
2 v 2m,w,
and the rate (I11. 10) becomes
2Ny (IIL 12)

k() =X 2i"-NI m .

Note that £(0) is independent of % for the harmonic case
N =1 as expected, since classical and quantum me-
chanics agree for this case.

It should be noted that 2{(T) [Eq. (III.9)] depends on
T (for a finite T) even for N=1. This is an artifact of
the approximation (III.6). In this approximation
(A,[A(1)] is taken to depend on the quantum thermal
population of the oscillator w,[c.f.Eq. (IIL.7)], where-
as due to the presence of the friction y, the result
should depend on a range of frequencies of width y about
w,. A more rigorous treatment of Eq. (IIl.5) for N=1
yields
gy B fux 2y
T 1) =5 ot Pyt a1
so that (7)=k(0) for N=1. For N>1 the rigorous
treatment becomes too involved to carry out and we
shall use the approximation (III. 9).

Next we shall compare the quantum perturbation
results Eqs. (IIL.9) and (III, 10) for N>1 with SCT
results based on Eqs. (II.4) and (II.5).

IV. STOCHASTIC TRAJECTORY RESULTS
A. Procedure

The stochastic classical trajectory equations (II. 4)
were integrated numerically on a computer, using an
integrator described elsewhere.® The mass m, and
frequency w, were taken to be 20 amu and 4.5x 103 s,
respectively, for all runs, The other parameters oc-
curring in Eqs. (II.4), m,, w,, A, and N, were varied
from run to run, as discussed below. The temperature
T was also varied via Eq. (II.5). Typically, for each
set of parameters, an average was taken over 20
trajectories with initial conditions selected at random
from a canonical distribution at temperature T. The
integration step length was taken to be 5% 10716 s, and
each trajectory was integrated for 80000 time steps
@x10''s), Energy relaxation was monitored via the
decay of the total energy of the two-particle system,
An accurate value for the classical mechanical relaxa-
tion rate was obtained in this way, provided that the
rate was relatively fast, i.e., 2 10%s,

B. Classical results

A comparison of stochastic classical trajectory re-
laxation rates with those obtained from the approximate
quantum perturbation theory expression, Eqs. (III.9)
and (III.10), are shown in Fig. 1. The classical rates
approach zero at T -0, as discussed above, so agree-

10
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TCK

FIG. 1. Comparison of relaxation rate constants computed by
quantum perturbation theory (dashed curves) and stochastic
classical trajectories (points with error bars). Solid curves
are drawn for eye only. Parameters are m, =20 amu, my=40
amu, w,=4.47x10% 57, w,=7.45%10'? ™, y=3.5x10" g7,

ment with the quantum rates is poor at low temperatures.
At temperatures large compared to 1/k, times the zero-
point energy of the bath oscillator (28 K), agreement be-
tween the gquantum and classical rate becomes quite
good. Note in particular that classical mechanics cor-
rectly describes the “resonance” effect. For the case
shown in Fig. 1, v,/w,=6. Quantum perturbation
theory predicts that relaxation will be dominated by a
six-phonon process; i.e., the n=6 term will be large.
This effect is reproduced correctly by the classical
calculation.

C. Quasiclassical results

As discussed previously, the failure of the classical
mechanics at low temperature is due primarily to ne-
glect of zero-point motion in the bath oscillators. We
have carried out “quasiclassical” calculations in which
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zero-point motion is introduced in the following
approximate way. We note that the mean (canonical
ensemble) energy of a classical oscillator is k7. The
mean energy of a quantum (bath) oscillator at temper-
ature T is

(v.1)

[ ._exp(=Fw,/kT)
(Equ) =Tiw, % 1 -exp(-h""v/kT)] .

We thus define a “quasiclassical temperature” Tqc
given by

7. By [ exp(=hw,/ksT) ]
€ ks E 1-exp(-nw/ksT)) °

(Iv. 2)

Our quasiclassical procedure for obtaining a relaxation
rate corresponding to a temperature T is simply to run
an ordinary classical simulation, but at the bath tem-
perature Tgc rather than T. The mean energy of the
bath oscillator will thereby be maintained at its cor-
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FIG. 2. Comparison of relaxation rate constants computed by
quantum perturbation theory {(dashed curves) with quasiclassi-
cal stochastic trajectory results (solid curves with error bars).
Parameters are the same as for Fig. 1.
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FIG. 3. Comparison of zero-temperature rate constants com-
puted by quantum perturbation theory (solid curve) with quasi-
classical stochastic trajectory results (points with error bars).
Parameters are the same as for Fig. 1., withn=2 and w,
varied.

rect quantum value. In Fig. 2 we compare the quasi-
classical results with perturbation theory results for

the same parameters employed for Fig, 1. Agreement
is now good for the entire range of temperatures. The
largest discrepancy is for the n =6 curves., This ap-
pears to be due, at least in large part, to the inadequacy
of the perturbation theory expression, not to inaccuracy
of the quasiclassical method. For lower coupling
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FIG. 4. Same as Fig. 3, but for variation of v.
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strengths X for which perturbation theory is more ac-
curate, agreement between the quantum and quasi-
classical results becomes significantly better,

Agreement between the quantum perturbation expres-
sion and the quasiclassical simulations persists for
wide variations of parameters. This is demonstrated
in Figs. 3 and 4, which compare the zero-temperature
energy relaxation rates computed by the two procedures
as a function of w, and y. Note in Fig. 3 the agree-
ment in both the magnitude and width of the resonance
at w, =3w, .

V. CONCLUSIONS

The SCT approach has become a valuable method for
obtaining accurate descriptions of the dynamics of a
variety of complex chemical processes.”!® The meth-
od is nonperturbative, and is practical to apply even
when many strongly coupled degrees of freedom must
be described explicitly. To date, the method has been
limited mainly to high temperatures. The present
studies suggest that, if zero-point motion is incorpo-

3963

rated properly, the SCT method can provide accurate
descriptions of dynamical processes even at very low
temperatures.
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