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AVERAGED LOCAL FIELD INTENSITIES IN COMPOSITE FILMS
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The photophysical properties of molecules adsorbed in composite films (e.g. surface 1sland
films) depend on the local electromagnetic field within the film. The ratio between the average
field intensity (JE{®) in the film and the intensity |E)? associated with the incident field is a
measure of the electromagnetic contribution to the surface influence on molecular photophysical
phenomena. This ratio depends on the film composition and morphology. on the dielectnic
properties of the pure components making the film and on the frequency, direction and polariza-
tion of the incident radiation. Calculations of this ratio as a function of these parameters for
several models of composite films are presented. Image interactions and retardation effects as well
as radiative damping and finite size contributions to the dielectric response of the films are taken
into account. In addition, an estimate of the field inhomogeneity within the film is obtained by
calculating also the ratio {|E|?Ygpen /1£,|? associated with the field in thin shells surrounding the
dielectric pariicles which constitute the film.

1. Introduction

Much attention has been focussed recently on optical processes associated
with molecules adsorbed on rough dielectric surfaces or on 1sland films [1,2].
Surface enhanced Raman scattering (SERS) [1] is perhaps the most pro-
nounced example, however the proximity of the surface may affect any
observable electromagnetic property of the adsorbed molecule [2).

While it seems that electron transfer interactions contribute to the observed
surface induced modification of molecular optical properties [3], there 1s little
doubt that a major contribution comes from the fact that the electromagnetic
field itself is modified near the interface {4). Recent works study this effect for
an 1solated dielectric spheroid [4a], an aggregate of two spheres 4b] or for a
sinosoidal grating [4c]. The simple geometries considered in these works make
it possible to obtain a complete solution for the local electromagnetic field and
to trace the observed modification to excitation of surface plasmons, localized
plasmons in surface protrusions, shape (lightening rod) effects and surface
polarization (image) effects. However, most experimental situations do not
correspond to such simple geometries. For a distribution of (electromagneti-
cally interacting) dielectric particles in another dielectric medium and more so
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Fig. 1. A schemauc description of a hght scattering process involving a compeosite uniaxial film.

for a completely random mixture of two dielectric phases, a statistical ap-
proach is necessary.

Consider the model depicted in fig. 1. A substrate S (with dielectric function
eg) 1s covered by a composite film (made of phases, 1,2, ... with dielectric
functions &, €, ... ) In an environment characterized by a dielectric function
e, Note that usually one of the phases in the composite is identical to the
environment 0. With the composite film we usually associate an effective
dielectric function e, which is typically a uniaxial tensor with different parallel
¢l and perpendicular ¢ components. GIiVen €, & £s and the film thickness 4,
it is possible to evaluate the transmussion (T =|E+/E|*) and reflection
(R = |Eq/E ") coefficients as well as phase and polarization properties of the
transmitted and reflected light for any given incident beam. Alternatively by
monitoring the reflected beam it is possible to obtain film information (&, &
and film thickness d), which 1s the standard problem of ellipsometry [5).
Finally given some MICTOSCOPIC information about the film (e.g., the dielectric
functions ¢, £,, ... and the volume fractions P,, P, ... of the pure phases)
one can approximately calculate ¢, using one of several available approxima-
tions, the simplest of which s the Maxwell-Garnett method [6].

ER = RE[
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Fig. 2. A schematic description of a light scaltering process involving a thin film The coetficients
R (reflection), T (transmssion), x, and x4 relate the various field amplitudes to the incident field.
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It should be noted that the (elastic) light scattering experiments described
above probe surface properties by monitoring the electromagnetic field far
from the surface, and the results are interpreted in terms of a single film
property - the effective dielectric tensor .. There 1s no direct information
about the electromagnetic field inside the f11m though of course the average
field (Eg) m the film can be easily found from Fresnel equations given Eqs E,,
e and E.

When inelastic light scattering or resonance optical processes are considered
we are usually concerned with the response of the molecules to the local EM
ficld at the position of the molecule. Thus if the molecules are distributed
homogeneously in phase 1 of the composite film, different optical processes
associated with these molecules probe different moments ([Eg|”), of the
electric field in the film (the index 1 denotes averaging over the volume of
phase 1}. For absorption n = 2 while for higher order optical processes n > 2,

It is therefore of interest to consider higher order moments of the field
Intensity in composite materials. In two recent studies Bergman and Nitzan [7]
and Aspnes [8] have considered the second moment (JE|*) for an infinite
three-dimensional two-phase composite within the electrostatic approximation.
In this problem the composite is taken to fill the volume between two
(infinitely distant) plates of a capacitor [9] and a field E, is applied between
these plates. £ is thus identical to the average field (£(r)) in the composite.
A simple calculation leads to the remarkably simple result [7]

AEC)N N _ 1 Im(e,/€,)
* |E,l? P, Im(e,/e,) (1.1)

which may be used to calculate the “enhancement ratio™ R, given the pure
(€,, £;) and the effective (¢, ) dielectric functions are the volume fraction P,.

When the composite under study constitutes a thin film on a given substrate
the situation is considerably different. Instead of £, = ( E(r)> we now have to
distinguish between the incident field E, and the average field in the film
(Er(r)). Also the EM field in the film is sensitive to the boundary conditions
in the direction of finite thickness, and the geometry of a 3D system between
the plates of a capacitor can no longer be used in the 2D case.

In this paper we provide an approximate solution for the intensity enhance-
ment ratio

R,:M, =1, 2, (1.2)

E,*

III

for a binary film in the model depicted in fig. 1. R, is expressed as a function
of €, g, &;, &g, d, the direction ®| of the incident radiation and of the incident
polanzation. The dependence on ¢, and ¢, enters through the film effective
dielectric function ¢, which, together with the film thickness d, may be deduced
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from ellipsometry measurements. Alternatively ¢, may be expressed as a
function of g,, &, and film composition and topography using one of the
available theoretical methods {11- 13]. A numerical study of a similar problem
for a surface distribution of polarizable dipoles was recently carried out by
Laor and Schatz [14].

As noted above the enhancement ratio (1.2) is useful for situations where
the molecules of interest arc distributed homogeneously in phase 1. A common
alternative situation 1s one where the molecules of interest form a thin coating
around the dielectric islands. [t is therefore useful to estimate the enhancement
ratio

- <|EF‘2>.~.h¢I1 (1 3)
shell 1E||2 ’
defined for a volume made of shells of a given thickness around each dielectric
particle. In what follows we also calculate an approximation 1o this quantity.
The paper is organized as follows. In the next section We review the theory
of light scattering from unisotropic thin films and use it to derive approximate
expressions for the enhancement ratios defined above. In section 3 we review
(and modify) available microscopic theories for the dielectric response of
composite films and provide a framework for calculating the enhancement
ratios R, and R, given the microscopic film structure. Results of numerical
model calculations are given in section 4 and our conclusions are presented in
section 5.

2. Evaluation of enhancement ratios

Our model is described in fig. I and consists of a substrate, a film and an
environment with dielectric tensors &g, & and ¢, respectively. The magnetic
permeability p 1s taken to be | for all phases, eg and £; are isotropic while g, 18
a uniaxial tensor with the opuical axis perpendicular to the film surface. It 1s
therefore characterized by two components, parallel ¢! and perpendicular & .
The film is composed of two phases, denoted by [ =1, 2. For this model we
want to evaluate the intensity enhancement ratio

R,= (ERDAE P, =11, (2.1)

where E, is the incident field, £y is the field in the film and where the index /
(/= 1, 2) denotes average over the volume of the phase. We rewrite eq. (2.1) 1
the form

_QERP )+ AERN ),

R, :
|E 1"

= Ri.jp” + R.% Pi- (22)
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where
RI=(EN (ERY?, 8=}, L, (2.3)
o = KER)/IEN, 8=1|, L. (2.4)

{Eg) (with its normal and parallel components (E{)) is the field that would
exist in a homogeneous film with a dielectric tensor £.. The calculation of R, is
now separated into the calculations at R¢ and of pj.

The factor p; may be extracted from the formalism which vields reflection
and transmission coefficients associated with a uniaxial film of dielectric tensor
¢, with the symmetry axis perpendicular to the film surface [15]). The procedure
1s outlined in the appendix and the notation is defined in fig. 2. The results
are:

s polarization (electric field £ perpendicular to scattening plane)

p, =0, (2.5a)
oy =Ixql* exp( =By ) |1 + res exp(iB)I?, (2.5b)
p polarization (electric field E in the scattering plane)

P =lrgl* exp(—B,) |1 + res exp(iB))?sin x|2, (2.6a)
py= |k ol exp(—B,) |1 — reg exp(iB))*fcos x{?. (2.6b)

where x is the (complex) angle between the ray vector (direction of £ x H)in
the film and the optical axis (the angle between{ £ ), the field in the effective
homogeneous film, and the optical axis is 7 — X ) x4 18 the (complex) coeffi-
cient relating the electric field amplitude of the “downgoing” (see fig. 2) wave
in the film to the amplitude E, of the incident field at the OF interface and Fes
is the Fresnel reflection coefficient for a beam incident from F on the FS
interface. Finally 8 and B, are defined by

BZ(Wd/C) Ne{opp) COS(‘PF)zﬁI+i32’ (2.7)

where  Is the radiation frequency, ¢ is the speed of light, 4 the film thickness,
¢r the (complex) angle between the wave vector k in the film and the optical
axis and Ny is the (complex) refraction index in the film (which depends on ¢
for the p polarization case in a uniaxial medium). Explicit expressions for
k4> X> Np and rgg are given in the appendix. We note that these parameters are
in general different for the s and p polarization cases. It should be kept 1n
mind that for absorbing films the amplitude of the average field depends on
the normal coordinate z (measured from the OF interface. The expressions {2.5)
and (2.6) for p were obtained taking z = d/2.

Turning now to the calculation of R? defined in eq. (2.3) we note that for an
infinite three-dimensional isotropic binary composite this calculation is partic-
ularly simple. The starting point is the following definmition of the effective
dielectric function:

el(EN* =6, P (IEI*), + &, P(IE}?),, (2.8)
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in which €, and P, are the dielectric function and the volume fraction of phase {
and (Y, denotes an average over the volume of this phase (1e. ()=

(1/ V,)j;du). Dividing eq. (2.8) by &, and taking 1ts imaginary part leads

directly to (1.1).

Generalization of (1.1) to a uniaxial medium is also simple. We assume that
the two components are themselves isotropic so that the unisotropy of the
composite results from its geometrical structure (i.e. parallel spheroides of one
component immersed in the bulk of the other). Then eq. (2.8) is replaced by

Y elKES) = P E), + e, PUE ), (2.9)
5
where 8 =), L denote directions with respect to a plane perpendicular to the
optical axis. Define
] |
Rf:-P—llm(sf,x’sz)/lm(e,/sl), {(2.10a)
1
RS = Elm(sf/s,)/lm(ez/sl). (2.10b)

The overall enhancement ratio for this case (uniaxial bulk) is then

R, = (IE1) /KE)? = (GE'), + (E* ")) /KEN
= RUCEDPACEY + RIKEDIT/WEN (2.11)
An examination of electromagnetic wave propagation in a uniaxial medium

(see appendix) shows that for a beam which 1s s-polarized relative to a plane
normal to the optical axis E* = 0, while for a p-polarized beam

CEVS /CEN? = [cos xIF. KE*y/(EMN =sin x|*. (2.12)
Thus

R s polarization
' P (2.13)

! ‘Rljcos x|* + R [sin x|*, p polarization
If we adopt (2.9) as the definition of e, also for a film of fimte thickness we
can use the same procedure as above to obtain egs. (2.10) with E¢ replacing E®
everywhere) for the factors R’ needed in eq. (2.2). The problem encountered at
this point is the questionable validity of egs. (2.8) or (2.9) for thin films. For an
infinite three-dimensional composite, eq. (2.9) can be shown to be equivalent
to the more conventional definition

e E®) = P(E ) + 6 P(E®),. (2.14)
The proof is based on the validity of the identity
(e|EVPY = (eESCE™)Y, (2.15)
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which may be shown [10} to hold under DC (w = 0) conditions in any
three-dimensional medium with fixed potentials at the upper and lower
boundaries (direction of the average field) and fixed normal derivatives of the
potential at the other boundaries. For an infinite three-dimensional medium.,
and provided that the wavelength of the EM field is much larger than the
length scale characterizing the inhomogeneous structure of the composite,
(2.15) 15 valid because we can always impose the desired boundary conditions
at infimty without affecting the field distribution in the bulk of the system. For
a thin film the use of (2.15) is questionable and so i1s the equivalence of (2.14)
and (2.9). Such equivalence can be established only if we assume that we can
replace (at any given time) the potential at the lower and upper boundaries of
the film by fixed potentials (on a length scale smali relative to the wavelength;
equal, say, to the average potentials on these boundaries) without affecting
strongly the internal field distribution in the film.

Although this is a rather drastic assumption we have adopted eq. (2.2) with
(2.5) and (2.6) and with (2.10) for R?, for estimating the intensity enhancement
ratios in the film. Some justification to this may be given by noticing that also
the use of the boundary conditions which lead 10 the Fresnel equations for the
composite film actually involves a similar kind of assumption (namely the
existence of a well defined boundary with the EM field amplitude depending
only on the normal distance from this boundary).

The calculation described above is relevant if the molecules of interest are
distributed homogeneously in the volume of phase / (because R, eq. (2.2), is
the intensity enhancement averaged over the full volume of phase /). A more
common situation for molecules adsorbed on island films is where the mole-
cules occupy a thin shell covering each island (see fig. 3b below). It is possible
also to estimate the intensity enhancement within such a volume. Consider for
simplicity an island film made of spheres of dielectric function £, 1N an
environment of dielectric function ¢, (fig. 3b), where the spheres are distributed
in an ordered 2D lattice with one sphere per untt cell. We want the estimate

Rshcllz<|EFlz>shell/|EIlza (2-16)

where ( ),,.;, denotes an average over the volume of a shell of thickness w
around each sphere. Eq. (2.16) may be rewritten in the form

b
Q
€ 0]
& O A
1 e i i T YU i - ./,..‘_l l/-——..\\
9 € q : : e e € F
€5 S € S

Fig. 3. Microscopic models of composite thin films used 1n the calculatuon of section 3
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RsheH:Rllhcll+ thcll‘ (2’17)
Ripen = R3p:Sy. 8=l L, (2.18)
st = <|El§:|2>slac|1/<tE|§|2>2‘ (2'19)

(E&I?Y, is the field averaged over the volume of the spheres or, under our
assumptions, averaged over the volume of any single sphere. If we assume that
the field is actually constant over such a volume (a similar assumption is made
in the calculation of ¢, see section 3) it can be shown that [16,17]

a/?2 )
a/2+w

z
+ 2

1

Sy
£

zl, (2.20)

where @ is the sphere diameter. An equivalent result can be derived for
cMipsoids. With RS and p; evaluated above, egs. (2.15), (2.16) and (2.18) yield
the desired estimate.

As seen above, the input to the desired calculation involves the film
thickness ¢ and the film effective dielectric tensor e, which may be obtained
experimentally by ellipsometric methods. Alternatively we may useé a micro-
scopic model for the film and calculate ¢, from this model. This approach is
reviewed in the next secuon.

3. A microscopic model for e,

In this section we briefly review with some modifications the procedures
used by Yamaguchi, Yoshida and Kinbara [11] and by Dignam and Moskovits
[12] for calculating the effective dielectric properties of composite films. Even
though the work of Dignam and Moskovits deals with molecular films while
that of Yamaguchi et al. deals with metal island films, the mathematical
treatment is similar because both calculations consider only dipolar interac-
tions between the particles (molecules or islands). We follow Yamaguchi et al.
[11] by considering the film to be made of a two-dimensional distribution of
isolated islands. cach has the shape of a spheroid of revolution with the
symmelry axis perpendicular to the substrate plane (fig. 3). In what follows we
shall consider the common situation where &, = £,. An island ;15 characterized
by the polarizabilities af and «;* in the directions parallel and perpendicular to
the surface. These polarizabilities include image effects such that the (point)
dipole associated with a given island 1s taken to include the image of that
island in the substrate. Thus

_L)” I_E_(af)o E550)I 2eg

1 3
a £+ €

(3.1a)

O =((I ‘.
£S+£U
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a(a,‘:)”(l _{a) ES”’“) 25 (3.1b)

4 3 ’

where (.:154)D and (aj})o are the “bare” polanzabilities associated with an
isolated island and where a 1s the distance between the dipole and 1ts image.
For an isolated spheroid with a symmetry axis a and a perpendicular axis b, of
dielectric function ¢, in an environment with dielectric function &, the bare
polarizabilities are

530 1 €5
a’) = , O<L,<1, [ 421 =1, (3.2a)
( J) 47 Ly +ep/ (63~ £5) ’ ) I'
where
] Ui - \
— 1 . .
S ((nz_ 1)1/2 cosh™ 'q ) prolate, g = b,
L, = : (3.2b)
n -1 _
1 — Cos n), oblate, a < b
l__nl( (1 . 2)|/2
=10 ~L)). (3.2¢)

Of the factors multiplying (atf)0 In eqgs. {3.1) one arizes from the field induced
on the dipole by its own image and the other from summing the contributions
to the dipole induced at site j from the actual dipole and from its image. Note
that the distance between the dipole and its image 1s taken to be equal to a, the
symmetry axis of the spheroid.

Other parameters associated with the film are n, the number of islands per
umt area, and d, the film thickness. The thickness 4 15 well defined only for
films with thickness much larger than the characteristic inhomogeneous length
(e.g. particle size) and, for the film of fig. 3, is to a large extent arbitrary.

In the treatments of Yamaguchi et al. [11] and of Dignam and Moskovits
[12] the 1slands are assumed to be well separated from each other so that their
electromagnetic interactions may be approximated as interactions between
point dipoles. The effective dielectric tensor of the film 1s calculated in the
following way: First the point dipoles u, associated with the islands are
calculated by solving the system of coupled equations

p=a EG(G')"';E;& : (3.3)

ko=

where Ey(r,) 1s the field that will be at the point  in the absence of the film (in
general this 1s different from the incident field because of the presence of the
substrate) and where E, is the field induced at the point ; by the dipole
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occupying the point k. (In the electrostatic limit E, is constant and E, 1s given
by

3, (B A) —
E,=—' ' , (3.4)

3
EOIr_ﬂri

where |7, | = |r, - »,| and where A, =r,/Ir.[). Secondly the contribution P of
the induced dipoles to the polarization is calculated from

=X p, (3.5)

Finally the effective dielectric functions ¢! and ¢;° are obtained from

ES_E

4q
where ( El) and (£} ) are the components of the average field in the film.

Using this procedure in the electrostatic limit, Dignam and Moskovits [12]
obtain (their results are generalized below to the case g, = 1)

“(Eg)=P°, (3.6)

Eé
€ = g + g “ (3.7)
(EEy d
where
LS (3.)
YS EOEO'S lu' " .
Here (u®) is the average dipole (= N7 'L/ I,u),) It is given by [18]
(aa ES
(uoy ST s (3.92)
I = (a”)8,( /")
= [255/(£S+ fo]]- I, g = [250/ (eg + so)]_l, (3.9b)

in which a® is the average island polarizability (N llj_la-) in the parallel
(8 = 1)) and perpendicular (8 = 1) directions and 8, is given by

b5 = (u’f ) /(WS (3.10)

in eqgs. (3.9) and (3.10) ff is the sum of dipole interaction terms,

A E 2, 8=x,y. 2, (3.11)
k*;

where x-y 15 the film plane and x,, y, are the components of the distance
between the y and k& dipoles,

212 -~ '2
P}j‘( = (3.12a)

5.2°
EO(x;k '*’}m)
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2 2—)(2
o /L (3.12b)
/ 2 2 /2

EO(xjk+yjk)
1

Fi=—— Ry (3.12¢)

E(xﬁ'l'yfk)
Taking the configurational average we have
(===, (3.13a)
(fy=<{f")=-2f, (3.13b)
where

3/2
280”;( et n) 7O (3.14)
k=

may be computed numernically for any given configuration. It should be noted
that the above results are obtained using the assumption that a, 1s not
correlated with X, . Fpt,.

‘The appearance of 8 (eq. (3.10)) in the expression for ¢, (eqs. (3.1)-(3.9))
makes the calculation difficult in general. However in some cases & becomes
constant [11};

(a) If the islands are distributed in an ordered lattice with one 1sland per unit
cell then L, _ , F, 1s independent of the site j and 6 = 1.

(b) If the density n of particles is high so that there are many particles
contributing over a range where F, changes little. £, | F, will depend only
weakly on f and 6 ~ 1.

(c) If the density n of particles is very low u, depends only weakly on the
position of the dipole j and again 8 ~ 1.

In the calculations reported below we have assumed that conditions for
taking # = | are satisfied. We note that in such cases a resonance in the island
polarizability implies a resonance behaviour of ¢_ (e.g. the so-called “conduc-
tion electron resonances”™). This i1s seen in (3.9) wnitten in the form

(%) = [(a®)y ™ = 0] Ed8®.

The term 85( /°) is seen to yield shift and broadening of the bare (single island)
resonance. Additional broadening is obtained if (a®) is related to a distribu-
tion of particle shapes with different resonance frequencies associated with
different shapes. It should be kept in mind that if conditions for 8 = constant
are not met, an important source of broadening is the different resonance
behaviour associated with different local structures (clusters of islands). Eqgs.
(3.7)-(3.10) with # = 1 cannot account for this effect which is seen, eg., ln a
full numerical solution of eq. (3.3) [14].
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Returning to eq. (3.6) we note that in order to make 1t into an equation for
e, the ratio ES/( E2) between the field E¢ that would be there in the absence
of the film and the average field ( £) in the film, has to be expressed as a
function of 2. Yamaguchi et al. {11] as well as Dignam and Moskovits [12] use

El/¢ELy =1, (3.15a)
Ed /(EF) =€/, (3.15b)

This ansatz 1s equivalent 10 the assumption that £, is udentical to £, the
incident field. In fact, £, is different from £ due to the presence of a reflected
field. For s polarization

El=(1+ry)E, (3.16)
while for p polanization

Ed= {1 - rg ) E, cos g,. (3.17a)
Ef={(1+r,)E sin g, (3.17b)

{EZY may be obtained using the same procedure that leads to the p factors of
eqgs. (2.5) and (2.6). For s polanzation

(Ely=x,e P70 (L4 r e ) E (3.18)
and for p polarization

(ER) =xge far? (I ~ g e?) E| cos x, (3.19a)
<Er{->:Kde_ﬂ;/; (:l+r[,sclﬂ)E| Sinx, (3]9b)

The parameters x,. 8, 8,. r and x are defined and given in terms of ¢, 1n

secion 2 and the appendix.. We note that the numerical values of these

parameters are different 1n the s and p polarization cases. We note that (Eg),

eqgs. (3.18) and (3.19), was calculated as in section 2 in the middle of the film.
Eqs. (3.16)-(3.19) lead to

b= L
——e P2 s polarization,
E, Klie_I}j/‘ [+ g e
e | ‘ : 3.20
<£E> (r- Toy ) COS @ ' ' ( )
CL T polarization,
ke T - rec e ) sin x
Er 1+ 7)) sin
0__ LU s ) i gy -, p polarization, (3.21)

(CEEY  kqe ™ S {1+ 1 c“q) COS X

Eq. (3.7} with (3.20) or (3.21) may be used to solve iteratively for &! or e . It
should be noted however that since the ratio ES/( E2) calculated from egs.
(3.16)-(3.19) 1s in general a function of the polanzation (s or p) and of the
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incident angle, the resulting ¢, will depend on these expernimental vanables. In
other words, this procedure leads to the conclusion that unlike in the infinite
bulk situation, it 1s impossible in the thin composite film case to associate
results of light scattering experiments with a single dielectric tensor ¢, This
observation suggests that ellipsometric measurements using varying angles
should be carried out in order to elucidate the importance of this effect [19].

On the other hand, in many cases the degree of ambiguitv in such de-
terminations of g, 1s not large. With this in mind we have performed most of
our calculations using eqgs. (3.7) and (3.15), and checked for several cases the
solution so obtained against the more rigorous approach based on egs. (3.20)
and (3.21).

Next we consider corrections to the electrostatic imit, We shall still assume
that the particles are small enough so that retardation effects mayv be neglected
over the size of a single 1sland. However, if the characteristic distance between
islands 18 not much smaller than the radiation wavelength, retardation effects
cannot be disregarded in evaluating the inter-island interaction. To take this
into account the field E,, of eq. (3.3) 1s calculated from

|k|2(ﬁjk><pk))<ﬁﬂ(

|7,]

E, = exp(ikir,)

+[3Ff}k(ﬁ}k-pk)p.k]( Lo ”‘2)}, (3.22)

3
LA

where |k} =27/XA,, and A, is the incident wavelength. The rest of the calcula-
tion follows a route identical to that descnibed above [20]. It should be kept in
mind that the concept of a dielectric function 1§ questionable when the distance
between the islands is larger than the wavelength. We nevertheless follow
Yamaguchi et al. [11] in carrying out such a calculauon which can at least
provide a feeling for the range of validity of the electrostatic approach.

4. Numerical results

Let us first summarize the results of sections 2 and 3 which are used in the
calculations reported below. The intensity enhancement ratio for phase 1 (fig.
3a),

R1:<|EF|2>/FEI|23 (4-1)
1s given by

R, =Rlp,+Rip,, (4.2)
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with (§ =1, 1)

ps = KER)N IENT. RY = (IERI1) /KER. (4.3)
The p; factor is given by, for s polarnization,

pL=0, py=Ikg" exp( =B} |} + reg exp(iB))7, (4.4)
and for p polarization

P =Ixyl" exp( =By ) {1 + reg exp(iB)i?fsin x|?, (4.5a)
py=Ix41% exp( = B, ) |1 = ri.g exp(18)|*[cos x|*. (4.5b)
The R? factor is given by

R = 5 Im(el/e;) Aim(ey e, ), (4.6)

where ¢, and ¢, are the dielectric functions of the two components constituting
the film, P is the volume fraction of component 1 in the film and ¢_ is the
effective dielectric tensor of the film. The other parameters appearing in egs.
(4.4) and (4.5) are given in terms of ¢, ¢,, the dielectric function of the
environment, g, the dielectric function of the substrate, and g,, the incident
angle (between the incident £ vector and the surface normal). These are

siny = Sinzqar,-/[sinqu,; + (e /¢l) coschF], (4.7)

Sin @ = (vg /Ne( @) sin gy, (4.8)
’ /EL' , s polanzation,

Ne(ope) = v (4.9)

. 2
sin“g COS '@ ¢ L
LA Fe ) p polarization,

£ £|I

c c

B=Ne(or) (wd/c) cos gy, (4.10)

where o is the radiation frequency, ¢ the speed of light and 4 the film
thickness,

tor
Ky = o (4.12)
I+ 7ypr exp(218)

—
2yEq COS ¢

— — ., s polanzation,

»/;0 COS @, + Vg cos g

Lop = ¢ (4.13)
o . |

5 E. SN X L oS X

CEp SIN @y COS @y

p polanzation,




138

-

Je, COS gy — Np cos @

= . s polarization,
€y COS @ + Np cos op
T (4.14)
\ L=

(E: Sin X COS X J( Eél‘ Sin X N C(?g X

€y SIN @,  COS @

: —- = . ppolanization,
Ep SIN @y COS @y

Vo

( R

S i ' s polanization,

Npcos g+ \X;s COS g

Frs = § (4.15)
) . . ]

(e singg cos (ps) €5 SIN @5 COS Gy

L

el sinx  Cosx Jlelqinx o cOs x|

¢ e

p polarization.

In the film model of fig. 3a, £, 1s calculated in terms of ¢, the 1siand surface
density n, the istand polarizabilities a! and a* and the lattice sums /¢ and /!
from

5 4an <cx5)

<f“>=-%<ﬁ>:2i%<§r,f>, (4.17)

ko=
where r, is the distance between dipoles ; and &,

6= (u'r*) /(T (4.18)

The averages are over all islands. # = 1 for an ordered lattice of 1slands. For the
ratio E§ /( EL) we used either the ansatz [10,11]

EQ/(ELy =1, Eq/(Ef)=¢ /% (4.19)

or the rigorous expressions

1+ 15 larizati
: : s polarization,
El kg exp(—B,/2) (1 + rpg exp(if)) (220
<E|r—}‘> ) (l“ros) COSs py S .
. — ., ppolanzation,
Ky exp( — B,/2) (1 — req exp(lﬁ)) sin x
Eg (1+r5) sin gy (4.21)

(E&) ) xy exp(— B,/2) (1 + Feg exp(iB}) cos x 1



Z Kotler, A Nuran / Averaged local field intensities 139

—

- — s polarization,
JEO COS @, + eg COS @
Tos = .- (4.22)
/.g COS @g — €y COS @y

e — -, p polarization.

VEs COS @q + e, COS @y

For islands of spheroidal shapes with symmetry axis perpendicular to the
surface the 1sland polarizabilities are

2¢ £
at=——35__1 L , (4.23a)
Es + €y 47 L, +e,/(e;— 5_'0)
2
ot = —fo ! -0 - (4.23b)

tg+eg 47 Lo+, (e, — ¢y)

where L and L are given by eq. (3.2b). Eqs. (4.1)-(4.23) were used to obtain
most of the results reported below. In addition we have performed calculations
using €q. (3.22) to assess the importance of retardation effects, and using egs.
(2.14)-(2.16) and (2.18) to obtain intensity enhancement ratios for spherical
shells.

To calculate the island polarizabilities we have used the bulk dielectric
function of silver, corrected for finite size effects in the following way [11}: Let
£, = €; + 1€ and take the tvpical size of an island to be 4. Then the imaginary
part 1s replaced by €7 given by [11,12]

& =¢5(1+ 8w, /34w, ), (4.24)

where w, and w, are the bulk plasma frequency and the bulk relaxation rate of
the electrons. We follow Yamaguchi et al. {11] in taking the values for silver
w,=14x10"s" "and w, =00105w +274 x 10" 57",

In some of the calculations we have also taken into account radiation
damping contributions to the island polarizability following the simplified
approach of Wokaun, Gordon and Liao [21). This is done by replacing the
bare island polarizability (a®)” of egs. (3.1) by an effective polarizability which
includes the effect of radiation damping,

(a8) = (o) = —om )

1 - i(a®) 167V 73,1}
where A, is the incaident wavelength.

We now describe the results of some model calculations. Unless otherwise
stated the substrate taken in these calculations is quartz (&g = 2.13) and the
environment 1s vacuum or air (&, =¢, = 1.0). Also the film thickness & is
arbitranily chosen to be 1.1a, a being the particle size along its symmetry axis.

, (4.25)
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Fig 4. Enhancement ratio R, as a function of incident hight frequency for a film made of silver
spheres (radius 100 A) on quartz in vacuum. Sphere density 15 7 = 1.1 x 10" cm % (a) Full iine,
calculation based on the elecirostatic approximation using the bulk diclectric function of silver;
dashed line, calculation taking into account finite size effect (eq. (4.14)) on the dielecinc function;
dotted line, calculation taking into account radiation damping (eq. (4 25)); ¢ ~ 457 {b) Full line,

calculation based on the electrostatic approximation using the bulk diclectric function of silver;

dashed line, calculation taking retardation effects into account (eq. {3 I1)) using the bulk dielectric

function of silver; p = 0°.

In fig. 4 we plot R, versus the radiation frequency w for a film modeled by a
square lattice of snlver spheres. The sphere radius 1s 100 A and the nn distance
between centres (lattice constant) is 300 A. In fig. 4a we compare the results
obtained for a p-polarized radiation incident at ¢, = 45°, where for ¢, we use
the bulk dielectnc function of silver, corrected for finite size as well as for
radiation damping (eqs.(4.24) and (4.25)). In fig. 4b we compare for the same
model with ¢, = 0 the results obtained from the electrostatic approximation
and from a calculation which includes retardation in the sphere-sphere inter-
action. It is seen that for the parameter used these corrections have only a
modest effect on the resulting intensity enhancement. Large effects are ob-
tained in different ranges of the parameters as seen below.

In fig. 5 we compare the result obtained for an ordered square lattice and
identical particles to that obtained for the same density of 1dentical particles
randomly distributed in the plane and also to the result for a square lattice of
particles with a random shape distribution. In this calculation €, was taken as
the bulk dielectric function of silver. The particle density is n = 1 X 10”7 -
and they are taken in this calculation to be prolate spheroids with a = 200 A
and b = 100 A (or (b> =100 A for the random case). The shape distribution is
obtained by using the log-Gauss distribution for b,

exp{ — [In(b/(b))}'/207)
V27 b '

P(b)=
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Fig. 5. Enhancement ratio R, as a funcuon of inaident light frequency using the bulk dielectric
function of silver. The film 1s made of prolate spheroids with the axis normal to the plane. a = 200
A, n=10x10" cm ? @=45° Full hne, ordered square lattice of spheroids with fixed shape,
n=a/b =20; dashed hne, distribution of spheroids (% = 2.0) with random positions; dotted hine,
square array of spheroids of random shape (see text) with (45 = 100 A.

Fig. 6. Enhancement ratio as a function of incident light frequency in a film made of a square
array of silver spheres (radius 50 A: density 5x 10" ¢cm ™%, @ = 45°; bulk dielectric function of
silver) on quartz in vacuum. Full line. intensity averaged over the entire film volume outside the
stlver spheres; dashed hine, intensity averaged over shells of thickness w =10 A around each
sphere; dotted line, intensity averaged over a shell as above for an isolated silver sphere in vacuum.

We have taken o = 0.2

It 1s seen that positional randomness has a relatively small effect on the
result while randomness in shape leads to a considerable broadening of the
resonance behaviour. It should be noted again that our approximation (follow-
ing Yamaguchi et al. [11] and Dignam and Moskovits [12]) cannot account for
one important aspect of positional randomness (discussed in section 3) which
may in some situations lead to large broadening.

In fig. 6 we compare the enhancement ratio R, associated with a square
array of silver spheres (radius 50 A: ¢, taken to be the bulk dielectric function
of silver; the sphere density is n=5x 107> A~?) to R_,.,, (eq. (2.14)), for a
shell of thickness w = 10 A around each sphere 1n the same array, and to R, _ |
calculated for an isolated sphere (using the expression

3I 2
|

Bopen=1+ {f a/aZ/i w ’

k)

[ “'EQ

2
£, 1 g

or taking a very low density of spheres in the calculation based on eq. (2.14)).
The difference (of about a factor 3 for the parameters used) between R, the
enhancement average over the whole volume outside the spheres, and R, _,, 1$
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Fig. 7. Enhancement ratio R, as a function of incident frequency for a sQuare array of prolate
silver spheroids (a = 200 A, n = 2.0, bulk dielectric function of silver) on quartz in vacuum. Full
line, # =1x10" ¢m™?, dashed line, n=5x10'" ¢cm~2. dottted hne. n = ° § x 10" cm~2 {a)
¢ =07 (b) ¢ = 45°, (c) ¢ = 89°.
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Fig. 8. Same as fig. 7 for films made of oblate spheroids, n = 0.4. Full line, n = 3 x 10° cm ¢
dashed line, = 1.5% 10" em™ | dotted Line, n = 7x 100 ¢~ 2

related to the inhomogeneity of the intensity distribution in the film.

The island density dependence of R, versus w is displayed in figs. 7 and 8.
Figs. 7a, 7b and 7c¢ (corresponding to incident angles ¢, = 0°, 45° and §9°
respectively of the p-polanzed radiation) show R,(w) for a square array of
prolate ellipsoids (a = 200 A, n = a/b = 2.0) for different island density (n =
1.OX107° §x 10 *and 25%x 10°° AY). Figs. 8a, 8b and 8c show similar
results for arrays of oblate spheroids (a =100 f\, n=a/b=04n=3x10"",
L.5x107° 7% 10" A *). The bulk dielectric function of silver is used for
these calculations.
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Fig. 9. Enhancement rato for a fitm made of a square array of spheroids @ 457 (a) R, as a
function of w, n=2x10" cm™2,a=200 A, 5 =100 A The support substrate 15 quartz. Full line,
silver spheroids in vacuum, dashcd line, silver spheroids in waler. dotted hine, perfectly conducting
spheroids in vacuum. (b) Enhancement ratic as a funcuon of spherord density for perfectly
conducting spheroids of fixed volume (V' = ks AJ} on quartz. Full hne, g = 400 A n = 2.0; dashed
line, @ = 250 A n =1.0; dotted hne, g =160 A, n = (1.5 These results are for R, the enhancement
averaged over the entire volume between the spheroids. Dash-dotted line. o - 250 A n =1.0,
enhancement averaged over shells of thickness w = 10 A around each particle

The sensitivity of the enhancement ratio R, to the chowce of dielectric
functions is studied in fig. 9. Fig. 9a compares R,{(w) for silver spheroids
(n=2x10""° A~2 a=200 A, n=12.0)on quartz 1in vacuum (¢, = ¢, = 1.0) to
the same system in water (¢, =¢ = 1.77) and to the same system made of
perfectly conducting spheroids (e, = o) 1n vacuum. Fig. 9b displays the
coverage (n) dependence of R, of a sqaure arrav of perfectlv conducting
spheroids of fixed volume and different aspect ratios, on guartz in vacuum.

In fig. 10 we compare calculations based on the electrostatic approximation
to calculations which take into account retardation effects. In this calculation
we use a square lattice of spheres and incident radiation with ¢, = 0. It 1s seen
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Fig. 10. Enhancement ratio R, as a funcuon of incident light frequency for a square array of silver
spheres (buik) on quarts. ¢ = 07 Full ltne, no retardation included; dashed line, retardation taken
o account using eq (3220 (apn =1 28% 10" cm ™% g =150 A; (b) n = 3.2x 10'° cm ™% g = 300
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Fig. 11. Enhancement ratio R, versus incident Light frequency for a square array of silver spheroids
{a=200A,q=075 n=45x10'"" cm™2, bulk dielectnc function of silver) on quartz. Full line,
calculation based on the ansatz (3.15); dashed line, calculation based on a self-consistent solution

of egs. (3.7),(3.20) and (3.21). (a) ¢ = 5%, (b) @ = 30" (¢) ¢ = 60°

that retardation makes an appreciable effect for lower densities so that the nn
distance 1s larger than ~ 0.1A,.

All the results discussed above are obtained using the ansatz (4.19) for
E,/{E:>. Finally in fig. 11 we compare results based on this ansatz to those
obtained by solving self-consistently eqs. (3.7), (3.20) and (3.21) for ¢, for the
given angle of incidence. We see that the ansatz (4.19) provides a reasonable
approximation to the rigorous result in non-resonance situations, while consid-
erable deviations are obtained close to resonance. The deviations increase for
higher 1sland densities (which correspond to larger enhancement ratios). How-
ever, for hugh densities we have encountered convergence problems in our
self-consistent iteration procedure.
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5. Discussion and conclusion

In sections 2-4 we have described a method for evaluating 1ntensity
enhancement ratios for the clectromagnetic field in composite dielectric films.
The calculation relies on several assumptions and approximations which {apart
of assumption (a) below) are common in the literature on light scattering from
composite films. These are:

(a) The assumed equivalence of the definitions (2.9) and (2.14) of the effective
dielectric function of the film. While these two definitions are rigorously
equivalent for an infinite three-dimensional composite, this assumption for a
thin film 1s equivalent to the approximation which replaces the potentials on
the two film boundaries by their averages over length scales large relative to
the characteristic length scale for the film inhomogeneity.

(b) In evaluating the film polarization from the microscopic models of fig. 3
we have assumed that each dielectric grain together with its image constitutes a
point dipole. The same assumption was repeated for the evaluation of the
image contributions and for the evaluation of the average field in the shells
surrounding the grains.

(c) Damping due to finite size effect as well as radiative damping contribu-
tions were taken into account using the approximations (4.24) and (4.25)
respectively. In some of the calculations these corrections were disregarded
altogether and the bulk dielectric function of silver was used for the island
diectric response.

(d) The electrostatic approximation has been used for most of the calculations.
When we did take account of retardation, we have ignored the conceptual
difficulties involved in defining ¢, for a medium whose characteristic length
scale of the inhomogeneous structure is not small relative to the radiation
wavelength.

(¢) We have used the ansatz (3.15) for most of the calculations in evaluating
the effective dielectric function for the film, while a more rigorous argument
shows that e, is not well defined for a thin composite film.

The validity of some of the assumptions and approximations listed above
have been tested in the calculations reported in section 4. For islands of sizes
between 50 and S00 A, finite size and radiative damping effects make only a
small difference (fig. 4a). Retardation can be disregarded for nearest neighbour
distance between the islands small relative to the wavelength (figs. 4b and 10).
It should be kept in mind that the theory presented here can be used (o
estimate average intensity enhancements in composite films where the needed
effective dielectric function 1s obtained from experimental measurements. The
results obtained in this way are not sensitive to the approximations mentioned
above.

Figs. 5-9 provide some quantitative aspects of intensity enhancement in
composite films. It 1s seen that the average intensity can be enhanced by 1-2

147
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orders of magnitude near the peaks of the “collective resonances” {22] of the
film. This s a rather large enhancement ratio considering the fact that this 1s
the enhancement averaged over all the volume outside the dielectric grains.
When only thin shells around these grains are considered the corresponding
enhancement is a few times larger (fig. 6). It should be noticed that the
resonance behaviour (position and width of the peaks) of the intensity aver-
aged over these shells is very similar to that obtained from averaging over the
entire volume outside the grains.

While the magnitude of the enhancement changes only modestly on going
from an ordered to a random composite film (fig. 5) the resonance behaviour
changes drastically, This 1s seen in fig. 5 for particle shape randomness. The
effects of positional randomness are not fully taken into account by the present
calculation as discussed in section 3. It should be noticed that further broad-
ening of the resonance behaviour results from retardation effects (hg. 10).

The effect of island density, i1sland shape and of the incident angle is seen
from the results displayed in figs. 7 and 8. The following points concerning
these results are of interest:

(a) The double peaked nature of the enhancement rauos versus incident
frequency corresponds to the excitation of longitudinal and transversal collec-
tive resonances [23] in the composite film. The lower frequency peak corre-
sponds to excitation along the longer axis of the ellipsoids making the film.
(b) The larger enhancement ratios obtained for the films made of oblate
spheroids (7 < 1), even though for these films (fig. 6) we have taken smaller
particie densities than for the prolate spheroid films (fig. 7), are mainly due to
the fact that the film thickness 4 is smaller for the oblate structure. This makes
the volume fraction occupied by the spheroids bigger for the same density of
particles and the same particle volume. Another reason for the stronger
enhancement obtained for the oblate structures 1s that interaction between
oblate grains shifts the longer wavelength peak more to the red (see below)
where the imaginary part of the dielectric function of silver is smaller.

(c) It is important to notice that for increasing particle density the two
resonance peaks move towards each other and coalesce in the prolate case (fig.
7) while they move away from each other in the oblate case (fig. 8). More
specifically the longer wavelength peak moves to the blue for the prolate
spheroid film and to the red for the oblate spheroid film. These results are in
agreement with the calculations of Burstein et al. [23] on the resonance
behaviour of films made of oblate spheroids, as well as with the blue shift
usually calculated for molecules adsorbed on a surfade in a perpendicular
configuration [24]. It should be mentioned that resonances observed in the
incident frequency dependence of surface enhanced Raman scattering are
usually red shifted relative to what 1s expected for a single small substrate
particle. However inter-particle interactions are only one factor affecting this
shift, the other being the particle size (higher mulupole resonances lie on the
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red side of the dipolar resonance) and retardation effects. We also note that a
double peak behaviour has so far not been observed in SERS experiments on
surface island films.

(d) The averaged intensity enhancement ratios depend dramatically on the
incident angle. This results from two factors: first the direction of the incident
field affects the relative response due to the longitudinal and the transversal
modes and, secondly, the incident direction affects the reflection coefficient
thus affecting the average field in the film. Thus for glancing incidence
(@ = 89°in figs. 7 and 8) the reflection coefficient is almost unity and the field
practically does not penetrate into the film. This results in the very small values
of R, obtained for this case. 1t should be noted that strong incidence angle
dependence is observed in SERS measurements [25] 1n agreement with our
results.

The dependence of the enhancement ratios on the dielectric functions of the
particles and of the surrounding medium (fig. 9) follows a pattern expected
from calculations and experiments involving single dielectric particles [26]. One
interesting observation is that for perfectly conducting particles (as silver
would practically be at infrared frequencies) the average enhancement ratios
are very small even though the field is expected to be large near the sharp
edges of the spheroids due to the “lightening rod” effect [27).

To end this discussion we comment again on the difficulty involved in
defining ¢, for a thin composite film. As shown in section 3 a proper
calculation of ¢_ yields a result which depends on the polarization and direction
of the incident radiation. This stands in contrast to the usual attempts to
determine from ellipsometric measurements a single effective dielectric func-
tion characterizing a given composite film. Difficulties associated with such
ill-defined effective dielectric function are seen (fig. 11) to arise mainly near the
film resonances. Implications of this observation for ellipsometric characteriza-
tion of thin films will be discussed eisewhere.

In conclusion, we have demonstrated that the local field intensity in thin
composite films 1s considerably enhanced near the collective resonances associ-
ated with the film optical response. The enhancement ratios can be as large as
1-2 orders of magnitude even when averaged over the entire volume between
the dielectric grains making the film. The effects depends on the dielectric
function of the components making the film, as well as on those of the support
material and the surrounding medium, on the wavelength, direction and
polarization of the incident radiation and on the morphology of the film. This
enhancement plavs an important role in surface enhanced Raman scattering
(calculations involving single dielectric particles [4] indicate that the elec-
tromagnetic contribution to the enhancement associated with SERS is related
to the square of the enhancement of the field intensity at the location of the
adsorbed molecule) as well as in other optical phenomena involving molecules
adsorbed on rough dielectric surfaces and on surface island films.
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Appendix

Here we outline the calculation of transmission and reflection coefficients of
umaxial films [15] and extract the quantities needed to evaluate the ratio R,
eq. (2.3). The electric fields associated with the incident. reflected and
transmitted waves and with the wave in the film are

E(r1)=E exp(ik, - r—iwt), (A1)
Ex(r.t)=Egexp(ikyg-r—iwt), (A.2)
Ec(r,t)=Ep explikgy-r—1wt) + Eg, explike, r—iwt), (A.3)
E (ri)=E;exp(iky r—iwt). (A.4)

We take the optical axis to be in the z direcion. The ongin for the
transmitted wave E is taken on the FS plane. The origin for all other waves is
taken to be on the OF plane (see fig. 2).

We take the magnetic permeability u to be unity for all phases, so that for
an isotropic medium N = Ve , N being the refraction index and |kl = Nw/c. For
a uniaxial medium characterized by € and £* , N depends on the direction and
polarization of the electromagnetic wave. For s polarization

N(p)=Ve, (A.5)

independent of direction, while for p polarization

(A.6)

sin? coslp } '
N(‘P):( :p+ "(P) ’
£ E

where @ ts the angle between the optical axis and the k vector in the medium.

Consider first the reflection and transmission problem for the interface

between two semu-infinite umaxial media a and b (fig. 12), where the interface

1s perpendicular to both optical axes. All the k vectors are co-planar and the
generalized Snell law is

P =¢r, N(®)sin(e)=N,(¢;)sin(e;). (A7)

mn what follows we write @, for the incident (reflected) angle ¢, = g in
medium a and ¢, for the transmitted angle ¢ in medium b.
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Fig. 12. A schematic description of refracuon of reflection of electromagnetic racdiation incident on
a planar boundary separating two media. establishing the notation used in the appendix. Note that
In the text we use @, = @, = Pr. Py P

In addition to ¢ we have to consider, for the p polarization case the
(complex) angle x between the Poynting vector (¢/47)E X H and the optical
axis. For an isotropic medium as well as for the s polarization with E
perpendicular to the optical axis x = @. For a uniaxial medium and the p
polarization case, x is given by

.
sin?x = LR - (A.8)
sin‘g + (s*' /e”)2 cos’e
We note that for the s polarization case the electric field vector is perpendicu-
lar to the optical axis while for the p polarization case the angle between them
1S 7 — x.

In terms of @,. ¢,. x,, x, and N,, N, (X.p and N, are obtained from
(A.5)-(A.7) by using ¢, and ¢, or ¢, and £, as needed) we obtain the reflection
7,» and transmission ¢, coefficients for a wave incident from a on the ab
interface in the forms: s polarization

_ N, cos @, + N, cos g,

o= , , A9
N, cos ¢, + N, cos ¢, (A.9)
2N, cos ¢,
fab = 2 N - ., (A.}O)
N, cos ¢, + N, cos ¢,
p polarization
—
€, SIn x COS X\, [ €] SIN X,  COS
ol besrialbees- B (211
£a SN x,  COSXL L el siny, C€OSX, _J
€, sin S !
sin x COS X
o = 2| L Xe T8 "} (A.12)
€, siny,  COs x,
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Next consider the model of fig. 2. The total reflection and transmission
coefficients R and T and the coefficients «, and «, (see fig. 2) may be obtained
by considering the multiple reflection-refraction process in the film, in a way
identical to that used for isotropic films. The results, when expreseed in terms

of the coefficients ¢,¢, ¢y, f5s, Top and rp are

R = ["OF + reg exp(2i,8)]/[] + 7orTEs exp(QiB)],
T =rtoptes exp(iB) /[ 1+ ropres exp(2i8)],

kg = top/[1 + ropres exp(2iB)],

K, = Kqrps exp(2i8),

where

B=Np(ggp) (wd/c) cos (@p).

(A.13)
(A.14)
(A.15)
(A.16)

(A.17)

Egs. (A.8) and (A.15)-(A.17) may now be used for the s and p polanzation
cases by using the particular r and ¢ coefficients from eqgs. (A9 - (A.12) to

evaluate the p factors of egs. (2.5) and (2.6).
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