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The conductivity of a one-dimensional model for solid electrolytes of framework type is calculated using both
the Langevin and Smoluchowski equations. The Smoluchowski conductivity is generally larger than that from
the (more general) Langevin approach; they become identical only in the strong damping limit. The inversion
of computed or observed carrier densities to obtain an effective potential is generally straightforward for one
dimension, but the derivation of the conductivity from this potential is easy only in the strong-damping
extreme. The vibrational spectra of most ionic conductors indicate that the quantititve validity of the

Smoluchowski equation is dubious for them.

. INTRODUCTION

Framework solid electrolytes are materials in which
an ionic species diffuses in a covalently linked frame-
work lattice at rates comparable to those observed in
dilute electrolyte solutions.! Typical frameworks con-
sist of group II or IV metal oxides (aluminas, titanates,
zirconates, silicates) and the mobile ions are often
group I monocations (Ag*, K*, Na*), although solid elec-
trolytes with H*, as well as some dication species
(Ca®, Sr¥') have been? prepared and studied. Experi-
mental probes of quasione-dimensional tunnel-structure
framework solid electrolytes such as K hollandite
(Ky,54Mg, 77 Tig 23046) Or 8 eucryptite (LiAlSiO,) have
shown that ion interactions are quite important in the
disordered, conductive regime. In particular, Beyeler
has shown, ® from analysis of the diffuse x-ray scattering
in K hollandite, that some ions are significantly shifted
off of their crystallographic sites due to ion-ion repul-
sion, that a model based on a distribution of ion clusters
can successfully reproduce the diffuse scattering spec-
trum, and that the ion—ion interaction may be stronger
than the periodic potential of the host crystal.

Theoretical efforts to deal with ion—-ion interactions
in these materials were originally based upon lattice-
gas or simple hopping models. * These have proven ex-
tremely valuable; for example, Kimball and Adams
showed® that for any hopping model the conductivity
must increase with frequency at low frequencies, and
Richards® has been able to describe magnetic resonance
line shapes and thermal and stoichiometric effects on
the conductivity using a hopping model, while the early
lattice-gas path-probability method of Sato and Kikuchi’
has provided both the conceptual framework for much
of the discussion of conduction mechanisms and the
starting point for recent illuminating Monte—-Carlo work
by Murch and Thorn.® The above comments by Bey-
eler,® however, coupled with the facts that liquidlike
behavior has been observed in some solid electrolytes®
and that the observed activation barriers for ionic mo-

2 permanent address: Xerox Corporation, Xerox Square,
Rochester, NY 14503,

Y permanent address: Department of Chemistry, Tel-Aviv
University, Tel-Aviv, Israel.

5752 J. Chem, Phys. 77(11), 1 Dec. 1982

021-9606/82/235752-05$02.10

tion are often comparable to 25 T, argues that a lattice-
gas model might be inadequate, and that a more fully
dynamic calculation would be needed to examine the
mechanistic details of ionic motion.* Indeed, Beyeler
concludes® that “all models which treat ion—ion inter-
actions in terms of occupational short-range order are
incomplete, and it is necessary to include strong devi-
ations of the equilibrium positions from crystallographic
sites”. Accordingly, a number of dynamical treat-
ments, both formal and numerical, have appeared.
Essentially, all of this work takes advantage of the
timescale separation which exists between motions of
the framework where the ions vibrate on a timescale of
10"* 5, and the much slower diffusion timescale of the
mobile cations. This permits the use of Langevin dy-
namics, rather than full molecular dynamics, and
makes numerical study practical.

In the case of strong frictional interactions between
the framework and the mobile ions, the velocity dis-
tribution of the latter relaxes to its equilibrium Max-
wellian form more rapidly than the average jump time.
Under these conditions the Langevin equation (or the
equivalent Fokker—Planck form) can be simplified by
integrating out the velocity variables so that a Smolu-
chowski equation describing many-particle diffusion in
coordinate space is obtained. 1 Many theoretical dis-
cussions of framework ionic conductors are couched in
terms of the Smoluchowski equation, !**!% although the
physical requirements for its validity may not hold in
many realistic physical cases. One particularly fasci-
nating result which holds exactly for a noninteracting
one-dimensional system in the Smoluchowski limit is
that the zero-frequency conductivity is determined by
the equilibrium, one-particle, static distribution func-
tion p(x), an elegant result derived for ionic conductors
by Dieterich e al.

The present study arose from a combination of this
last result and the fact that recent x-ray studies using
anharmonic refinements seem capable in some cases
of providing an experimental determination of the static
distribution p(x).'* We wished to investigate the do-
main of validity of the Smoluchowski equation, the quali-
tative and quantitative accuracy of the Dieterich form
for the conductivity, the relationship between bare lat-
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tice barriers and observed activation energies, and that
among the observable density p(x) and the bare lattice
potential. We have chosen a one-dimensional model
because of the observed strong correlation effect in
one-dimensional hollandite systems, and the availability
for comparison of the results of Langevin dynamics
studies.

We report the values of conductivity and of density
based on Langevin dynamics. The Langevin and Smolu-
chowski equations are presented in Sec. II, along with
the Dieterich form for the conductivity and its relation
to p(x) and the effective one-particle potential, Section
III contains our results for the conductivity calculated
from the Dieterich form and directly (via calculated
correlation functions) from the Langevin dynamics.
Comments appear in Sec. IV.

1I. LANGEVIN, FOKKER-PLANCK, AND
SMOLUCHOWSKI EQUATIONS

We consider the dynamics of carriers (mobile ions)
moving in a static potential due to the equilibrium struc-
ture of the framework lattice;, because of the large
masses, classical mechanics is used'; we work in one
dimension. The total potential consists of a one-parti-
cle periodic part ¥, and the ion-ion interactions V,.
Thus,

N N
V=) Vilx)+ 2 Valay —x,) (1)
i=1 FiX]

where x,; is the displacement of the ith ion. The limit
of free carriers occurs when V,=0; this then becomes
the problem of Brownian diffusion in a periodic poten-
tial, for which some general results are available. 8
Because the mobile ions are charged however, we ex-
pect (and experiments® and simulations!™!® have shown)
that the Coulomb term in Eq. (1) is of substantial im-

portance. For simplicity then we choose
Vi(x,) =3 Vycos(2mx,/a) , (2)
Va(xi"xj)’-qz/\xt"xj' . (3)

Thus, the lattice potential is sinusoidal and the short-
range and long-range van der Waals forces (which have
been shown to have minimal effects in these species'™!®)
have been omitted. The effective charge q is expected
to be less than the formal ionic charge due to screening
and charge-transfer effects. The potential (1) defines
a classical many-body problem with long-range, non-
separable, nonuniform potentials; the solution of this
problem yields the carrier dynamics,

Because of the timescale separation cited above be-
tween ion and framework motion (or, equivalently, be-
cause the strong covalent forces in the oxide lattice
lead to high Debye temperatures), there is no signifi-
cant memory effect from the lattice on the ion dynamics.
Thus we can, to an excellent approximation, describe
ion motions by Langevin equations. For the one-di-
mensional case, these are

m¥; ==~ mUk, - 8/8x,{V}+Ry(8) , (4)

where I' is a damping frequency, m is the ion mass,
and the random force term R,(¢) satisfies the fluctua-

tion-dissipation thecrem in the form
(R{()R,(0)) = 2mETT5(¢)5,, . (5)

The effects of the framework on the mobile ions are
thus manifested in three terms: the static framework
provides a background potential V,(X), while the frame-
work vibrations both provide a random force or “kick”
R(t) and thermalize the ion velocity through the damping
term containing I', Since the random force and damping
terms arise from the same physical origin, their ampli-
tudes must be related; the relation is (5). The Langevin
equations (4) describe the evolution of the ion trajectory
in both displacement and velocity, The distribution
function P(x, %, £) corresponding to this trajectory satis-
fies the Fokker—Planck equation

oplx, i, ) . 8p 1aVaep _ 8 [  &T 3
Tor Vo Tmox ok | P“mak}'
(6)

When the ions collide with the lattice so often that the
mean-free path becomes smaller than a typical range
over which the potential V; changes, the velocity relaxa-
tion will be so rapid that the distribution function
plx, %, t) for the velocity and displacement at time ¢ can
be factorized as®®

plx, %, £) = exp(- mi%/2kT) fix, 1) (7

here the (Maxwell) equilibrium form describes the
velocity distribution. Then the Fokker-Planck equa-
tion for p(x, %, {) simplifies to the Smoluchowski form:

ofx,f)_(ET\ B [(2V\ (1 , (%
ot _<m1") dx [(Bx) (kT) +(8x)] ’ (®)
(when V=0 and the substitution

D=pT/mT (9)

is made, Eq. (8) reduces to the ordinary diffusion equa-
tion).

One expects that the form (8) represents the dynamics
of Eq. (4) properly when the damping is large, so that'®

2

ax®

Physically this means, as stated above, that the damp-
ing frequency T is larger than the frequency (m™8%V/
8x%)!/2, Typical parameter values for framework con-
ductors, however, may not satisfy Eq. (10). In par-
ticular, when the ions are fairly light (Li*, Na*) and the
framework potential V, becomes substantial, Eq. (10)
may cease to hold, as the ion mean-free path grows.
Then Eq. (8) becomes a poor representation of the
Fokker-—Planck equation (which is equivalent to the
Langevin equation). One aim of our work is to examine
the parameter range for which the dynamics show that
replacement of Eq. (4) by Eqs. (7) and (8) is reasonable,

«<mI? . (10)

The replacement of Eq. (6) by Egs. (7) and (8), when
it is valid, is a major simplification. For example,
for simple sinusoidal potentials and noninteracting par-
ticles, an exact solution is available for Eq. (8), but
not for Egs. (4) or (6). Of perhaps more interest, it
can be shown that if Eq. (8) holds, a rigorous form for
the mobility of independent particles in one dimension
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is given by Dieterich’s result

0 1 a a ~1
MO 5 [ explovutrd [ expl sVt
(1)

where a is the unit cell dimension and the effective po-
tential is V,,, and B'=%7. This can in turn be related
to the local ion density, for thermal equilibrium, by

p(x):A exp[_ BVeff(x)] ’ (12)

where A is a normalization factor. The value () in
Eq. (11) is just the free Brownian mobility (mI')™.
Thus, we can rewrite Eq. (11) as

1(0) =a¥(mI)™ [[ dx p(x) f dx L] ) (13)

o 0 plx))

The result [Eq. (13)] has some important implications:
the mobility will be strongly reduced whenever a point
or region occurs for which the particle density is very
small (close to zero), since then the second integrand
in Eq. (13) will blow up. Interpreting p(x) via Eq. (12),
this means that when the local potential is very repul-
sive, it can significantly reduce the overall mobility.
For interacting systems, an important feature is that
the density is determined not from the bare lattice po-
tential V, but from the full potential V [Eq. (2)]. If
V,=0 then for the sinusoidal potential (2) the usual ac-
tivated form Tu(0)~exp(— BV,) follows from Eq. (13),
if BVy>1. However, the relevant activation barrier in
interacting cases will be determined from V, not from
V,. It should be noted that while Eq. (13) is exact for
noninteracting particles, its applicability to the inter-
acting particle case, while reasonable, is not assured.

In the next section we compare Smoluchowski and
Langevin results for a series of system parameters
and particle densities. The Langevin results were ob-
tained via numerical solution (stochastic trajecto-
ries!™ %) of Eq. (4) to obtain the velocity and displace-
ment autocorrelation functions, from which the trans-
port properties can be derived via linear response
theory.

11ll. RESULTS: COMPARISON OF LANGEVIN AND
SMOLUCHOWSKI DYNAMICS

A. Noninteracting case

To test how sensitive the applicability of the Smolu-
chowski equation is to the criterion (10), we compared
the conductivity o(w =0) computed from stochastic tra-
jectories (Langevin) to the exact Smoluchowski result
for sinusoidal potentials. The latter is!!

D=[1(Vy/2eT)]2 - L

g (19)

where [; is a modified Bessel function and the diffusion
coefficient D is related to the conductivity o via

_M(Ze)y’n
Ry
where Ze is the ion charge.

(15)

The Langevin equation (4) with V¥, equal to zero and
physically reasonable parameters has been solved with
several values of I"'. The diffusion coefficients calcu-

TABLE 1. Comparison of diffusion coefficients determined by

stochastic Langevin dynamics and the Smoluchowski equations.?

Langevin® Smoluchowski® sv| 1
rx10M2 g, (D x10° cm®/s) (D x 10° cm®/s) axt | mr?
0,135 15.7 120.1 1000
1.35 5.5 12.1 10
3.0 3.6 6.5 2
4.5 2.6 3.6 0.91
6,0 2,3 2.7 0.51
10.0 1.5 1.6 0.18

ay,=0.1¢eV, T=453K, a =3.1 A, m=1.776x10"22 g,
*Computed from stochastic trajectories, Ref, 17.
‘From Eq. (14). All results for V,=0,

lated from stochastic trajectories are compared to those
calculated using Eq. (14) in Table I. The data show:

(1) as the damping constant increases, the two results
become closer together, and at high damping the two
solutions agree; (2) the Smoluchowski solution varies
strongly with varying damping constants, whereas the
stochastic Langevin dynamics results are less sensitive
to changes of the damping constant; and (3) the Smolu-
chowski diffusion coefficients are too high when the sys-
tem is not in the high damping limit.

The deviations at low damping arise since the Smolu-
chowski solutions in some sense underestimate the ef-
fect of the external force. That is, the strong damping
means that the large accelerations which should be pro-
duced by the external (lattice) potential are substantially
reduced. For this system, the sinusoidal external force
localizes the particles and is responsible for lowering
the diffusion constant (compared to the case when V) is
zero). Therefore, Smoluchowski results obtained using
small damping constants yield too high a value for D.
Alternatively, one can understand the fact that the
Smoluchowski result for o is too large by noting that
for a real system which does not obey Eq. (10), the
average velocity at the bottom of a potential well is
higher than that on the top while the absolute average
of the velocity (over all positions) should be c 2T, in-
dependent of the damping strength. Therefore, the real
velocity near the barrier top will be smaller than that
predicted by Eq. (7), and thus the conductivity (rate of
crossing barrier tops) will be lower in actuality than
predicted by Eq. (8). Table I includes values for the
validity criterion (10). When agreement between the
Langevin dynamics and the Smoluchowski results is ob-
tained, this smallness parameter is ~0.20. However,
when I'=1,35%10' Hz, the value inferred from spec-
troscopy of a Agl, ?° the diffusion coefficient calculated
from the Smoluchowski result [Eq. (14)] is about two.
times too high. As pointed out long ago!® by Chandra-
sekhar, one expects Eq. (8) to be useful only for dis-
tances greater than (27/mI'?)'/? and times greater than
I'"!, The fact that the Smoluchowski prediction over-
estimates the conductivity for superionic conductors
has been noted previously,

B. Interacting particles

When V,#0, there are no available exact results for
the Smoluchowski equation or the Langevin equation.
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TABLE II. Comparison of diffusion coefficients for an incommensurate system of interacting
charged particles (py=0.75) determined by Langevin dynamics and the Dieterich form,?

Barrier height

Diffusion coefficient

(eV) x10° (cm?/s)
Temp,
rx101? Hz (K) Vo Vet E, (eV)? Dieterich® Langevin®
1.35 453 0.3 0.113 0. 10 8,45 2,46
13.5 453 0.3 0.111 0.10 0,89 0,98
13.5 300 0.3 0.099 0.10 0,29 0,23
13.5 700 0.3 0,133 0.10 2,03 2,02

2=3.14, m=1.776x10"% g,
"Computed from Langevin dynamics, Eq. (4).

We have, however, completed stochastic Langevin cal-
culations for a one-dimensional system with 30 mobile
ions and periodic boundary conditions, and the results

both for the conductivity o(w) and for the time average

density p(x) are available from them, 17 182!

The density function obtained from these stochastic
trajectories is correlated over several sites; however,
the density function is periodic with lattice constant
equal to the period of ¥, because each site in the sys-
tem is equivalent. This allows the density function to
be calculated as follows:

pa(x)=]—\1,- plx+n) O<x<a, N>»1, (16)
=

where N is the number of sites in the system. Using
the density function in Eq. (16) we can compute the
effective potential.

Voee(x) == ETInp,(x) . amn

The diffusion coefficients calculated using the Die-
terich expression (11) are then compared to the diffu-
sion coefficients calculated from the stochastic tra-
jectory. The system density p, is the average number
of mobile ions per minimum in V; of (2). The results
for an incommensurate system, p,=0.75, are presented
in Table II, and the effective potential computed from
Eq. (17) using p, from Langevin dynamics, is compared

o
*e

POTENTIAL (EV)

(o] 43 .86 129 172 215 258 3.0
X(ANGSTROM)

FIG. 1. The bare one-particle potential V(x) [Eq. (2)] and
the effective potential V. (x) [Eq. (17)], for a system with
q=0.6, a=3,11 &, v,=0,3eV, Pp=0.75, T=453 K. For this
incommensurate system, the etfective barrier is far lower
than the one-particle barrier, so that correlation promotes
conduction.

°Computed from Eq. (13).

to the bare potential in Fig. 1. These results indicate
that: (1) The effective potential barrier height is ap-
proximately equal to the activation energy determined
by Langevin dynamics, independent of the damping
constant; (2) The interionic forces in the incommensu-
rate system cause the effective barrier height to be
lower than the bare potential; (3) the Dieterich solution
is only valid in the high damping case; and (4) The dif-
fusion coefficient calculated using the Dieterich equation
is too high in the lower damping case. Items (3) and
(4) are similar to the results of the noninteracting case;
item (4) has been noted previously, while item (3) is
expected, since Eq. (11) is derived from the Smolu-
chowski equation, which is valid only in the high damp-
ing limit.

For the commensurate case (pg=0.5), the activation
barrier is higher than V,, due to ion—ion repulsion.
This means, in turn, that the second derivative (force
constant) in Eq. (10) is larger, so that for the Smolu-
chowski limit to hold, I must be still larger. Using
the parameters of Table II, the activation barrier de-
rived from the Langevin dynamics simulation is larger
than that associated with V,,, derived from Eq. (17).
This may arise from the formation of a sublattice (full-
empty-full-empty site occupancy) characteristic of the
commensurate stoichiometry. This case is in fact un-
interesting from the practical point of view since com-
mensurate systems are poor ionic conductors.

IV. CONCLUSIONS

Much of the formal work concerned with ionic con-
ductivity is couched in terms of the Smoluchowski equa-
tion, #1218 Oyr results, for both the interacting and
noninteracting cases, indicate that unless the criterion
(10) is in fact satisfied, the Smoluchowski calculation
will always predict conductivities that are too large.
We find that Smoluchowski behavior holds, and the
Dieterich expression gives the correct conductivity,
when the damping is indeed strong. For weaker damp-
ing, the Dieterich results fail quantitatively, although
the qualitative effects of correlation and commensura-
bility are seen by studying p(x). The effective barrier
height calculated using Eq. (17) is lower than V, for
incommensurate systems, since, as has been previously
noted, ™18 the effect of the Coulomb repulsion between
carriers is to push them out of the bottoms of the peri-
odic potential, thus lowering the effective activation
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energy below V,. The effective barrier calculated
from Eqs. (16) and (17) using the correct (Langevin)
density yields the correct barrier regardless of I', but
only when Eq. (10) is satisfied will the density alone
correctly determine ¢ from Eq. (13).

The criterion (10) is equivalent to saying that the
frequency for the mobile-ion mode at the well bottom
must be smaller than the linewidth. For most ionic
conductors this is not true; for example, the frequency/
linewidth ratios in Na 8 alumina, % Ag 8/ gallate,

o Agl,* and NASICON® are roughly 61/40, 40/15,
110/50, and 60/40, respectively. Thus, in none of
these cases is the criterion (10) for the validity of the
Smoluchowski equation satisfied.

Recently Schultz and Zucker'* have calculated V,,,
from x-ray and neutron diffraction data of Li;N and
silver halide conductors. They find that the calculated
Vere barrier height agrees with experimentally deter-
mined activation energies. We find that our calculated
V.4 barrier height agrees with the Langevin dynamics
activation energy. Thus, the simple relationship be-
tween p(x) and the effective barrier height seems to be
a general result; however, the relationship between
the measured p(x) and the conductivity is not expected
to hold in general, but only in the very high damping
case;, most ionic conductors are not in this limit in the
important temperature range.
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