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Approximate solutions for multistep master equations describing the time evolution of product formation in
multiphoton or thermal unimolecular reactions are investigated. In particular, a method based on fitting the
first few moments of the passage time distribution associated with the given stochastic process to proposed
simple expressions for the product yield function is studied. It is shown that reasonable agreement with the
exact numerical solution of the corresponding master equation is obtained with a two parameter fit (using two
passage time moments) and an excellent agreement is obtained with a three parameter fit {using three passage
time moments). In no case studied does a need arise for more than a three-moment description and the quality
of available experimental results makes the simpler two-moment description sufficient in most cases.
Analytical solutions for the first and second passage time moments are obtained for simple discrete and
continuous master equation models. Expressions for the incubation time and the reaction rate are obtained in
terms of these solutions. The validity of discretizing a continuous master equation (which is an important
simplifying step in evaluating the time evolution associated with multiphoton dissociations in the presence of
collisions, or with thermal unimolecular reactions involving large molecules) is studied using both the
approximate two-moment solutions and exact numerical solutions. It is concluded that a proper discretization of
a continuous master equation may be carried out provided € €k;T*, where € is the discretization energy step,
k; the Boltzmann constant, and T* the effective (density of states weighted) temperature. A larger
discretization step can be used if only the incubation time is required. Using the approximately discretized
master equation, we next calculate the effect of collisions on the incubation time and the rate of multiphoton
dissociation using a model constructed to correspond to the unimolecular dissociation of
tetramethyldioxethane. Incubation times are found to be less sensitive to collisions then the reaction rates.
Finally, we investigate the applicability of the passage time moments method to describe the time evolution of
product formation in a system whose dynamics is determined by a quantum mechanical Liouville equation.
Again the two-moment description provides a reasonable and the three-moment approximation a good
approximation to the exact solution. The three-moment approximations, however, cannot be used when the

pressure (i.e., the dephasing rate) is too low.

i. INTRODUCTION

The kinetic behavior of unimolecular reactions in
large molecules is mostly described by the Pauli master
equations, For example, the discrete model

ﬁn= ZAnmpm—ann (I.1a)

in the particular form

bn =kn,n-1 Dn1 +kn,n+l pnd - (kml,n +kn+l,n) bn=~Vnbn ,

(1. 1b)
is used to describe photochemically (multiphoton) in-
duced reactions!'? (where p, is the probability that the
molecule has absorbed » photons, y, are reaction rates,
and &, = 10,,/#w, where [ is the light intengity and o,,,
is the cross section for the m — » transition). A simi-
lar equation is used to describe thermal reactions in
diatomic molecules.?™® The continuous form

b(E)=f A(E,ENP(E"YIE' —v(E)p(E) , (1.2)
where p(E) is the probability of energy accumulation E
in the molecule and A(E, E') is the (collisionally induced)
rate for the E'—~ E transition, is used to describe ther-
mal reactions in polyatomic molecules.®? Laser induced
reactions in the presence of collisions in large mole -
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cules are described by a combination of the processes
entering into Egqs. (I.1) and (I,2), For small molecules
(or for “region I” —~the low energy discrete spectrum of
large molecules) the full Liouville equation for the mo-
lecular density matrix has to be employed.

With Eq. (I.1) or (I.2) constituting the starting point,
the objective in many past studies was to obtain an ex-
pression for the reaction rate in terms of the parameters
entering into the rate matrices 4, or Alx,y). The
usual procedure is to identify this rate with the largest
(smallest in absolute value) eigenvalue of the rate
matrix,® ! The rationale behind this procedure lies in
the observation that in many cases this eigenvalue X,
is well geparated from the other eigenvalues
(Ing1<< [x{ 1< Ny |+ +) which implies that steady state will
be established on a timescale much shorter than the fol -
lowing reaction time, In such a situation the bulk of the
process indeed proceeds with the steady state rate A,.
This steady state rate may be calculated as the inverse
mean first passage time (MFPT) for the steady state dis-
tribution, Indeed the time evolution is governed in this
case by a single exponential P(t)=exp(~k,t) [where P(¢)
is defined by Eq, II, 3] so that the MFPT is r{* = ;° P(t)dt
=k} (see Sec. I).

The assumption [(}; —~X;/Ay)! > 1 necessary for the
steady state approach to be useful does not always hold.
For multiphoton dissociation of large molecules it was
estimated that about a third of the reaction occurs before
steady state is established.!? Furthermore it is possible
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to carry out experiments that focus on the transient re-
gime, such as measurements of incubation times in uni-
molecular thermal'*~¢ or multiphoton'’™*® reactions, or
of the (closely related) fluence threshold in multiphoton
dissociation of large molecules. A proper analysis of
such cases requires a more detailed study of the solu-
tion [ p,(t) or p(X, t)] of the master equation (1) or (2).
Experimentally what is observed is the evolution of the
reaction yield

1- Zo p,(t)

Y(t) = (1.3)

1- fow dx plx, t) |

This is in turn analyzed in terms of an incubation time 6
which is the time elapsed between the onset of the reac-
tion and the first observation of products, and of a rate
k which characterizes thelong time behavior of ¥ (see
Fig. 1). The complete time evolution of Y{¢) is of
course determined by more than justthree or twoparam-
eters; in principle by all the parameters which deter-
mine the rate matrix A, The purpose of the present
paper is to express this time evolution using a small
number of parameters which may be calculated from A
and from the given initial distribution. This is achieved
by realizing that the time dependence of Y(¢) is deter-
mined mostly by the first few lower moments of the
passage time distribution which are relatively easy to
calculate. We use these few (2 or 3) moments as input
parameters to fit reasonable approximations to the evo-
lution function, from which we obtain expressions for the
incubation time 6 and the rate k associated with the reac-
tion,

It should be noted that other approaches to the calcula-
tion of the incubation time 6 exist in the literature.
Dove and Troe, 2° following Brau, Keck, and Carrier?
used a method based on the smallest eigenvalue (SEV) of
the evolution operator, Denoting this eigenvalue by
— X and the corresponding eigenvector by u,, the long
time evolution of the system is given by [denoting
P()=1-Y(5]

P(t)=[ud - p(0)]exp(-2t)

where uf is the left eigenvector of the master equation
corresponding to — %y, [(u¥ *uy) =1]. The evolution is now
approximated to be given by

(I.4)

P(H=P,),
1 =)
’ 1.5)
P,(t) = (
[uf -p(0)]exp(—2gt) t= 6
From this an estimate for the incubation time 6 is
1
= = Infuf -p(0)] . (1.6)
* [ug *p ]

Recently, Kelley, Zalotai, and Rabinovitch? have sug-
gested a different estimate

=1y -1/, (.7

where 7, is the mean first passage time (first moment of
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FIG. 1. A schematic view of the time evolution of product for-

mation in multistep reaction system.

the passage time distribution) associated with the master
equation,

Finally, Barker?® has recently proposed that the pas-
sage time distribution function is closely reproduced by
a log-normal distribution function

1 lnz(t/u)]
0= e |- 207

This is a two parameter function which may be used if
the parameters o and p can be calculated, e.g., by eval-
uating the two lowest moments of the passage time dis-
tribution (see Sec. II).

(1.8)

In Sec. II we describe our method and compare it with
the approximations based on Eqs. (I.6)-{I.8). In Sec.
III we obtain analytical solution for the lower passage
time moments for some simple discrete and continuous
master equation models and use them to obtain expres-
sions for the corresponding incubation times and reac-
tion rates. In Sec, IV we discuss the validity of dis-
cretizing a continuous master equation which is used to
simplify calculations of collision induced processes in
large molecules. Results of model calculations on col-
lision effects in multiphoton excitation of large molecules
are also presented. Finally in Sec, V we investigate the
applicability of our approach for quantum-mechanical
evolution described by the quantum-mechanical Liou-
ville equation, of which Eq. (I.1) constitutes a particular
limit, Our conclusions are summarized in Sec. VI,

Il. THE PASSAGE TIME MOMENTS (PTM)} METHOD

Given the master equation (1) or (2), our aim is to
obtain the product yield function ¥(t), Eq. (3). We in-
troduce the passage time distribution function®*

- Z”; 0

o , (I1. 1)
- J dx plx, )
1]

n@) =¥ =

which is positive and satisfies ;" dtII(¢)=1. Its moments
are
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= - n = - n-1 11,2
T, fo att"TI() nfo ¢ Pt | (11 2)
where
Z;p,.(t)
P(H)=1-Y()= . (11.3)

J; dx plx, 1)

The moments 7, are readily calculated®* in the discrete
case where P(t)=U-p(¢), U being a vector of unities
U=(1,1,...):

7,=nU" f” exp(Af)p(0) " dt=(-1)"»1U - A" p(0) .
0

(11.4)
Thus only the inverse of the rate matrix A and the initial
distribution p(0) are needed to evaluate all the PTM’s.
For the continuous master equation there are also meth-
ods available to calculate the PTM’s.?* 1,, the mean
passage time has been widely used for steady state rate
calculations, !

To go beyond the steady state approximation we ob-~
serve that the product yield function Y(¢) is usually a
smooth function of ¢ (Fig. 1) which may be approximated
by simple mathematical forms in terms of a small num-
ber of parameters, These parameters may in turn be
calculated by fitting the approximate forms to yield the
correct lower PTM’s, The simplest approximation is

Y{t)~ Y,(2), (H.5)
0, t<g

The parameters & and 6 are chosen so that the approxi-
mate Y,(¢) yields the correct first and second PTM’s as
the exact Y(¢), This leads to

El=vr, - %, (I1.7a)
9=T1—'VTz—il . (H.?b)

A better approximation is obtained by using a three
parameter function

0, t=6
Y0 =
A(8) kyexp[—ky(t —0)] ~kyexp[-&,(t —0)]
1- , t=6
ky -k, )
(1.8)

with the requirement that ¥ ,(¢) now yields the correct
three lower PTM’s, This leads to

9=Tl_x‘/?2‘71y (1. 9a)
1 —

o AR N (II. 9b)
1

1

== e TR (IL. 9¢)
2

where x is the solution to the cubic equation
2 =3x+a=0, (IL.10a)

and where
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poT2 =73 =37y(1, = 7%)
(r,=T3r7% :

Note that Eq. (II, 10a) has, in general, three roots. Of
these we are limited to real x satisfying 1=<x=<(r,)/
(VT =7%) because 6 should be real and non-negative and
ky, ks, should have a positive real part {¢, ,=y +iw is in
principle possible, in which case P,(¢t)=1 - Y,(?)
=exp(-yt)[coswt +(y/w)sinwt] In the rare cases when
such a result was obtained we found y > w and no oscil -
lations actually appear}.

(11, 10b)

An alternative way to use the information contained in
the PTM’s is to use the first and second passage time
moments for evaluating the parameters u and o of the
log-Gauss distribution function (I, 8), The moments of
II(¢) given by Eq. (I.8) are

T,= M= E dit" () = n"exp[n®e? /2], (m.11)

so that u and ¢ are obtained in terms of 7, and 1, in the
forms

o={In(r,/H M2,
p= 1y (/)2

Thus evaluating 7, and 7, we obtain an explicit expres-
sion for I(#), from which the product yield function is
obtained by integration

(I1.12)

(I1,13)

Y(t)=1fl: iy de' . (I1.14)

In Fig. 2 we compare, using a model master equation
the exact numerical solution for P(#)=1 - Y(¢) with ap-
proximate solutions based on the SEV approximation
[Egs. (1.5)-{1.7)] and on the PTM method with two mo-
ments [Eqs. (O.6) and (I[.7) or Egs. (I.8) and 11.12)-
(I1.14)] and with three moments [Eqs. (II.8 and (II. 9)].
Figure (2a) shows the results obtained for a multiphoton
excitation of a model large molecule in the absence of
collisions while in Fig. (2b) the same process has been
considered under 100 Torr inert gas pressure. The
model used for the colligionless process is the same one
described before®® for the multiphoton dissociation of
tetramethyldioxethane (where real time monitoring of the
dissocation product has been performed). The way in
which collisional processes are incorporated is described
in Sec, 1V,

Comparing the results shown in Figs. 2(a) and 2(b) we
see that already the two-moment approximation [(iI, 6)
and (I, 7] gives a reasonable approximation to the exact
results which is superior to the SEV approximation
[(I.5) and (I.6)] or to the estimate given by (I.7). Using
two passage time moments with the log-Gauss distribu-
tion [Eqs. (I.8), (II.12), and (I1.13)] leads to an excel-
lent agreement with the exact result in the collisionless
case (in agreement with Barker’s observation?); but
gives a poor fit when collisions are important. The
three -moment approximation [Eqgs. (II. 8)—(II. 10)] is in
almost complete agreement with the exact solution at all
pressures. Similar results were obtained for all cases
checked, with all approximations excluding the log-
Gauss distribution becoming better as the separation
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FIG. 2. A comparison of several methods used in the analysis
of product formation in multistep reaction process. Here the
remaining reactant population, P(t) =1 — ¥ (¢} is plotted vs time.
(a) collisionless multiphoton dissociation; (b) multiphoton dis-
sociation in the presence of collisions as described in the text.
Full line—exact numerical result. Dotted line—three-moment
fit to Eqs. (II8) and (II. 9). Dashed line—a two-moment fit to
Eqs. (II. 6) and (II, 7). Dash—dotted line—a fit based on the SEV
method [Egs. (1,5)-(II. 7)]. The dash—two-dot line in (a) is
based on Eq. (I.7) while a gimilar line in (2b) results from a
two-moment fit to the log-Gauss distribution. In (a) the result
from a two-moment fit to the log-Gauss distribution coincides
with the exact line. In (b) the result from Eq. (I.7) coincides
with the SEV (dash—dotted) curve.

between the smallest (in absolute value) eigenvalue of the
rate matrix and the other eigenvalues increases,?

In Fig., 3 an analysis of experimental data for the
yield versus fluence in the collisionless multiphoton dis-
sociation of SF, [Fig. 3(a)],¥"%° C,F,S, [Fig. 3(b)],% and
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CF;I [Fig. 3(c)],® in terms of the expressions (II.6) or
(11.8) is presented.’ In such experiments the laser in-
tensity is not constant in time so that the rate matrix A
in Eq. (I.1) is time dependent. However, as discussed
before®® it is possible to consider an equivalent constant
intensity situation on a transformed time axis provided
that the dissociation is assumed to depend only on the
laser fluence, When this is done, the fluence replaces

~£n(1-Y)
o
o
T

-£n(1-Y)
fe)
o
T

00
Q0

J/em?

() Lk
0.20

0.6

0.2~

=An(1-Y)

0.081-

.04}

0.00

J/em?

FIG. 3. Dissociation yield [expressed in terms of In{1 —Y}] vs
fluence for several collisionless multiphoton dissociation reac-
tions. (a) SF;. Experimental points were taken from Refs, 27—
29, The best fit to a function of the form (IL 8) is obtained using
8=2 J/cm?, ky=0,07 (§/cm?)™, and ky=0,98(3/ecm”)™. Also
shown are two curves based on Eq. (IL 8) with the same 6 and

k, and with k;=0.68 (J/cm?™, and 1.28 (J/cm®™, (b) C,F,S,.
The experimental points are from Ref. 30. The best fit to

(I. 8) is obtained with 8 =0.12 J/cm?, k,=1.68 (J/cm%™, and
ky=18.5 (J/em?)™. (c) CF;I. The experimental points are
from Ref. 31. The best fit to the functions (II. 5) and (Il. 6} is
obtained using §=0.18 J/cm® and £=0.1 (J/cm®)™!. Also shown
are curves corresponding to the same 6 with 2=0.08 and 0,12
(J/em?1,
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time in Eqs, (I1.6)~(I1.9), the incubation time becomes
the threshold fluence, and the rates # measure the
progress of dissociation per unit fluence, It is seen
from Fig, 3 that the two parameter function provide a
good fit to the experimental results in most cases and
that given the quality of the available experimental re-
sults nothing beyond the three parameter fit is sensible.
The fit thus obtained is directly related to properties of
the rate matrix moments of the passage time (or fluence)
distribution by Eqs. (II.7) or (II.9) and (II. 10). As noted
by Barker,?® the log-normal distribution also fits well
these collisionless cases and the parameters g and p
thus obtained may be again used to calculate the two
lowest passage time moments., We should keep in mind
that these fits are meaningful, in terms of passage time
moments, only provided that fluence and time may be
considered to be equivalent as mentioned above, i.e.,
when the effects of the discrete level structure in “region
I” may be disregarded.

We end this section with the following comments:

(a) The time 6 and the rates k [Eq. (I1.6)] or &, &,
[Eq. (11.8)] are directly measurable as the incubation
time and the rate associated with the unimolecular reac-
tion. In this section we have related these quantities to
the (relatively easy to calculate) passage time moments
associated with the given kinetic equation.

(b) While Eq. (I1.6) is the simplest approximation to
Y(f), dividing the evolution into an incubation and a
steady state part, Eqs. (I.8) and (II, 8) provide simple
ways toinclude also the transient regime. Other ways
are possible. In particular Quack® and Troe®* have
considered functions of the form

t

Y(#) = v,(6) =1 —eXP[ - f k(t)dr] (1I.15)

0
with a time dependent rate [becoming a constant (t) =&
(steady state) at long time]. k(¢) is then chosen as a few
parameter function, e.g.,2® k(f)=£[1 —exp(~¢/7) T,
where k2, 7, and n are parameters determined by fitting
experimental results, Our form (II.8) as well as the
log-Gauss function (I.8) has the advantage of mathe-
matical simplicity which enables us to relate the em-
pirically determined parameters with the PTM’s, The
form (II. 8) has in addition an appealing underlying phys-
ical picture: expression (II.8) corresponds to the case
where following an incubation period § the system be-
haves as an effective two-level system satisfying the
kinetic scheme

131(” = —7’1ﬁ1(t) +1’g[)z(t) y

Da(t) =7, py(£) = (3 +9) po(8) , (II.16)

where p,(0)= 1, p,(0)=0, and where %, and &, of Eq.
(I1. 8) are the eigenvalues of the rate matrix appearing in
Eq. (II.16). The success of this fit implies that for
practical purposes the unimolecular reaction involving a
multilevel system may be described effectively by a two
level system subjected to an incubation period.

The main advantage of the present approach lies in the
approximate relation found between the experimentally
measurable parameters and the PTM’s which are rela-
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tively easy to calculate, In fact, for some simple mod-
els we can obtain analytical expressions for the PTM’s
which in turn yield useful approximate expressions for

k and . We demonstrate such solutions in the next sec-
tion,

HI. EVALUATION OF PASSAGE TIME MOMENTS

There are general procedures outlined for the eval-
uation of PTM’s associated with either the Fokker—
Planck (FP) or the discrete master equation. In most
practical uses, only the first moment (mean passage
time) was obtained. In this section we evaluate T, and
7, [and thereby % and ¢, Eqs. (II.6) and (II.7)] for two
simple model master equations: one continuous and the
other discrete in the state variable.

A. A continuous model
Consider Eq, (I.2) with the rate matrix A(x,y) given by

v

a+p exp[(x —y)/a], x<y

Alx,y)= aiB [a +B-aexp(-y/a)l6lx ~y), x=y
55 exolly -x)/p), x>y .
(. 1)

A is conservative, [;° dxA(x,y)=0. This model has
been used by several workers® 2035 5 describe thermal
excitation of large molecules where x(y) is the internal
energy of the molecule, o« and 8 are the average energy
loss and gain, respectively, per collision, and v is the
number of collisions per unit time. When supplemented
by dissociation rates above some energy threshold this
constitutes a model for thermal unimolecular reaction.
We adopt the simple scheme (low pressure limit) where
the dissociation rate at the threshold E, is much larger
than the collisional energy transfer rate so that a mole-
cule is dissociated immediately after its energy sur-
passes E,. In this case, Eq. (1.2) is solved with Eq.
(II. 1) in the range x=0"*" Ey, where x =0 is a reflecting
and x =E, is an absorbing barrier. The method de-
scribed below is similar to that used to obtain passage
time moments for the FP equation,?!

Let P(y, t|x) be the probability to be in state y in time
t after starting in state x at time 0, This is the solution
p(v,1) to Eq. (I.2), given the initial condition

Py, 0)=56(x-y) . (I11. 2)
Note that p(y,#|x) =0 for y=E,. Defining
Eq
Yiv,f)=1- ] dyply, t]x) (1. 3)
0

this is the product yield function subjected to the initial
condition p(y,0)=8(x ~y). Y(x,¢) satisfies the master
equation

8Y(x,t)

Ep
= f ayY(y, t)A(y,x),
ot 0

(111. 4)

with the boundary conditions ¥(x,0)=0 and ¥(x,«)=1,
given x <E, [Y(x,#)=1 for all ¢ for x= E,].
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T,(x), the nth passage time moment subjected to Eq.
(1L, 2) is defined by [cf. Eq. (II.2)]
) = f tﬂf/(x,t)dt=nj "1 = Yix, ) lat
0 0
(1. 5)
which with Eq. (III.4) implies

nT,,-l(x)=foE° (3 A(y,x)dy . (III. 6)

=1 { -
This enables us to obtain a differential equation for the Tolx)=1 for xe [0’E°] ’ (I 132)
function T.(Eg)=0 for n>0, (111, 13b)
f,.(x) =Tn(X) eXP(—X/B) (III. 7) (f;}) =0 forn>0 s (III. 130)
in the form * /20
Equation (III. 13a) expresses the normalization of the pas-
2
(o +8) % [d f(;-xz(x) Lot dfgx(x)] sage time distribution while Eq. (III. 13b) and (IIL. 13¢)
v * ap ¥ are properties of the absorbing and the reflecting bar-
N o+B d a+8 riers respectively.®® The solution of Eqs. (IIl.11) and
Tar [gGe)fa (] + aB  dx [l flx)] + B k), (III. 13) is obtained as a recursion relation
111.8
where g{x) is the diagonal part of A(x,y) ¢ ) n n
T"(X) = '; T,,-l(x) + _V(a. :—B_)
glx)=a+B-aexp(-x/a). (111, 9)
x Eg
We assume that E, > q, 8. x varies in the range 0°- - E, X [c —exp(i)f exp <—l) T-1(y)dy - f T,,-;(y)dy] ,
and in most of this range we can replace Eq. (III.9) by v /o 14 * (. 14)
glx)=a+p. (Ir.10)  with
. . . . Epy
Inserting this into Eq. (III.8) results in . :exp(ﬂ)f exp (-—y-)'r,,-l(y)dy ‘ (1L, 15)
d’r, 1dr,_n [da'fn-l 1dryy 1 n>0 v 4
"y dx v dax? Ty dx " ag |’ Equations (III.13), (III.14), and (III. 15) may now be used
(II.11a) to obtain the desired set of PTM’s. The results for the
or equivalently first two moments are
]
rlx)= vlexp(Eo/y) —exp(x/v)]+x —E, , (IIL. 162)
v(a - B)
1500)= {[y2exp(Eo/7) +7 (27 + @ - B)] [exp(Ey/y) —explx /¥)] +vx[exp(Eo/¥) +exp(x/¥)]
—YEy[3exp(Ey/y) —explx/Y)]+(x ~EQ)[ilx = Eo) +y +a - B}/ [$%(a -] (II1. 16b)
Using these results and Egs. (II.5)~(II.7) we obtain
<
Y, )~ {0’ <ol (m. 17)
1 -exp{ -kt -6(x)]}, ¢>6k)
with
1/2
{yz [exp (Ef?_g) —exp(z—x> —4y(E,exp (ﬁ) -xexp<—x—)]}
B ) ~ Y Y Y Y (I11. 18)
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& 1d L R = W 7
de" ‘;é“%‘&ﬁ %n(x), (1L, 11b)
n =0 ¢
where
%_ 213_ - .10.! (I11. 12)

Equation (III, 11b) is supplemented by the boundary con-
ditions

v(a - 8)

b

6(x) ~

In obtaining Eqs. (III.18) and (III. 19) we have used again
the agsumption E,> «, 8,7y. The incubation time 6 and
the rate & are seen to depend on the initial state x,

6(E,) and £ '(E,) vanish as expected. We note that 7,(x)
and 7,(x) are practically exact for x > «, 8 while other-
wise they involve the approximation introduced by Eq.
(I1i. 10). For x =0 we obtain

o) -em(F) s -0 {7 o 22) -em(2) - o) ren() |1

v(a - B)

-_Eo
6(0) = @ -p) "’
510 = yj}({g(E%ﬂ (II1. 20)

We note in passing that the result for 6(0) agrees with
that obtained by Dove and Troe?’
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_ (P __dx B
""fo SAEGY ” ap)

where {AE(x))~ g - o is the averaged energy per colli-
sion transferred into the molecule,

The results (III, 20) may be rewritten in a somewhat
more physically appealing form by using the detailed
balance condition

Alx,y) _ plx) y=x
Aly,x)  p(y) em[kaT] ’

where p(x) is the density of states at energy x, T the
temperature, and k2, the Boltzmann constant, to get

(Tr. 21)

1 1 1 _ 1 lnplx)~lnply)

Y BT e R x-y . (111, 22)
If we adopt an exponential model for p(x),

plx) < exple/p) , (I1. 23)
we get

U S, - (1. 24)

Y kyT "0 BT

where T* denotes an “effective temperature.” Equations
{I11. 18) and (1. 19) may be now written in the form

5327

energy E,, while ¢ is the activation energy divided by the
rate of energy exchange by the molecule,

B. A discrete model

Next we consider a discrete model suitable for col-
lisionless multiphoton dissociation of large molecules.
The rate equation is (I.1) with

Anm = kn,m»l Gm.nd + kn, n-lbm,n-l

_(knol,n*'kn-l,n*'yn)bnm . (m-27)

n denotes the energy content of the molecule in terms of
a discrete number of quanta, We again agssume that
¥,=0 for n < N and that it is much larger than all &, for
n= N, so that all dissociation occurs at the threshold
n=N. Furthermore, we simplify the model by taking

kml,nE k#
_ independent of % . (111, 28)
kn-l,n‘_‘k-
We also assume
p,,(t=0)=6,,'o . (I, 29)

The PTM’s are calculated for this model by extending
a method?* used to calculate the first moment (the mean
first passage time), The results for the first two mo-

_ _Ey ments are
6(0) STaE)]? (I11. 25) .
I(AE) | 1= 2, 0= k7 "_1 [Nt o (N+ )Y 1]
#(0)= 52 exp(=Eo/ksT™) . (i1 26) n=0 (-1
B - Nt (N+ )" +1 30)
k is here obtained in an Arrhenius form with activation B.n=-179" ’ (I
]
NN+ D" —2(N2+ N+ 2)2¥ + NN + 1Y + 28N + 2" 23N+ 1) + 2
o= A e , (1. 31)
BE(n = 1)
r
where These results can be used for a quick, zero order esti-
n=k,/k.. (111, 32) mate of the incubation time and rate associated with in-

The same procedure as described in Ref. 24 may be
continued to obtain higher moments,

Equations (III. 30) and (III, 31) may be used with Eq.
(I1. 7) to obtain the incubation time and the reaction rate
within the scheme (I1.6). For the interesting case N> 1

we obtain
N
PR <1
_ N
0= P n>1 (1, 33)
(3 -VBINE/BR,,, n=1
and
7"(1 =)k -k, n<1
n-1%Y2p _p
k= 77+1 T , n>1 . (HI.34)
V6k,
ek n=1

frared multiphoton dissociation of large molecules. 2®

1V. DISCRETIZATION OF A CONTINUOUS MASTER
EQUATION

In applying the master equation to describe the evolu-
tion of a large molecule excited by IR radiation in the
presence of a collisional heat bath, we encounter the
necessity to combine a discrete process described by
Eq. (I.1) with a continuous process Eq. (I.2). A con-
siderable simplification of the problem is achieved if
the continuous kernel can be discretized in some speci-
fied way.

The rationale behind discretizing a continuous ME lies
in the observation that we are interested only in process-
es which involve many colligional steps so that the ener-
gy transfer probability per collision may be important
only in some averaged way, Thus, given the transition
rate kernel A(x, y) in Eq. (I.1) we replace it by the
kernel Blx,y),
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Blx,y) =k (9)o(x =y +€) +£ (1)6(x =y =€)
= [k(3)+2()]o(x -y) . 1.1)

Here k_ and %, denote transition rates in the downward
and upward directions, respectively, and € >0 is a dis-
crete energy step. k. and k, are chosen so that some
averaged properties of A(x,y) are maintained in B(x, y),
In a recent work, *° we have determined &_ and %, from
the requirements

k*(y)fw(x—y)é(x -y —-€)dx= J” (x =y (x,y)dx ,

k() fo (x-y)a(x-y+e)dx=jo" (=), ) dx .

@v.2)
For the model (III, 1) this implies
e (y)= (T"i%, (Iv.2a)
0, y<e,
k{y)= (:f;)s [1 ..(% + 1) exp(-y/o], y>¢

(Iv. 2b)
[in Ref. 25 we have replaced Eq. (IV.2b) by 2_(y) =
vaz/(a +B), which is equal to the value given by Eq.
{IV.2b) in most of the energy range]. The choice (IV,
2) suffers from the drawback of not satisfying the de-
tailed balance condition which, for Eq. (IV.1) and for the
thermal reaction case takes the form

k(x) _ plx+e)
Ecte) pl) P

In order to satisfy this requirement we choose k. and
k, so that

E(y)-k(y)=v{(aE(y)/c, (Iv.4)
BAy)/E (v)=exp(e/kpT*), (Iv.5)

where (AE(y)) is the average total energy transferred
per collision from state y, and where T* is defined in
Eq. (III. 24), The definitions (IV.4) and (IV. 5) are model
independent. For our model (III.1), {AE(y))= o -8 for
y sufficiently large and v{(AE(y))/¢ is the difference be -
tween the terms appearing on the right-hand side of Eq.
(IV.2). Equations (IV.4) and (IV.5) lead to

_ vI{aE{(y)I
k)= elexp(e /R, T - 1]’

v I(AE(y)) | exple /K, T*)
elexple /2, T*) —1]

Taking 1(AE(y))! =& ~ g independent of y, we can use
Eqgs. (II1.33) and (III. 34) to get £ and 6. We note from
Eq. (IV.5) that the parameter 5 {Eq. (II[.32)] is <1, so
that Eqs. (I11.33), (III.34), and (IV.6) lead to

—<EZ_T> =exp(-€/kT*) . (IV.3)

(Iv.6a)

k.(y)= (1v.6b)

- Ey
O T (. 7)
x 2sT* [1 —exp(-e/kyT*), (Iv.8)

€
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where E, = Ne is the dissociation energy.

The validity of this discretization method may be now
assessed by comparing the results (IV.7) and (IV.8) to
the results (III.25) and (III. 26) obtained from the analo-
gous continuous model.3” We see that the results for the
incubation time are identical while those for the rates
become identical for € < by T*, For € ~ky T* the dis-
crete model underestimates the reaction rate. In Ref,
25 we have used a discretization procedure with € = 7w
in order to incorporate the collisional transitions into
the radiative rate matrix, This approach is expected to
be reliable for the calculation of incubation times, while
a better model, utilizing a smaller step size (¢ =#w/a,

n =10 for T=300 K) is expected to give more reliable re-
sults for the rates. In such a model the radiative rates
connect levels which lie #» steps apart and the order of the
the rate matrix is » times larger than the original purely
radiative rate matrix, Still it is much easier to solve
numerically such a model than the complete model com-
bining the discrete equation (I.1) with the continuous
equation (I.2). Following this observation we conclude
that a suitably discretized model constitutes the best
way to approach the problem of collisional effects in the
(quasi) continuous level regimes of multiphoton excita -
tion of large molecules.

V. MODEL CALCULATIONS

In this section we present results of some model cal-
culations which were performed in order (a) to compare
results obtained using the PTM method with exact solu-
tions of the master equation, and (b) to get a feeling for
the pressure and light intensity dependence of the incu-
bation time 6, the rate (k or k,,%,) and the reaction yield
Y in multiphoton dissociation reactions.

Our model is based on the master equation used pre-
viously to simulate IR multiphoton dissociation of tetra-
methyldioxethane (TMD), only the collisional rate coef-
ficients of Ref. 25 were replaced by those given by Eq.
(Iv.8). Tables of the density of states and the RRKM
rate constants used are provided in Ref, 25, The rates
which enter into the master equation are given by

(v.1a)
(v.1b)

kn+1-n= Fn+1,n+k+ ’
k

n-len=

Cpey,ntk- .

The collisional rates k, and k4. were obtained from Eq.
(IV.6) using (unless otherwise specified) T =300 K,
T*=420 K, and [(AE)|=100 cm™, with the collision rate
v estimated as ~10™* P where P is the pressure ex-
pressed in Torr, The forward radiative rates were
taken to be energy independent and are expressed as
w%/T'’, where wj is the Rabi frequency for the 0~1
transition and where I'®’ is the anharmonic width of the
optically active mode, estimated here to be 50 em™,
The backward radiative rates are calculated using the
detailed balance relation &,y ./ks nei = Pnst/Pn.  The dis-
sociation threshold for TMD is at 10 IR (CO,) photon ab-
sorption steps. The master equation was truncated after
27 such steps., The passage time moments were cal-
culated numerically using Eq. (II.4).

In Fig. 4 we present the results of a test calculation in
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FIG. 4. Remaining reactant population P(t) =1 —Y(¢) plotted vs
time in a thermal reaction model for TMD. T=1500 K,

The different curves correspond to € /kgT*=1.12, 0.56, and
0.28 where € is the discrete energy step. Curves with smaller
ratio of € /kzT* coincide with the 0.28 curve.

in which, for a purely thermal reaction, we compare the
result obtained with different choices of the discretiza-
tion interval €. The same model molecule and the same
collisional model as described above were used in this
calculation, The temperature T was taken as 1500 °K,
and € was chosen to vary in different calculations, The
results converge for smaller ¢, and for €/bT* smaller
than 0. 28 no significant difference exists between re-

r
t
I
]
I
._'_.__SE,V_._.‘_ JL0G-GAUSS FIT
100 p--— ~.. H
_a— —Bx,
g ~ \7\
M N
£ ~~ 2 MOMENT FIT T N
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FIG. 5. Incubation time as a function of pressure obtained by

‘an exact numerical solution (where 8 was taken as the time
where 0. 5% of the reactant disappeared) and by different approxi-
mation method. The Rabi frequency is wgp=0,21 em™,
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FIG. 6. As Fig. 5 with wg=0.34 cm™,

sults obtained for different choices of the discretization
interval.

In the rest of the calculation presented in this section
we choose € =7w. The temperature in all high pressure
calculations was taken 300 °K, According to the dis-
cussion in Sec. IV we expect the results for the incuba-
tion times 6 to be quantitatively correct within the mod-
el, while those for the rates and yields to provide a
qualitative feeling for these properties.

Figures 5 and 6 represent the pressure dependence of
# at two different IR intensities. The dependence of
yield on pressure is shown for a particular rectangular
pulse in Fig, 7 while its intensity dependence at fixed
fluence at zero and finite pressures is demonstrated in
Fig, 8.

This numerical study leads to the following conclu-
sions:

(a) the PTM method provides a reliable tool for study-
ing unimolecular reactions governed by a master equa-

10

06

04

02

0

FIG. 7. Reaction yield vs pressure for the model TMD reac-
tion described in the text. The full, dotted, dashed, and the
dash-dotted curves correspond to yields obtained in an exact
calculation, a three-moment fit, a two-moment fit, and the SEV
approximation, respectively, all immediately after a 100 ns
pulse. The dash~two-dot line corresponds to the long time
yield (including post-pulse dissociation). wg=0.21 em™.
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FIG. 8., Yield vs intensity for the TMD model reaction. Pulse
duration is 7,=0, 7/0h (1, in ns and wg in em™). (a) P (pres-
sure) =0; (b) P =100 Torr. Line code is same as in Fig. 7.

tion. A two-moment description provides a rough qual-
itative picture which is sufficient in many cases and is
somewhat superior to the SEV method. The three-mo-
ment approximation leads to an almost quantitative
agreement with the exact solution and is sufficient for
all practical purposes.

(b) The incubation time in multiphoton dissociation of
large molecules is independent of pressure at low pres-

sure where the processes are dominated mostly by the
radiative transitions. A mild dependence on pressure
is observed up to moderate pressures (where | S
~k.). At the high pressure limit, § becomes inversely
proportional to the pressure [as seen from the result
(I1I. 24) for the purely collisional process].

{c) The rates [k of Eq. (II.6) or &,, k, of Eq. (II.8)]
are more strongly dependent on the pressure than the
corresponding incubation time #. In particular, the
steady state rate is a decreasing function of pressure.
We note that for the purely thermal case the opposite is
true [c.f. Eq. (IV.25)] however for the values of dis-
sociation threshold and temperature considered here the
purely thermal rate is practically zero.

(d) The incubation time and the reaction yield for a
given pulse duration and intensity is well described by
the PTM approach using Eqs. (II.6) or (II,8). As seen
from Figs. (2), (8), and (9) this approach is superior to
estimates based on the SEV method, The log-Gauss dis-
tribution reproduces well the exact results only in the
zero pressure limit. It should be noted that a compari-
son between the exact and the approximate results for
the yield has to be done immediately following the pulse
as none of the approximate methods can handle in its
present form a situation (as seen, e.g., in Fig., 8) where
a substantial part of the dissociation occurs after the
pulse.

{e) The dependence of yield mostly on pulse fluence
(rather than on the intensity and duration separately) ob-
served and interpreted for collisionless multiphoton ex-
citation governed by excitation (with rates proportional
to the IR intensity) in the quasicontinuous and continuous
ranges of the molecular spectrum is no longer expected
when collisions play a significant part in the evolution.
As seen in Fig. 8(b) the yield rises with intensity at
fixed fluence, then slowly saturates. The dependence on
intensity is of course understandable since the rate ma-
trix is no longer essentially proportional to the light in-
tensity. The initial rise of yield with intensity at fixed
fluence results from the competition between the radia-
tive excitation and the collisional loss, The latter oc-
curs on a fixed timescale and its role is reduced when
the photochemical timescale is shortened.

These conclusions are expected to hold generally,
Details of the time evolution and the dependence of the
incubation time, the rates and yield on the parameters
characterizing the pulse and on the pressure will of
course vary,

VI. APPLICATION OF PASSAGE TIME MOMENTS IN
QUANTUM MECHANICAL EVOLUTION

First passage times were introduced and so far used
for processes described by either the master or the
Fokker —Planck equation, The concept applies of course
equally well to time evolution governed by the Schrdding-
er or the quantum-mechanical Liouville equation., In
this section we explore the possibility to use the method
described in Sec. II for an approximate evaluation of a
quantum-~-mechanical evolution,

Our model consists of N levels of energies
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FIG. 9. A schematic model for multiphoton excitation in an N
level system. V is the radiative coupling. Dissociation (or
decay to an intramolecular quasicontinuum) takes place from
the upper level.

E,(n=1"-"+N) consecutively coupled by photons of fre-
quency w (Fig, 9). The upper level decays with an as-~
sociated width I'y to form a product. The radiative
coupling elements are V, ,,,. In addition we have colli-
sion induced dephasing imposing a decay rate y,,. on a
nondiagonal element of the density matrix p. p denotes
the density matrix of the “dressed” system-radiation
field levels with the corresponding energies E,=E,

+{N —=n)mw. The time evolution in the rotating wave
approximation is governed by the Liouville equation

e(psec)

177, (em™)

FIG. 10. Incubation time vs dephasing rate in the five-level
system described in the text, The full, dotted, dashed, and
dash~dotted curves correspond to the exact numerical solution,
a three-moment fit, a two-moment fit to Eqs. (II.6) and (IL. 7)
and a two-moment fit to the log-Gauss distribution, Eq. (I 8),
respectively.
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FIG. 11. Steady state rate constant vs dephasing rate in the
five-level system described in the text. Line codes are as in
Fig. 10.

p=-iLp, (VL.1)
where

L4, =Ey =By = 5i(Ty0yy + Tydyy) —ivyy

Li,!tl;i.l =iVJ4l,! ’
and

Lin,;45V i, 41 - (VL. 2)

This model has been widely used in atomic and molec-
ular physics. In particular it has been used to describe
the time evolution within the discrete level region in
multiphoton excitation of molecules, as well as for multi-
photon ionization of atoms. As is well known, it yields
the regular master equation in the limit of fast dephas-
ing (when v;} are the shortest timescales).

Equations (I.1)~(II. 4) [with Eqs. (II.1) and (II.3) in
their discrete versions] which define the passage time
distribution and moments still hold, where of course

bn=Pun - (VI.3)

In Figs. 10 and 11 we present the results of calculations
made on a five level system where the moments are cal-
culated using Eq. (II.4). The parameters chosen are
Viin=1cm™ for all i, E, ,,,=1 cm™ for all 4, [53=0.126
cm™, and ¥;;=(1 -6,,)y, independent of ; and j. De-
phasing is expected to initially assist the process as the
corresponding broadening of the levels compensates for
the off resonance energy gap. For y larger than the de-
tuning the evolution is essentially master-equationlike
with rates becoming inversely proportional to y for larg-
er y and the process is inhibited. Correspondingly, ¢
and %! pass through a minimum as functions of y as is
seen in the figures,

Turning now to a comparison of the exact and the PTM
solutions we see that the three -moment approximation
for 6 and k agrees well with the exact solutions; however,
for y smaller than 0.5 cm™ no physical solution to Egs.
(I1.9) and (Ii. 10) was obtained. The two-moment solu-
tion is obtained for all ¥ and provides a reasonable ap-

J. Chem, Phys,, Vol. 76, No. 11, 1 June 1982

Downloaded 15 Feb 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5332

proximation to the exact results, The log-Gauss distri-
bution function [with the parameters y and o in Eq. (I.8)
determined from the two lowest PTM’s] is seen to work
poorly and deviates by over a factor of 2 from the exact
result

VII. CONCLUSIONS

In this work we have investigated several subjects re-
lated to the solution of master (and Liouville) equations
for unimolecular reactions.

{a) The validity of replacing a continuous master equa-
tion (corresponding to thermal activation of large mole -
cules where the energy is essentially a continuous var-
iable) by a discrete master equation where energy is

taken to change in discrete steps €, has been investigated,

Our result indicate that procedure is valid for the cal-
culation of incubation times. However to reproduce the
complete time evolution € must be much smaller than
kT* where T* is the effective temperature [Eq. (III.(24)].
In a set of test computations for a particular molectlar
model, we have found that the discrete model reproduces
well the exact results for ¢/2T* %0, 28,

(b) Several approximation schemes for the time de-
pendent product yield function Y(¢) were investigated.
These schemes are based on postulated forms for Y(z)
which contain a small number of parameters. These
parameters are obtained from the relatively easy to cal-
culate lower moments of the passage time distribution,
The two parameters log-Gauss distribution seems to
work well for collisionless multiphoton dissociation but
fails at higher collision rates. The three parameter
rate model, Eqs, (II.8)-(II, 10), works well consistently
under all conditions while the simpler two parameter
model, Eqs. (II.5), and (IL.6) provides an easy route for
rapid estimates, Even this simpler scheme is superior
to estimates based on the smallest eigenvalue (and the
corresponding eigenvector) of the master equation.

(c) The PTM methods provide also reasonable -to-good
approximations to solutions of dissociation models based
on the quantum-mechanical Liouville equation. Obvious-
ly there is a limit to the validity of simple models like
(I1.6) and (II. 8) which can never reproduce quantum-
mechanical oscillations, but under conditions where such
oscillations are absent, good agreement is obtained in
most cases.

In addition, we have found analytical expressions for
the first and second passage time moments for some
simple master equation models, both discrete and con-
tinuous. These results has been used to obtain analyt-
ical results for the incubation time and the reaction
rates for these simple models. We have previously
used?® such simple analytical results to investigate the
pressure and intensity dependence of the incubation time
and the rate of multiphoton dissociation of tetramethyl-
dioxethane,

In our view, the most important conclusion of the
present work is that a small number {2-3) of parameters
(which are of course functions of pressure, temperature,
light intensity, etc,) are sufficient for describing the full

B. Carmeli and A. Nitzan: Kinetics of unimolecular dissociation

time evolution of the product yield function in unimolec -
ular reactions. With the current quality of available ex-
perimental results, two parameters are enough in the
large majority of cases. These two parameters can be
calculated using the PTM method.

This conclusion is reminiscent of the general success
of the information theory approach to chemical kinetics.
This success is again associated with the fact that for
most relevant observables, a few moments of the dis-
tribution function usually contain sufficient relevant in-
formation on the process studied. We have chosen not
to work in the framework of information theory because
the constraints imposed by given passage time moments
are not easy to implement within this framework.

After completion of this work we received articles by
Baldwin and Barker®® in which they use passage time
moments to fit the parameters of the log-Gauss distribu-
tion in a way similar to what we describe in Sec, II,
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