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We study the moditication ot optical properties of two metal spheres brought about by their
electromagnetic interactions. We compute the excitation spectrum of the two sphere system
and study the shape and the magnitude of the local fields. The relevance of this calculation to
surface enhanced spectroscopy and to the study of the Brownian motion in colloidal solutions
is discussed.

1. Introduction

Recently there has been experimental [1-6] and theoretical [7—12] interest in
the use of electromagnetic resonances to influence the spectroscopy of molecules
placed on or near “‘rough’” surfaces. The excitation of a localized resonance, by
photon absorption, packs the photon energy in a small spatial region, thus increas-
ing the local electromagnetic field. A molecule positioned in such a region is po-
larized by an electric field £ which is enhanced with respect to the incident laser
field. The enhancement of the quantity £+ E, which is of importance in most spec-
troscopic measurements, can be as much as ten thousand. Generally, this results in a
dramatic increase of the desired spectroscopic signal. Recent works have suggested
that such enhanced local fields may even be useful in influencing dynamic pro-
cesses, such as photon induced desorption [13] or photochemical decomposition
[14].

Besides enhancing the local field an electromagnetic resonance may also affect
spectroscopy by coupling to the polarized molecules. This causes energy exchange
between the excited molecule and the resonance, which modifies the fluorescence
life-time and intensity [15], the molecular absorption line-shape [15] and the reso-
nant Raman intensity {16].
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Among the systems that permit the use of electromagnetic resonances for the
modification of the spectroscopy of adsorbed molecules, colloidal solutions have
some distinct advantages. They are stable and easy to prepare. The size distribution
is fairly uniform and the particle shapes tend to be close to spherical. Varying the
method of preparation one can change the particle sizes and their distrtbution in a
reproducible manner. Flowing the sample mimimizes both the surface damage by
the laser and the effect of the photochemical decomposition of the molecules. They
are appealing to the theorist since they are easier to model than all other systems
except perhaps the holographic gratings. Most of the clectrodynamic calculations
can be carried out exactly.

The interest in such systems is further stimulated by the fact that the clectro-
magnetic (i.e. optical) properties of very small metal particles is a traditional subject
with a number of unresolved questions. It is not yet clear to what extent their
dielectric constant is size dependent [17]; the role of spatial dispersion is not un-
derstood; there are some unexplained phenomena, such as the observed [18]
enhancement of the photo-electric vield and its pronounced size dependence. The
use of measurements of spectroscopic properties of molecules located near such
particles, could provide additional ways of testing the quality of various assump-
tions concerning the optical response of the particles.

The experimental studies [6] of enhanced Raman scattering for molecules
absorbed on Ag and Au colloids have produced results that are qualitatively con-
gruent with the idea that the enhanced Raman signal is caused by the excitation of
the electromagnetic resonance of the sphere. For example, the dependence of the
Raman signal intensity on the frequency of the incident laser follows the absorp-
tion curve of the colloid particle. No Raman signal is observed in a frequency range
in which the turbidity is high but it is caused by scattering off the forward direc-
tion, rather than absorption by the resonance.

However a detailed comparison between theory [8b] and experiment [6b] for
Ag colloids shows enough discrepancies to cause some concern. If the computed
absorption curve for isolated colloidal spheres is adjusted to have the same maxi-
mum as the observed one {by adjusting the particle radius} one finds that the shapes
of the computed and measured absorption curves are different. The computed
absorption curve is a narrow Lorentzian while the observed one 1s much broader
and has an even broader shoulder extending in the low frequency region. Further-
more, the calculated excitation spectrum in the range of wavelength from 350.7 to
647.1 nm has a peak, while the observed one grows rapidly in the low wavelength
region and levels off towards the higher values.

The origin of these discrepancies is not clear. They may be caused by experi-
mental problems, such as colloid aggregation, particle polydispersity, or non-
sphericity. Furthermore, it is not certain that the dielectric constant of the colloid
particles is the same as that of the bulk metal; size effects as well as structural
and/or chemical differences between the colloid and the bulk metal, may cause
some differences.
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In this paper we want to point out that some interesting effects are caused by
the interaction between resonances located on two spheres. It is well known that
the local fields produced by resonance excitation in one sphere extend quite far
(~100 A) into the solution. The interaction between two such spheres takes place
through the electromagnetic field whose energy at a pointr is proportional to
E(r): E(r). Since the total field at r is E(r) = E{(r) + E,(r), where Er) is the field
caused at r by the resonant excitation of the sphere /, the field Hamiltonian will
contain a term of the form E,(r)- E,(r), which represents the interaction Hamil-
tonian between the two resonances. Since both E,(r) and E,(r) are sizable at dis-
tances of roughly 100 A from the edge of the corresponding spheres, the interac-
tion is very long ranged. Therefore resonances on spheres separated by as much as
150 A interact with each other.

Since one can think of the two resonances as two degenerate harmonic oscil-
lators (in the Rayleigh limit or when the two spheres are of equal size) the long
range coupling may cause substantial shifts of the resonant frequencies. The degen-
erate “modes™ are replaced by two new ones (which are the experimentaily observ-
able ones) having two different frequencies; one is much lower than the frequencies
of the isolated spheres and the other is close to it. Therefore, the excitation spec-
trum should have a double hump and the peak positions vary with the distance
between the spheres. This splitting of the degenerate resonances should appear even
when the spheres are separated at substantial distances.

This phenomenon has interesting implications for the spectroscopy of molecules
iocated in colloidal solutions, if the colloid concentration is sufficiently large to
allow the existence of a large number of pairs whose separation is smaller than the
distance required for a sizable interaction between resonances. In such a case the
excitation spectrum (of the resonances — hence of the Raman line) is modified and
will acquire a low frequency component, which is absent in the infinite dilution
limit (when the spheres do not interact).

Furthermore, we expect (and find) that the fields in the region between the
spheres is larger than the sum of the fields caused by two non-interacting spheres
located at the same interparticle separation. In other words, there is a cooperative
effect caused by the mutual polarization of the interacting spheres. Thus the inter-
action between the spheres will have two effects: (a) It will permit a sizable Raman
signal at frequencies lower than the ones required for the excitation of the isolated
spheres; (b) At the frequency at which the isolated spheres can be excited one ob-
tains larger local fields (hence spectroscopic signals) acting on the molecules located
between spheres.

The interaction between resonances may also be useful in the study of the
Brownian motion of an ensemble of colloid particles. As the particles wander
around, they will absorb at frequencies below those of the resonances of the iso-
lated spheres whenever they come within a distance smaller than the interaction
distance. In principle, a study of the absorption and its fluctuations (in the smallest
possible illuminated volume) at many such low frequencies should allow one to ob-
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tain some information about the average pair distribution function as well as the
dynamics of the interparticle distance fluctuations, caused by the Brownian mo-
tion.

Finally, we emphasize that the problem of the interaction between localized
electromagnetic resonances is of basic importance for all spectroscopic measure-
ments on surface molecules, which use the enhancement caused by localized surface
resonances. The theoretical models are usually developed for isolated resonances,
sustained by non-interacting bodies of regular shape. The experiments are done in
the opposite limit, using materials in which the resonant centers are fairly crowded
and some {or a lot) of interaction between the resonances located on these centers
is expected. Some very crude argument can be made to suggest that the effect of
these interactions may be dramatic. An excited resonance turns on such a high local
field because the energy of the absorbed photon is packed into a small spatial
region. If many such resonance sustaining centers are brought together, the interac-
tion between resonances spreads the photon energy among all these centers; there-
fore energy per unit volume (hence the local field) tends to be diminished. Con-
sider, for example, a small isolated cube. Without doing any calculations it is clear
that the isolated cube must have a resonance with a fairly large local field, which
a photon can excite. However, if we take a large number of such cubes and pack
them closely, we can construct a flat metal surface which (if thick enough) has only
two resonances: the bulk and the surface plasmon. None of these can be directly
excited by photons and therefore are not useful (unless an ATR configuration [5]
is employed) in enhancing the signals in surface spectroscopy. This “close packing”
example 1s an extreme and rather idealized case, which illustrates the fact that the
interaction between resonances and the delocalization thus induced may have
dramatic spectroscopic effects. We view the present calculation as a starting step
towards a study of this delocalization problem,

2. The mode)

We consider two spheres of equal radius, as shown in fig. 1. For simplicity we
confine oursetves to the Rayleigh limit, in which the size of the object is small com-
pared to the radiation wavelength. This allows us to neglect retardation and there-
fore solve the Laplace equation, rather than Maxwell’s equations. The solution can
be obtained numerically with relative ease, since the equation is separable if
bispherical coordinates [19] are used.

We chose the z-axis along the line passing through the centers of the spheres. The
xy plane contains the mid-point between the spheres. The bispherical coordinate
system (u, n, @) is chosen [19] so that the xy plane is located at 4 = 0 and the two
spheres at u = tu,. The parameter u, and the length scale ¢, (denoted @ in Morse
and Feshbach [19]) are determined by R and D (see fig. 1).
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Fig. 1. Geometry of the 2-sphere system. Shown here ar¢ the relative dispositions of the two
spheres, the orientation of the external field E, and the observation point at which the field
enhancement is calculated.

We seek a solution of the Laplace equation of the form

By =0 +F 21 27 {A™ exp[(n+3)u] +BT exp[—(n+§)ul}Y(cos n, 8) .

n=lm| mE=—w

— o < <ip , (1a)

¢, =F 2, C exp[—(n+i)ul Y, (cosn, @), L2 Ho, (1b)

nzlm| ms—=
$, =F 2 2 D exp((n+3)u] Yy(cosn, @), p<—do. (1c)
nz\mi m=-o=

The spherical harmonics Y7'(cos 1, ¢) are defined as in Jackson’s book [20].
The factor F is equal to (cosh u — cos n)'/2 and g, &, and &, are the potentials in
the vacuum and the spheres 1 and 2, respectively. The external potential is

PeXt = _F(z cos By + x sin 8y cos g +y sinbg sin ¢o) exp(—iwt) . (2)

This corresponds to an electric vector of magnitude Fy exp(—iwt) directed along
the polar angle 84 and the azimuthal angle ¢, These parameters are specified when
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the frequency, the intensity and the direction of propagation of the laser beam are

given.
The coefficients A, Bt Cit and D} are determined by requesting that &, ®,

and @, satisfy the boundary conditions:

d’o';;:.uu = ¢]2|u:g0 N (33)
B =y = Pilu=ag » (3b)
3d
B R (4a)
H M=Hp # H=M0
) ad
o — = e(w) — . (4b)
ou au
L=~y u=—pp

Here the dielectric constant of the metal is denoted e(w) and that of the medium
(taken here to be vacuum) is €.

Using the eqgs. (1) through {4} we obtain — after some tedious algebra — an
infinite linear system of equations for the coefficients A, By, Cpt and D). This is
given in the appendix. This system is truncated (by taking a finite maximum value
Nmax L0 1) and solved on the computer. Special care must be taken to make sure
that convergence is achieved (i.e. that 1y, ,, is not too small).

Once these coefficients are obtained we compute the components of the electric
field from

E;=(1/h) 0®of0i, i=u,m,9; (5)

‘here the quantities h; (i.e., by, hy, and k) are the scale factors for the bispherical
coordinates. It would be extremely cumbersome — and perhaps not worth the
effort — to plot all these field components. For isotropic molecules the quantity of
interest in spectroscopy is the scalar

I=EE +EEN+EES, (6)
which is proportional to the “local intensity” incident on a molecule located near
the spheres. The ratio

T=1/(EoE ) (7)

is a local enhancement factor which will appear, for example, in a computation of
the enhancement of the Raman signal, for isotropic molecules (if the “image field”
effects, which change the polarizability, not the local intensity [15,16], are
neglected).

Before presenting numerical results it is instructive to specify how various physi-
cal quantities enter into the problem. We are interested in the fields in vacuum,
therefore we want to know A7 and By
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There are symmetry elements in the problem that can be exploited. Since the
two sphere system has a rotation axis its response to external fields can be analysed
by using eigenfunctions of the projection L, of the angular momentum operator on
that axis. The external field can also be expressed in terms of linear combination
of angular momentum eigenfunctions by using the equations

\z] = V2cF 2 [4n(2n+ D} exp[—(n + Pt Ye, (8)
n=0

and

N _ (N s (Al D) TALRRE 9

(y)_( '1 )ﬁd‘ 2 ( 2n+ 1) ) exp[‘(””)'“”(y; + Y,;l)' ®

If the external field is directed along the ,.axis then ®*! is proportional 10 z, and
it is an eigenvalue of L, with m = 0. Due to symmetry the total field must also be
an eigenvalue of 1, with m =0, therefore all BT and Ay with m # 0 must vanish.
If the field is perpendicular to the z-direction the potential $&*t contains a term
proportional to x and one proportional to y. Since these are linear combinations of
eigenvectors of L, with m = +1 and m = —1, the total potential must have the same
properties; hence all the coefficients A7 and B} are zero, except for those with
m = +1. For the intermediate angles of incidence only Ajy, By withm = 0, *1 sur-
vive,

In order to obtain the coefficients A7, B™ we must solve the linear systems
shown in the appendix. The matrix that must be inverted is independent on the
direction of incidence of the field or on the point where the field is computed. It
depends on {requency through the dielectric constant of the metal, which always
enters through the combination x(w) = (€0 — e(w)] [€o + ()] It also depends
on the geometry through the parameter A = Ro/(2R, + D) (see fig. 1).

Resonances appear at frequencies at which any of the elements of the inverse
matrix discussed above become very large. Since the matrix depends on x and A —
but not on the properties of the exciting field (e g., its direction or magnitude) of
the position of the point where the total field is measured — the resonance fre-
quency depends on the geometrical parameter A and the nature of the metal

(through x{w)) only.

3. Numerical results

The only serious numerical problem is related to the convergence of the calcula-
ton a8 M., 1S increased. We find that as X gets closer to 0.5 (i.e. the spheres get
closer) the convergence worsens. In some cases we needed an nyax as large as 60.
We emphasize that one.cannot conclude that the basis set 18 large enough from the
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fact that the sequences {4;} maxand {B'} max are rapidly convergent. The value
of the coetficients depend strongly on ny,,, if the latter is not large enough.

To ensure that the basis set is sufficiently large we have taken the i'nllowmg pre-
cautions. (1) We increase the basis set until the sequences (47, . 2 and
{BT, .. LBy ) are unchanged as npay is increased. (2) We test to make sure that
the computed quantlty (e.g. I) does not change with n,,. (3) We compute, with
our program, the coefficients for the case of perfect conductors (e(w) = o, which
gives x{w) = --1) and compare the numerical results to the exact values, that can be
obtained — for this limiting case — analytically. We request that n,,,, be such that
the two sets of coefficients coincide. (4) By taking e(w) = €, for one of the spheres,
we make that sphere disappear. Then we request that the numerical results for that
limiting case coincide — for the ny,, used — to the known one sphere results. (5)
Finally, we derive a sum rule by requiring that the total induced surtace charge on
either sphere be zero (the volume polarization charge is zero). The surface charge
density 1s

o, =P . n, (10}
where # is the unit vector normal to the surface, and
e(w) ~ 1 e(w) — 1
= -t = — V),
47 47 (1)
We get
g;(w)—-11 dd
o, = 2(w) 1 0%, (12)
4n n, du =t

(here €,(w) is the dielectric constant of the metal in sphere 2). Requiring that the
total induced charge on sphere 2 be zero leads to the condition

25 A%0n+ )2 =0, (13)
n=0

Similarly, the neutrality of sphere 1 leads to the condition

2 B(2n+ 1)1 =0 (14)
n=0

No conditions can be obtained for 4,' and B;' since symmetry requirements
cancel exactly the terms, in the total charge expression, which contain these coeffi-
cients. To test convergence we require that npy,,, be such that the egs. (13) and (14)
are satisfied with very high accuracy.

In fig. 2 we present numerical results for the quantity 7 defined by eq.(7), as a
function of the frequency of the incident field, for various “‘scale factors” A. The
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Fig. 2. Resonances of the 2-sphere system for different scale factors A. For each A, the intensity
enhancement at the observation point, /, has been shown as a function of external frequency
and two resonances can be clearty discerned.

external field in all these calculations is taken to have the direction specified by the
azimuthal angle ¢ = 0 (in the xz plane) and the polar angle 6, = 45° (see fig. 1). We
assume that the dielectric constant of the spheres is that of the bulk silver [21].
We compute [ at the point specified in fig. 1, for d = 0. The observation point is
contained in the xz plane, (as is the incident field), on the surface of the sphere 2 at
a polar angle § = 45°.

The position of resonance frequency does not depend — for reasons explained in
the previous section -- on the point of observation or the angle of incidence. Curve
1 (A = 0) shows / when the spheres are at infinite separation. Hence the curve repre-
sents 1 for the case of an isolated sphere. The resonance frequency satisfies the con-
dition e{w) + 2 = 0, which for silver yields we; = 3.48 V.

As the spheres are brought closer (A is increased) the resonance starts splitting
into two peaks. The high frequency peak remains practically at w ~ 3.48 eV while
the low frequency peak shifts downwards with A. Furthermore the peak intensity
for the low frequency resonance decreases with A.

Qualitatively one can understand this splitting from the discussion presented in
the Introduction. The two degenerate resonances of the isolated spheres couple to
each other and the degeneracy is removed, resulting in splitting. One can also think
that the two sphere system is - very crudely — similar to a prolate spheroid, which
is known to have two resonances [22].

The curves in fig. 2 seem to imply that the coupling between spheres lowers the
value of 7 on resonance (for the high frequency peak) as compared to the single
sphere case, while raising 1t above the single sphere value, when the outside fre-
quency corresponds to the lower frequency resonance. This situation is however
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Fig. 3. (a) Plot of [ (on a log scale) versus polar angle of observation point, 8, for the 2-sphere
system A = 04545 and the isolated sphere A = 0. The external frequency « = 348 eV is at
resonance for the isolated sphere and also very closc to the upper resonance of the 2-sphere
system. Arrow in figure is along the direction of the external field, in this case 45°. (b) Same as
(a) but for w = 3.21 eV, the lower resonance frequency of the 2-sphere svstem with A = 0.4545.

peculiar to the observation point chosen in this graph, which happens to be in a
position where the resonance value of I is maximum for a single sphere. In what
follows we inquire into the dependence of I on the observation point.

In figs. 3a and 3b we look at the change of log;of as a function of the polar
angle. We keep the observation point in the plane xz at d = 0 and change 8 to move
it around the sphere 2. In fig. 3a we compare the curve log, of versus 6 for w =3.48
eV (which corresponds to the high frequency resonance and also to the resonance
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Fig. 4. (a) The upper curve, which 13 for the 2-sphere system A = 0.45435, 15 a plot of {(ona
log scale) versus distance d/J) as one proceeds from the surface of one sphere to the other along
their common axis. The lower curve is for the isolated sphere A = 0 and the abscissa for this case
should be read 5d,R, rather than o/ as shown. The external frequency w = 348 eV is the
resonance of the isolated sphere. (b) Same as (a) but for w = 3.21 eV, the lower resonance
frequency of the 2-sphere system with x = 0.4545.

of the single sphere) for the single sphere curve (A = 0} to that for two interacting
spheres (A = 0.45). For almost every angle the free sphere field is larger, except for
angles close to 1807 (in the region between spheres) where the interacting sphere
system give a value of I of roughly an order of magnitude larger than that for a
single sphere.

In fig. 3b we make the same plot for the frequency w = 3.21 eV, which corre-
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sponds to the low frequency resonance for A =0.45. The isolated sphere does not
have a resonance at this frequency. For this case the values of /' tor the interacting
spheres is larger than that for a single sphere. At angles close to 180° (in the region
between the spheres) / becomes very large.

In conclusion, the field in the region between sphetes is substantially enhanced
by the interaction between them. At a frequency corresponding to the single sphere
resonance, the interaction between the spheres tends to depress the tield in all
regions except those located between them. At frequencies corresponding to the
low energy resonance (absent in the single sphere case) the field is enhanced above
the single sphere values, for practically all angles.

In figs. 4a and 4b we plot log,of as a function of the distance d between the
observation point and the surface of the sphere 2 (see fig. 1. along the line joining
the centers (6 = 180°). For both frequencies (w = 3.48 eV and w = 3.21 eV) the
intensity T for the interacting spheres (A = 0.45} 1s substantially higher than that of
the single sphere case. The enhancement is larger for frequencies corresponding to
the low frequency resenance.

Of course the results will also vary with the angle of incidence. and intuitively
one expects a very large enhancement in the region between spheres it 8, =0.1It
probably goes down if 84 = 90°.

4. Summary

The present calculations show the following. (1) The ¢lectromagnetic interaction
hetween two silver spheres is long ranged. It has noticeable optical effects on the
local field at a value of A = 0.4, which corresponds to surface distance D = Ro/2.
(2) The dependence of optical properties of the pair on the separation between the
spheres is strong. A new resonance appears, at smaller frequencies than in the single
sphere case; the splitting grows as the interparticle distance is diminished. In prin-
ciple, this can be used to study the interparticle separation in colloidal solutions of
low concentration (so that, in any ‘“snap-shot™ of the system most spheres are
either isolated (0 < A < 0.3) or form pairs (A 2 0.3) and the number of “triplets”
is very low. (3) The local field in the space between the two spheres is substantially
enhanced by their electromagnetic interaction. This field is very lasge at frequencies
corresponding to the low energy resonance of the two sphere system even though
such frequencies are well below the single sphere resonance. (4) The local intensity
in regions outside the space between spheres 1s lowered (as compared to the single
sphere case) by the electromagnetic interaction, if the frequency is close to the
single sphere resonance. It is increased (as compared to the single sphere case) if the
frequency is at the low energy resonance.

We emphasize that Ag is a rather special material [23] for which the electromag-
netic resonances have very small damping. Au, Cu, Hg are similar, but have jarger
damping. As a result their ability to generate large resonant local fields is smaller.
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Appendix

We give here the linear equations determining the expansion coefficients Al
BT, C7 and D} occurring in eqs, (1) of the text. The desired equations are ob-
tained directly from the electrostatic boundary conditions (3) and (4). Before quot-
ing the results we mention a number of simplifying features that expedite the solu-
tion of the problem: (a) as explained in the text, the constancy of the external electric
field, eq. (2), leads to only the m =90 and m = £1 modes appearing in the solution;
(b) the symmetry of the system with respect to its midplane (u = 0) leads to the
following relations among the expansion coefficients:

Al = ~-B? | C? = -DY | (A.1)
*1 _ pt 1 _ Nyl
A =B.', Cc.l=D, {A2)
(c) the symmetry of the system about the common axis of the two spheres leads to
the following connection between the m = +1 and m = —1 modes:
Al (ALY
= exp(2itg)y 1 - A.3

As a consequence of (b) we need consider only the boundary conditions (3a) and
(4a) and. further, as a result of (a) and (c), we need only apply them to the m = 0
and m = +1 modes. On doing this we obtain the following sets of equations for the
expansion coefficients in the different modes.

m = (0 mode
UAS + V334G |t Wwoal,, =Sn, (A .4a)
where

U = x sinh o {1 - expl (21 + D po ]}

+(2n+ 1) cosh pg {1 +x exp[-(2n+ Dgslt, (A.4b)
by
o = a2 1) expt wo)(t # xexp(~(2n = Do} (A40)
2nt 1



2072 P K Aravind et al. [ Interaction between electromagnetic resonances

2n+ 3\
W =—(nt l)(m) exp(uo) {1 + xexp[—(2n+ 3 o]t . (A.4d)

. g (V2 _ o
5% =2F, cosByx exp[—(2n + 1) ™ ( — {cosh fty - - (2n+ 1) sinh g} .

2n+ 1,
(A 4e)
The notation Fp = coFov/2 and x = [0 -- elw) €6 + ()] ! has been used. Cis
given in terms of 4} by

C% = {exp[(2n + 1) o] ~ 1} A2 - Fo cos 0 [4n(Zn + Ht?. (A 4f)

m =+] mode

Utal + vial (t WAL =S, (A.52)
where
U} =y sinh g {1 +exp[-(2n+ 1) po ]}
+(2n+ 1) cosh o {1 — x exp[-(2n + Duelt, (A.5b)
(n+ Dn—D2n— DY r |
pl=_ ((n Din — 1)(2n )) exp(-—-po) {1 -xexpl (2n - D uol}, (A5¢)
n 2n+ 1
n(n +2)(2n + 3\
w! = _ (_ ) exp(eo) {1 —xexp[--(2n+ 3 po |}, (A.5d)
7 2n+l
_ | | dmn(n + DY
St = 2F, sinfl, sinh o x exp(—igg) exp[—(2n + 1) o | (W . (ASe)

C} is given in terms of Ay, by

dan(n + 17 (A.51)
Ch = {expl(@n+ 1) o] + 1} 4, +Fo sinfo exP(_i%)( ",:f ! ))

Eqgs. (A.4) and (A.5) are linear difference equations of 2nd order for the expansion
coefficients Ay and A}, By choosing a suitably large cutoff in n (as discussed in the
text), the equations can be reduced to finite matrix equations which are readily
solved on a computer. Once the A’s are known the other coefficients, B, C and D
may be found from (A.1), (A.2), (A.3), (A4f) and (A.5f}. This completes the solu-
tion of the boundary value problem.
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