Finite time optimizations of a Newton’s law Carnot cycle

Peter Salamon?
Tel-Aviv University, Department of Chemistry, Tel-Aviv, Israel

Abrahan Nitzan

Bell Telephone Laboratories, Murray Hill, New Jersey 07974
and Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel®’
{Received 7 April 1980; accepted 15 October 1980)

We treat the problem of optimal finite time operations of a heat engine using an arbitrary working fluid and
working between two constant temperature heat reservoirs. We work in a simplified framework (*“Newton’s
law thermodynamics”) which considers only losses associated with the heat exchange processes. We find
the operations which maximize power, efficiency, effectiveness, and profit and those which minimize the loss
of available work and the production of entropy. We find that all these optimal operations take place with the
working fluid exchanging heat at a constant rate with each reservoir (implying a constant rate of entropy
production) and undergoing adiabatic processes instantaneously. We define “Carnot space” to be the set of all
operations of the engine which consist of constant rate heat exchanges and instantaneous adiabats. All
optimal operations are points in this space which is shown (within the model) to be three dimensional. The
different optimal operations with different connotations of “optimal” as described above are compared within
this framework. To further study the economic implication of this model we also view the operation of the
engine as an economic production process with work as its output. We obtain a simple analytical form of the
production function and see repeatedly that maximum profit operation is a compromise between operation
which maximizes the power and operation which minimizes the loss of available work. The path of maximum

profit is obtained as a function of the costs of power and of availability.

1. INTRODUCTION

The optimal operation of heat engines in finite time has
been a subject of several recent discussions.!~® A com-
plete treatment has to take into account all loss mecha-
nisms such as mechanical friction, heat leaks, heat
resistance at the boundaries, and internal dissipative
processes. So far, a much more limited model which
takes into account only heat resistance losses has been
studied. Recently, we have investigated the implica-
tion of an even simpler model, ! which we refer to as
Newton’s law thermodynamics. In this model, thermo-
dynamic systems which exchange heat and work are al-
ways in internal equilibrium, though they may or may
not be in equilibrium with each other. Further, work
exchange is taken to proceed reversibly and at arbitrary
rates. The description of processes in Newton’s law
thermodynamics differs from a reversible description
only with respect to heat exchanges, which takes place
according to Newton's law of cooling,®i.e., at a rate
which is proportional to the difference in the tempera-
tures of the systems exchanging the heat, This adds time
and irreversibility to the thermodynamic description,
while still maintaining the possibility of obtaining some
general results concerning the optimal operation. Formal
ly, the model is defined by the following axioms:

(1) Heat flows between the working fluid of temperature
T and the reservoir of temperature T °* through a wall
of heat conductance k at a rate

dQ/dt =k(T - T**) ,
where d@/dt is the heat flux across the wall.

1.1)

(2) The working fluid is in internal equilibrium at all
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times. Cycles for which this assumption holds have
been called endoreversible, i.e., internally reversible.
Physically, this assumes that the internal relaxation
times of the working fluid are short compared to the
time scale of the cycle.

(3) No friction, i.e., the transfer of work to and from
the working fluid, proceeds reversibly.

(4) Mechanical coupling to the working fluid is free
from inertial effects. Thus, work can enter or leave
the working fluid at arbitrary rates.

Note that axioms (3) and (4) imply that reversible
adiabatic processes can proceed in zero time,

A fundamental problem in the theory of the optimal
operation of finite time thermodynamic systems concerns
the choice of objective function, i.e., the function of
merit which should be extremal for the optimal cycle.
One may choose, for example, power, efficiency, or,
with economic factors considered, cost or profit. Ob-
viously, a theory of optimal operation should have the
objective function as one of its fundamental variables.

In this paper we investigate the optimal operation of
the Carnot cycle in Newton’s law thermodynamics for
different choices of the objective functions, A Carnot
engine is defined as an engine which works between two
heat reservoirs of constant temperatures T{* and T3*.
Several authors®® have solved the problem of maximum
power in such engines. More recently, Rubin® has solved
the problem of maximum efficiency, and Salamon, Nitzan,
Andresen, and Berry! have solved the problem of mini-
mum loss of availability. In line with these results we
show that in Newton’s law thermodynamics all optimal
Carnot cycles are of the Curzon-Ahlborn® type, i.e.,
heat exchange branches take place with the working
fluid at a constant temperature. Further, we show that
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adiabatic branches take place instantaneously. This is
true whether one is optimizing power, efficiency, ef-
fectiveness, loss of availability, entropy production,
cost, or profit. Further, it is true for arbitrary working
fluids, e.g., a gas in a cylinder or a paramagnetic salt
in a magnetic field. Having shown these two facts, we
will deduce that all optimal operations of a Carnot cycle
in Newton’s law thermodynamics lie in a three dimen-
sional space which we will call Carnot space, Finally,
we will plot the positions of the various optimal cycles
in Carnot space. This will enable us to elucidate the
relationships among the various economic and thermo-
dynamic criteria of merit.

Il. REDUCTION TO ONE BRANCH OPTIMIZATIONS

Consider a heat engine working between two heat re-
servoirs at constant temperatures T3* and T3*. Con-
tact with the heat reservoirs occurs via heat conductance
k. We assume that our heat engine operates in finite
time. Therefore, the temperature of the working fluid
must be different from the temperature of the reservoir.
We will optimize the temperature of the working fluid
as a function of time during the heat exchange and will
show that optimal operation of this heat engine takes
place only if the working fluid remains at a constant
temperature during the heat exchange. We will see that
this holds for each of the objective functions which de-
fine the various connotations of optimal operation,

Consider first a single heat exchange branch of an
optimal cycle, (By a single branch we mean the path
traced out during the time evolution of the working fluid
while it remains in uninterrupted contact with a heat
reservoir.) Since variations in this branch produce
feasible alternative operations of the cycle, the optimal
cycle must be optimal with respect to such variations,
Accordingly, we seek the Euler—Lagrange equations
which express this fact in mathematical terms.

Thus, we seek the time behavior along the single
branch that extremizes our objective function with the
rest of the cycle remaining completely unaltered. We
assume that the optimal cycle operates with a certain
cycle time'® r=1, +7,+ 7, +7,, where 7, and 7, are the
times spent on the heat exchange branches 1 and 2, re-
spectively, and T3 and 74 are the times spent on the
adiabatic branches 3 and 4, respectively. Variations
of one heat exchange branch do not alter any of the 7,
=1, ..., 4, the behavior of the working fluid on the
other branches, or the initial and final states of the
working fluid on the varied branch.

In Newton’s law thermodynamics we are free to make
instantaneous adiabatic jumps (see the note following
axioms) anywhere along any heat exchange branch. Thus,
the initial and final states of the branch under considera-
tion are constrained only to lie on two given adiabats;
their exact locations on these adiabats are not important e
This in turn implies that the branch optimization should
be done with a constrained change ¢ in the entropy of the
working fluid during the branch.

Below we make liberal use of the principle of mono-
tonic substitution, !! which states that a function(al) u(x)
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is extremal if and only if g(u) is extremal for any mono-
tonic function g. For differentiable g, this is obvious
from the respective extremal conditions

dg

0=6g(u(x) = T dulx) , 2.1)

2.2)

and the fact that ¢ monotonic implies dg/du#0 for any
u. I dg/du>0, maximum g corresponds to maximum u
and minimum g corresponds to minimum u, while if
dg/du<0, maximum g corresponds to minimum % and
minimum g corresponds to maximum u.

0 =oulx) ,

We now express each of our objective functions as
monotonic functions of the heats @, and @, absorbed by
the working fluid on the heat exchange branches 1 and
2, respectively. This will enable us to apply the princi-
ple of monotonic substitution to conclude that for varia-
tions of branch 7, these objective functions are extremal
if and only if @, is extremal. Thus, we will see that for
one branch variations, all our objective functions can be
replaced by the heat exchanged on the branch as far as
the optimization procedure is concerned. This does not
mean that our engine will run the same whether we pro-
gram it to optimize, e.g., efficiency or power. The
different objective functions will require different cycle
times, different time allocations for the two heat exchange
branches, and the branches will run between different
adiabats, i.e., correspond to different entropy changes
o. It does mean that each of the objective functions be-
haves along branches 1 and 2 so as to extremize @, and
Q, provided that the times T, spent along the branches
and the entropy change o of the working fluid are con-
strained to have their optimal values,

In what follows take T$*> T;* and use the sign con-
ventions @,>0, @,<0and W=, +Q,, where W>0 is
the work produced by our heat engine,

A. Case A: Maximum power

The power P delivered by our cycle is given by

P="Y =M =g(@y, @)

- - : @.3)

Note that 8P/8Q,;=(1/7) >0, s0 maximum power occurs
for maximum @, and maximum @,.

B. Case B: Maximum efficiency

For the efficiency we get

=2 -1+%00,, @, (2.4)
1 @

on @

5 X é‘%’ (2.5)

on _ 1

8 @ (2.8)

With our sign conventions @,>0 and @,<0. Thus, both
partial derivatives are positive and maximum efficiency
occurs for maximum @, and maximum Q,.
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C. Case C: Maximum effectiveness
Effectiveness ¢ is defined by

€=W/ Weey » 2.7

where W,,, is the work done by a reversible process
which operates between the same initial and final states
of the reservoirs, i.e., the change in the availability of
the heat reservoirs. W,,, is generally defined'® with re-
spect to an environment, of temperature 7,,, from (to)
which the reversible process transfers heats @,(Te, /
T$") and @,(Ty, /T2*) (i.e., it is the work generated by
two independent reversible heat engines constructed to
work between the environment and each of the heat re-

servoirs):
Loy T
erov:Ql (I—T:x)"'Qz(l‘T;x) ’ (2.8)
=@ Mm+@7h 2.9)

where 7, is the (constant) efficiency of a reversible en-
gine operating between the environment and reservoir

i. Note that if 73*=T,,, this assumes the more familiar
form

Tex

Wrov=Ql (1 - F%?> 3 (2. 10)
1

=Q1 nrav_ . (2-11)

Further,

w n

€= = , 2.12)

Ql Nrev Nrev (

and so for this case optimizing ¢ is equivalent to opti-
mizing 7. We now show that this holds generally. Lett-
ing X=¢,/Q, we have

QL +Q, 1+X

=Q1771+Q2772 ) n+n.X (2.13)
while
n=@Q+Q)/Q=1+X. (2.14)
Since
ox _ mex
;—i—} = TT{‘;%(‘T]—;:Z—:—%T >0 (2.15)
and
dn/dxX =1>0 , (2.186)

both € and 7 are maximum provided X=@,/@, is maxi-
mum. As we saw in case B above, this occurs for
maximum @, and maximum @,.

D. Case D: Minimum éntropy production

AS,, the total change in the entropy of the universe
during a given process, is the sum of all entropy changes
of the systems participating in the process. As the
change in entropy for the working fluid and the work re-
servoir is zero for a cycle, this sum consists of only
two terms, one for each heat reservoir:

-Q;  -Q
su:-a-_‘—;—i+—772ax->o. (2.17)
Therefore,
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84S, - 1

@ TP

(2.18)
and minimum AS, occurs for maximum @, and maximum

Q:-
E. Case E: Minimum loss of availability

AA,, the total change in the availability of the uni-
verse, is the sum of all the changes in the availabilities
of systems participating in the process. For a cycle,
this also vanishes for the working fluid. The sum thus
consists of three terms: two for the heat reservoirs
and one for the work reservoir:

AA, = (- ,@) + (-1, @)+ W, (2.19)
T Ta @ _
= I + TH " Ton AS, . (2.20)

From the last expression we see that minimizing the
loss of availability - A4, =] AA,| is equivalent to mini-
mizing the total entropy production AS,, 13 which by case
D above requires @, and @, to be maximum.

Before considering the economic objective functions
profit, cost, and output, we review the rudiments of
economic optimizations.

F. Economic optimizations

We view the operation of our engine as a production
process with work as its output. We carry out the short-
run optimization!* explicitly, but the method may be ap-
plied in a similar manner to long-run optimizations, in
which case the engine parameters « and o,,,, (defined
below) may be varied.

Economic optimization of a production process re-
quires three ingredients.!* The first ingredient is the
representation of the technology through the production
function ¥ = ®(X), which expresses the most product ¥
which can be obtained by the technology as a function of
the quantities of inputs X. The other two ingredients
represent the economic environment, They are the cost
Function C(X), which expresses the costs incurred for
given quantities of inputs to production, and the revenue
function R(Y), which expresses the money income from
the sale of a given quantity of output ¥. Below we as-
sume perfect competition, in which case the prices for
all inputs and outputs of our production process are
given constants independent of our production process.
This will happen, for example, if the firm is unable to
alter the prevailing prices by altering the quantities it
produces or consumes. This assumption implies that
the cost and revenue functions are linear functions of X
and Y, respectively. The form of the production function
P will require some work to derive (see Sec. VIII).

Giventhese three ingredients, one usually considers

three types of economic optimizations of a production

* process'®: (1) maximum output for a constrained cost,
(2) minimum cost for a given output, and (3) maxi-
mum profit 7=R-C. The sets of optimal operations in
these three cases coincide, although each optimization
suggests different natural parameterizations of this set.!®
The natural parameters are (1) the prices of the inputs
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and the given budget constraint, (2) the prices of the in-
puts and the given output constraint, and (3) the prices
of the inputs and the price of the output.

For now we consider only the profit maximization,
since this optimization can be performed with our tech-
nique of using one branch variations. In Sec. VIII we
will return briefly to the other economic optimizations.

G. Case F: Maximum profit

The profit 7 is calculated for some convenient account-
ing period. Choosing this accounting period as our unit
of time, the number of cycles performed by the engine
in this time period is 1/7. The work per unit time
produced by out engine is therefore (work per cycle)

. (number of cycles)=W/7. If P, is the price of work,
we have

R=P, -W/7.

We assume that the only input to the production process
is the availability A taken from the reservoirs. Per cycle

(2.21)

A=Wrav=lel+anz > (2.22)
which corresponds to a cost (per unit time)
C=P,:A/T, (2.23)

where P, is the cost of availability. Note that for the
process to be potentially profitable we must have

P,>P, 2.24)

because one unit of availabiity can give rise to at most
one unit of work output. Using Eqs. (2.21)-(2.23) we
obtain

M=P,-W/T-P,-A/7, (2.25)

O=(Py,-P,1) @ /7+Py-P,m)-Q, /7, (2.26)
and

8I1/8Q, = (Py - Py 1,)/7>0 . 2.27)

Therefore, by the argument used in cases A-E above, we
see that maximum profit occurs for maximum @; and maxi-
mum @,. We note in passing that the same conclusion
is obtained for a more general choice for the cost func-
tions

C=P,-A/T+a/T+8, (2.23a)

where the constants a and 8 correspond to additional
costs (e.g., capital investment costs, labor, main-
tenance, and depreciation), both those which are pro-
portional to the rate of operation 1/7 and those which
are fixed.

I1l. ONE BRANCH OPTIMIZATION

Consider heat exchange branch i, i =1 or 2, of our
optimal cycle. By the assumptions of our model it is
possible to instantaneously control the temperature of
the working fluid by means of reversible work exchange
with a work reservoir. We seek the function 7'(), i.e.,
temperature of the working fluid as a function of time,
which corresponds to the optimal branch—the one yield-
ing the largest heat exchange @, for the given entropy

Finite time optimization 3549

change and branch time 7,. By integration in axiom (3),
we find our objective function :

= [ drE-r@la=x [ lrE-rola @
0 0

(x is assumed to be constant independent of time or
temperature). The constraint equation is

T dQ k[T - T@)]
_‘. = —-—————-‘ = =
Io T fo a0 dt =0, =const. 3.2)
This gives the modified Lagrangian
L=klT*-T®)] -Msl[T9%/T@®)-1]}, (3.3)

and the optimal T'() is obtained from the Euler-Lagrange
equation

BL/8T =0=—x +AkT /T () . 3.4)
Thus, we get

T({)=VAT{*=constant=T, . (3.5)
The Legendre condition!! results in

8°L AT

il _..SLT <0 (3.6)

since from constraint equation (3.2),
ex
A= 7 .
(1+0/KT)

Thus, our solution corresponds to a maximum. Note
that the free end point conditions!

oL
8T

L
t30 BT

t=214
are automatically satisfied.

Equation (3.5) implies that the optimal way to induce
an entropy change o; during time 7, in a system in con-
tact with a heat reservoir of constant temperature T $*
is by maintaining a constant temperature T(¢) =T, in the
system. T, is obtained from Eq. (3.2):

T,=TYF <£’-— +1> .

ey (3.7

If the branch is defined by initial and final temperatures
different from T, initial and final (instantaneous and
reversible) adiabatic jumps are needed in order to bring
the systems to the required internal temperature.

The results (3.4) and (3. 7) obtained under the assump-
tion of constant ¥ do not exclude the possibility that an
isothermal branch may be interrupted by more adiabatic
jumps in addition to those required at the beginning and
at the end. Although the Euler equation (3.4) implies
that transitions between adiabats occur on internal iso-
therms, it does not tell us how many different isotherms
we require. We now show that we do best by using only
a single isotherm along a given heat exchange branch,

Suppose that our optimal heat exchange branch i of
time 7; and entropy change o, consists of n different
isotherms at temperatures T,, j=1,..., n (see Fig. 1).
The total heat exchange is

-3 [ -3

n
i=1 L] i=1

r’ k(T - T, dt (3.8)
t
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T
A
T3- ﬁ
o
1
Tz- ~ :
T‘- : Dene—
1 i
Tl- P_‘ ]
1 i
[} 1
i '
1
T, : H
T
| ] | ) ] i
to=0 t, t, ty t,=T t
FIG. 1. Hypothetical T(t) consistent with the Euler equation

{Eq. (3.5)] using five adiabatic jumps and n=4 isotherms at

temperatures Ty, j= 1, **, n.

= Zl k(t, -t NT¢-T)
§=

=k, T -k, AT, , (3.9)
=1

where At =, -, ;. I we can replace this branch with

another 7T'(t) which has a larger @, and runs between the

same adiabats, we improve the operation of the cycle,

Maximizing @; with the constraint

n ex
0{22 KAtj T i
s T,

(3.10)

—KT;

and all ¢, fixed is equivalent to minimizing 3 7., a¢; T,
with 3., At, /T, constrained. This gives the modified
objective function

L(Tl,...,T,,)=Z_; At,(T,+%) . (3.11)
The optimization conditions are

%Lﬁ =0=At,<1—%§) . (3.12)
Thus,

T,=Vx, 3.13)

which implies that all the isotherms are at the same
temperature T;. This concludes our proof that the
optimal process proceeds isothermally with initial and
final adiabats needed to achieve the working tempera-
ture. (This last part of our derivation is called the
staging or switching problem%!*1%. Solutions to optimal

control problems normally have to be pieced together from

solutions of the Euler equation and arcs which lie at the
boundary of the controllability region. For Newton’s

law thermodynamics, such boundary arcs are instantane-
ous adiabatic processes.) The conclusion from the argu-

ments above is Theorem 1: Optimal operation of a finite
time Carnot cycle (see Sec. I) in any of the senses A~F
above requires that the cycle be of the Curzon—Ahlborn

Finite time optimization

type,*8 i.e., that heat exchange branches take place
with the temperature of the working fluid kept constant.

If we add an inequality constraint bounding the rate at
which work exchange can take place, the boundary arcs
become maximum speed work exchange processes.
Rubin* discusses the problem of maximum power with
constraints bounding the rate at which work exchange can
take place, He finds that adiabatic processes never oc-
cur, i,e., it always pays to be in contact with one of the
reservoirs, Thus, Rubin’s optimal cycles include heat
exchange branches which take place with the working
fluid not at constant temperature, in apparent contradic-
tion to our theorem. These branches involve maximum
rate work exchange and appear as the boundary arcs of
Rubin’s more constrained problem. Since our formal -
ism does not constrain the possible rate of work ex-
change, we never encounter such heat exchange branches.

The constant temperature along a heat exchange
branch is given by Eq. (3.7). For the Carnot type en-
gine considered here oy +0,=0. Defining 0=0; we get

Y‘ix
Ti=—73 (3.14)
1+ —
KTy
and
ax
T,= —L& (3.15)
1--2%
KTy
The heats @, and @, are
o ex
Q1=oT1=—{'— , (3.16)
1+ —
KTy
—oT*
@ =-0T,= ——2 3.17)
1--Z
KT,

Finally, we note that with T(f) = T, kept constant on
each branch, the total entropy production rate dS, /d¢ is
ds, d@ de
—_— - 2 TGI ——

dt dt / dt /T

(3.18)

=K(T—T°")< 1 l) =const.

T ~ T

Thus, the total entropy production rate is constant along
each branch. A similar conclusion was reached® for the
more general class of heat engines considered in Ref.

1, where the total entropy production was chosen as the
objective function.

IV. TIME ALLOCATION TO ADIABATS

We now show that our engine operates best in any

of the senses A—F when the adiabatic branches proceed
in zero time. By axiom (4) (Sec. I) we could make these
branches run at any rate we choose, including infinitely
fast, We now consider variations which reallocated some
of the time spent on an adiabatic branch to a heat ex-
change branch, without altering the other two branches.
Since our objective functions A-F depend only on @,

Q,, and 7, such variations again alter the objective func -
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tions only by a change in @,. For concreteness, we con-
sider a variation which reallocates time from the
adiabatic branch 3 to the heat exchange branch 1 (see
Fig. 2). Such variations alter 7, and 75 to 7, + € and

T3 — €, respectively, while keeping 7, ,, 7;, and 7,
constant. Further, we see from the fact that the heat
exchange branch 2 is unaltered that the cycle has the
same o, Therefore, the heat exchange branch 1 must
still run between the same adiabats, although some-
what slower, From Eq. (3.16) we see that

ex
&1. = _K_7:1__2_ >0, (4.1)
87y (Kﬁ )
— +1
c
and so @, is increased by an increase in 7,. The same

argument also applies for any reallocation of cycle time
from an adiabatic branch to the heat exchange branch
2, since from Eq. (3.17)

29, _ __kT"

87, Hﬂ-—l
c

>0, 4.2)

Thus, reallocating time from an adiabatic branch to a
heat exchange branch always improves the operation of
the engine. We have thus proved Theorem 2: Optimal
operation of a finite time Carnot cycle in any of the
senses A~F above vequires that the adiabatic branches
run in zevo time.

It is important to note that if we drop axiom (4) and
impose constraints which do not allow zero time adiabats,
our argument above still assures us that the optimal
cycles have adiabatic branches which proceed at the
maximal rates consistent with the constraints.

V. THE SPACE OF OPTIMAL FINITE TIME CARNOT
CYCLES

Consider the set of optimal operations of a finite time
Carnot cycle with given T1*, T3*, and k. By Theorems
1 and 2, we know that such cycles have the following
properties:

(I) Heat exchange branches take place with the tem-
perature of the working fluid constant.

(I1) Adiabatic branches take place in zero time.

It is therefore convenient to describe the set of optimal
operations as a subset of the set of operations having
properties I and II. We first introduce the following:
Definition: Two operations of a finite time Carnot cycle
are equivalent if all the objective functions A-F are
equal for the two operations.

Recall from Sec. II that all our objective functions
can be given in terms of Q,, @,, and 7. We are now
ready to prove the following lemma: Lemma 2: Up to
equivalence,® the set of all finite time Carnot cycles_
with properties I and Il is a three dimensional space C,
with the global coordinate system (1, T, o). We will
refer to C as the Carnot space.

We can see immediately that this space is three dimen-
sional, since the three numbers @;, @,, and 7 specify
a process up to equivalence. We could show the second

' FIG. 2.

3551

T

o

(T, S) diagram of the path of the working fluid in its
state space. Movement along the horizontal isotherms occurs
at constant rates. Movement along the vertical adiabats oc-
curs instantaneously.

part of the lemma by computing the Jacobian deter-
minant

8(T; Qh Qg)

5.1
8(719 Tz, O) ( )
of the transformation

(ry, T2 O~ (7, @1, Q) . (5.2)

Because this direct approach soon gets bogged down with
technical difficulties, we take an alternate route to show-
ing that (7, 7,, o) define a global system of coordinates.
Our alternate route also shows us which cycles are
equivalent.

First, consider a working fluid with only two degrees
of freedom. We prove that 1y, 7,, 7, T,, 0, and S,
determine the operation of the cycle, where S, is the
smallest value of the entropy of the working fluid dur-
ing the cycle (see Fig. 2). Indeed, from Eq. (3.5) we
have

Tl9 0<t<71:
T = Ty, T<I<T+7T,, 6.3)
To!
S°+K(—‘~ —1>t, 0<t<m,
T,
S(t) =

ox

S°+a—x(1 - %‘-) t-1), m<t<Ti+T,.
2

5.4)

Since the working fluid has only two degrees of freedom,
we have determined the time evolution of the working
fluid around the cycle. This, of course, also determines
Q, and @, [Eqs. (3.16) and (3.17), respectively], and
hence the objective functions A~F. Furthermore, T,
and T, can be determined from Eqgs. (3.14) and (3. 15),
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' S
S S

(3 0
FIG. 3. Two operations are equivalent if and only if the (7, S)

projections of their time trajectories are horizontal translates
of each other,

leaving us with the four parameters 7,, 7,, o, and S,.
From the equations (3.16), (3.17), and

T +T=T, (5.5)

we can see that operations differing only by the value of
Sp are equivalent, Thus, up to equivalence we remain
with the three parameters 7, 7,, and o.

Now consider a working fluid with » degrees of free-
dom. This means that the working fluid can be coupled
to n -1 types of work reservoirs affecting changes in
the extensive variables X, with conjugate intensive vari-
ables Y,, i=1,..., n—1. The first law of thermo-
dynamics has the form

n=1

dE=TdS+2, Y,dX, .
$=1

(5.6)

Examples of such extensive—intensive variable pairs are
provided by X; =V (volume), Y, =-p (pressure), and by
X, =H (magnetic field) and Y, =M (magnetization). For
more than one force, there is an infinite number of
equivalent operations giving the time evolution [T),
S(t)] specified by Eqs. (5.3) and (5.4). Such operations
differ from each other by trading off work input through
force X, for work input through force X;. Since in our
model either work input is reversible, such different
operations are judged equivalent by any of our objective
functions. We deduce that, generally, (7;, T, o) is

a global coordinate system for the Carnot space C.

The above argument started with information which
specified the (T, S) indicator diagram of the cycle, using
Egs. (5.3) and (5.4) and the given values of 7;, 7,, and
o. Equivalent cycles with different S, have indicator dia-
grams which are horizontal translates of each other
(see Fig. 3). Equivalent cycles which differed in the
work input through forces X; and X, have the same pro-
jected indicator diagram [T(), s(t)j described by Egs.
(5.3) and (5.4). We have thus also proved Lemma 3:

P. Salamon and A. Nitzan: Finite time optimization

Two finite time Carnot cycles are equivalent if and only
if theiv projected indicator diagrams [T(t), S(t)] are
horizontal transilates of each other, i.e., if [T(t), S({t)]
=[T"(t), S’ (t) -S,) for some constant S, and for all t.

Next we consider the boundaries of Carnot space.
The coordinates 7, 7, and 0 cannot assume arbitrary
values. First of all, they must all be positive.?! We
further demand that the work produced by the engine

W=0(T, - T,) (5.7)
be nonnegative. This requires T, =T,, i.e.,
T = To* (5.8)
o o ’
1+ — - —
KTy KTy
or
IR TP s@EeTH) 5.9
Ty Ty o

The boundary of the permissible region [defined by the
equality in Eq. (5.9)] is a cone in the (1, 7,, o) space.
For constant ¢ sections this boundary constitutes an
hyperbola with vertical and horizontal asymptotes:

OT? _ 0'(1 = nrev)

TRTT-TP T Ky 6.10)

1

_ oT g
Ta—K(Tgx-T;x) —Knrev : (5.11)
On this boundary the work W vanishes and we shall re-
fer to it as the zero work cone or, for constant o, as
the work hyperbola. Several such hyperbolas are shown

by Fig. 4 (solid curves).

The region of Carnot space accessible to a given physi-
cal apparatus is bounded by yet another surface o0=0,.,(T,

1

0-2

—-
T

1

FIG. 4. Constant ¢(=0oy) sections of the Carnot subspace C in
the (7;, T,, o) space. On these sections C is bounded by a W
=0 line (solid curves) and by & Gy, =0, line (dashed curves),
defined by Eqs. (5.9) (with equality sign) and (5.12), respec-
tively. The parameters used for the calculations were op, =4
e.u., C,=3R/2, k=1 e.u./sec, TF=600°K, T3 =300°K.
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T V=Vnin V=Vmax
=0 =
T:ZX max ofe\/
g-= amg;
LAl
[ ow—
Tex
2 l /
T —-
S
FIG. 5. The accessible region of (T, S) space of the working

fluid specified by Vy, <V =Vy,, and T =T =T{. The acces-
sible region for the working fluid is bounded by the lines 7= TY*,
T=T%, T=T(S, Vg, and T=T(S, Vi,,). The latter two lines
are positively sloped, the slopes being (87/8S),=T/Cy, cal-
culated at Vi, and V., respectively. (Note that for an ideal
gas these two lines are parallel to each other.) One trajectory
is shown with o= 0p,,, i.e., with the working fluid reaching

Vintn 80d Vyy.  For one of the other trajectories, o=0,,,,

which is the smallest possible ¢ consistent with o =0y, (14, T,).

7,). This boundary is due to limits on the values of the
mechanical variables, e.g., size or strength of the
cylinder containing the working fluid. Consider, for
example, 1 mole of an ideal gas in a cylinder equipped
with a piston. Any real cylinder will have a maximum
volume V,,, and a minimum volume V_,, or, alternative-
ly, a maximum pressure p,,, which the walls can with-
stand. In either case such limitations restrict the value
that ¢ can attain, The largest value o,,, is different for
different 7, and 7,. For specified V., and V., Onan(Ti,
T,) is obtained implicitly' as the solution ¢ of the equation

- 9 .o
o-o,,,+cvln[(1+m)/(1 o )] , (5.12)
where
Orey =R In(Vipay / Vinga) + Cy In(T3%/T'9%) . (5.13)

For specified V., and p,.,., Ona iS Obtained! as the
solution of

[

o
o:a,,,+C,ln<1+'—(—-—n)—Cﬂn(l—;;;) , (5.14)
where now
Orey =R IN(Viypy Praay /R) +Cy InT§* - C,InT$* . (5.15)

These equations follow from the ideal gas equation of
state

S =Sy +R1n(V/ V) + Cy In(T/T,) (5.16)

and the requirement that the working fluid reaches the
extreme values of V and p. Note that g,,, is defined here
as the entropy carried by the working fluid in a reversi-
ble process which satisfies these requirements. General-

Finite time optimization 3553

ly, the boundary surface ¢ =g,,, will depend on the equa-
tions of state of the working fluid and on the mechanical
limits of our machine. As we shall see below, the .
qualitative features of this surface are the same for
most situations. In order to examine these features for
the ideal gas example we refer to Fig. 5, which schemati-
cally illustrates the dependence of o on 7, and 7,. For
large cycle time 7, Ty~ T{* and T,~ T 5* and 0,4,(7;, T2)
approaches its smallest value o,,, as 7, and T, approach
infinity. For faster operation, o,,, increases slowly,
reaching a limiting value at the fastest operation. This
dependence of ¢,,, on 7 is graphed in Fig. 6 for 7, =7,.
Figure 6 also displays the W=0 boundary curve, which
for 7, =7, =47 is a straight line in the ¢—7 plane with a
slope k(T{* =T $9/(T$*+T5%)>0 [cf. the equality in Eq.
(5.9)].

The qualitative features of the o,,(7) dependence ap-
ply quite generally. Consider a working fluid charac-
terized by n degrees of freedom and subject to 2(z - 1)
mechanical limitations. These limitations restrict the
accessible states of the working fluid to a boxlike region
very similar to the one pictured in Fig. 5. Two edges
will be along the line T =T3$*, while the other two edges
will be positively sloped, For the example of a gas in
a cylinder restricted by maximum volume and maximum
pressure conditions, these slopes are

(88/0T), =C, /T>0 ,
(8S8/8T)y =C, /T>0 .

(5.17)
(5.18)

Generally, these slopes are C,/T for some mechanical
parameters X which are held at their extreme values.
Provided such heat capacities are positive and of
moderate size, the qualitative features of the o =0,,,(7,,
7,) surface will be the same as for the ideal gas in a
pressure and volume constrained cylinder, If the C,’s
can be considered constant in the range of interest, we
get the following equation for o, ,,

A

LA SR

FIG. 6. A cross section of Carnot space (shaded region) by
the plane T =Ty, Opge (T) i8 Oy (T3, T3) With 7,=7,=7/2. For
an ideal gas working fluid, the value of o at the peak where the
U= Omg (7) and the W=0 boundaried intersect is o= R In(V,,5,/
Vmin)'
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FIG. 7. A constant ¢ section in the (1y, 7, 0) space display-
ing the boundaries W=0 and g, (7y, 7;) =0 of Carnot space
and the lines for maximum power, maximum efficiency or
effectiveness, maximum profit and minimum entropy, or
availability changes [extrema obtained for fixed ¢ and T with
respect to the time allocation (7,, 7,)]. The points of optimal
operation lie at the intersection of the line 7,+ 7,=7 with the
corresponding optimum line.

0, q,
oma,=(r,"+Cxln(1+T"$f) —Cyp 1n<1— :;;) .

(5.19)

I Cx=Cy., the constant o =0y slices of the 0 =0p,,(7y,
7,) surface are the hyperbolas

fo[B(oo) ~1] =Tll + B—(T—‘:") ) (5.20)
where
B(U) :exp[(o - Orev)/cx] > (5;21)

These hyperbolas appear as dashed curves in Fig. 4.
For any choice of ¢ the working region is bounded in
principle by one solid and one dashed line in Fig. 4.

It should be noted, however, that the equation oy =04y
+CxIn(l +04/k7) = Cys In(1 — 0y /& 7,) viewed as an equa-
tion for a curve in the 7, 7,=0 quadrant of the (1, 7,)
plane has a solution only for ¢y> 0,e,. FoOr oy =0,,, Only
the W=0 boundary appears in Fig. 4. For 03> 0., the
0= 0,4,(Ty, T,) condition also becomes important and the
section of C in the o =0, plane is the crescent shape re-
gion lying between the hyperbolas (5.9) and (5. 20) (the
latter hyperbola being an approximation as discussed
above). This region is seen in Figs. 7 and 8.

Finally, we also require that c=0. Thus, C is the
region in (7,, 7,, 0) space which is bounded by the sur-
faces W=0, o0=0,,, and 6=0. A vertical (perpendicular
to the constant o plane) cross section of C by the plane
7,=1T, is shown in Fig. 6. Horizontal sections of C with
planes of constant o =0, are shown in Figs. 4, 7, and 8,
as described above.

P. Salamon and A. Nitzan: Finite time optimization

VI. CARNOT SPACE OPTIMIZATIONS

We now find the optimal operations of our Carnot cycle
for each of the objective functions A-F. Since the opti-
mal values of these objective functions are to be used as
criteria of merit for judging the operation of engines
with measured values of ¢ and 7, we first optimize over
the time allocation 7,, 7, with constrained values of ¢
and 7. Optimizations with respect to ¢ and 7 are left to
Sec, VII. In general, if one optimizes a function sub-
ject to constraints and later optimizes over the values
of the constraints, one ends up with the absolute optimum
of the function. Consider the objective function F(7,,

75, 0). To optimize with given ¢ and 7, we hold ¢ con-
stant and add the constraint of given 7 by the use of a
Lagrange multiplier x. Then

S

holds at any extremum. On elimination of X, this as-
sumes the convenient form

(F_m] -0 6.1)

Teo

(8F /8Ty, 0 = (BF/8T3)r,,0 - 6.2)
For the unconstrained optimizations of Sec. VII,
we will have the equations
(8F/8T1)ry0 = (BF/a‘rz),l,, = (azv*/ao),l,,2 =0 . 6.3)

Note that Eq. (6.3) is a special case of Eq. (6.2).

Since all our F’s can be expressed in terms of @,
Q,, and 7, we will have frequency occasion to refer to
the derivatives

(8@ /87)) =T/ [(kTy/0)+ 117, (6.4)
(8Q,/87) =k T3*/ [(kT,/0) -1, (6.5)
(8Q, /80) =T */[{o/km)+ 1, (6.6)

T

1

FIG. 8. The o=g, slice of Carnot space is the shaded region
bounded by the hyperbolas (5.9) and (5.20). The positively
sloped line is the line of optimal ¥, where ¥ can be any of the
objective functions A—F. [, and [, are lines of given 7y=7 +Ty.
The values of 7, oun lines I; and I, were chosen so that their
points of intersection with the line of optimal ¥ fall outside <.
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(8Q, /90) =T 3*/[(0/kTy) - 117, ®.7)
obtained from Eqs. (3.16) and (3.17). Note also that
3Q,/37,=9Q, /91, =0 . (6.8)

A. Case A: Maximum Power

Using the objective functions F =W/, Eq. (6.2) for
constant 7 gives

owW/8t, =W/ a1, . (6.9)
This reduces to
9Q, /97, =8Q, /37, , (6.10)
which gives
Tax Tex o
Ty = —T%‘ Ty + (1 + f —LT:" ) PR 6.11)

For various choices of o and 7, Eq. (6.11) represents

a plane in (7, 7,, o). The intersection of this plane with
a plane of constant ¢ is the maximum power line of slope
VT ¥/T$*<1 shown in Fig. 7. Solving Eq. (6.11) simul-
taneously with

T +Ty=T (6.12)
gives
T c
Tt Tk ©.13)
and
T o
Ty = [1 + (Tlu/Tz")l/ z] + E . (6- 14)

These give [using W=, +Q, and Egs. (3.16) and (3.17)]
P=W/t=(T¥-TH0o/7) - (JTT*M/T;?Y}U;

(6.15)
Note that the resulting optimal power depends only on the
ratio o/7 rather than on o and 1 themselves,
B. Cases B and C: Maximum efficiency and effectiveness

As shown in Sec. II. C, these two objective functions
are equivalent, being maximum for maximum @,/Q,.
Using

8(Q,/Q,) =T_§x 1 o
TR T ke (6.16)
Tz
9(Q/Q) _ T3 _1+0/k1y o
a7, T Too/kr,l pe 28 6.17)
and (for the fixed ¢, fixed T optimization)
8(Q,/Q,) _ 93(Q,/Q,)
br, = b (6.18)
gives
Ta=Ty+0/k, (6.19)

which again represents a plane in the (7,, 7, 0) space
for various choices of cand 7. For constant o, Eq. (6.19)is
the maximum efficiency (1) and effectiveness (€) line of

Finite time optimization 3555

slope 1 and intercept ¢/k shown in Fig. 7. Solving with
Ty + T, = T these equations give

T=7/2-0/2k, (6.20)
T,=7/2+0/2k , 6.21)
and on substitution
2
1+ %
Tk KT
n=1 T s 6.22)
1= —
KT
and
2 2
Ty (1-1) -T;'(1+1>
_ KT KT
€= o \* o \2
(T;‘—T“) (1 - F) HTE-T,) (1 + K_T)
(6.23)

Note that n and € depend only on o/7,
C. Cases D and E: Minimum entropy production and loss
of availability

These two objective functions are again equivalent,
We work with

AS,=— (@, /TF+Q, /T3 . (6.24)
The constrained o, 7 condition (8. 2) becomes
1 5@, _ 1 9@,
T 871, T3 om, ’ (6.25)
which gives
T,=T +20/k . (6.26)

Again, for various choices of o and 7, this is a plane
whose intersection with a plane of constant ¢ is the
minimum AS, and AA line of slope 1 and intercept 20/«
shown in Fig. 7. Substituting, we get 7, =7/2 - 20/k,

7, =7/2 +20/x; hence [using Eqs. (6.24), (3.16), (3.17),
and (2.20)]

- 40* ©.27)
KT
and
AA, =Ty el . (6.28)
KT

Note that while these quantities depend on the values of
o and 7, the corresponding rates AS,/7 and AA, /7 de-
pend on o/7.

D. Case F: Maximum profit
As shown by Eq. (2.25),
I =(Py—Pan)@/7) + Py —Pyn)@Q/7),
which in terms of 1, 7,, and o becomes

Q- Py /P)TY (A -my Py /Py) TS
1+0/k7y 1-0/k7, :

(6.29)

=P, /1) [

(6.30)

Introducing the definitions
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T:“=T‘:"(1—§A m) , 6.31)
w
P
Tt e (1 - "72> , 6.32)
w
and
off _ oT5H
Qr = Tro/kry) (6.33)
ot _oTeff
Q; = a —O'/KTa) (6.34)

[in analogy with Egs. (3.16) and (3.17)], and @*' and

Q%! are the heats which would pass from the working
fluid undergoing the cycle specified by 7, 7,, and ¢

if the reservoirs were at the temperatures 7' and T ],
we get

O=P, @ +@f)/7. (6.35)

We see from Eqs. (6.35) and (2. 3) that I depends on the
7, exactly as the power P. Thus, optimization with con-
strained ¢ and 7 give

5= (T :“/T;“ )l/z,r1 +[1 + (T :ﬂ/T;H)llz] O‘/K .

This is once again a plane for various ¢ and 7. For
constant ¢, this plane reduces to the maximum profit
line of slope T§''/T§" shown in Fig. 7.

(6.36)

The maximum profit line always lies between the
maximum power line and the minimum entropy produc-

tion line, It merges with the maximum power line when
T /T ML T/TS 6.37)
i.e., when
P p
1--2 (1 -4 -1, .
( P, 771)/ 7, Ng (6.38)

This occurs for P, /P,-0, i.e., Py,>»> P,. As the price
of work becomes very large compared with the price

of availability, profit maximization approaches power
maximization. On the other hand, as the price of work
becomes comparable with the price of availability, Py,
~P,:

Py P,
(-5 )/ (-5

Therefore,

T#/Ts ~1

772)’ (t-n)/1- 772)= %

(6.39)

(6.40)
and the maximum profit line [Eq. (6.36)] becomes
(6.41)

which is the minimum entropy production condition
(6.26). Thus, as the price of work approaches the price
of availability, profit maximization approaches entropy
production minimization, i.e., minimum waste of avail -
ability. For any intermediate P, /P,, the maximum pro-
fit line lies between the maximum power line and the
minimum entropy production line.

T, =T +20/k ,

To obtain the maximum profit for the given values of
o and 7, we again solve Eq. (6.36) with

P. Salamon and A. Nitzan: Finite time optimization

FIG. 9. Various objective functions optimized with respect to
time allocation (7, 7,) for fixed 7 and o, plotted as functions
of o/7.

T +T,=T (6.42)
to give

1 =1/[L+(@®/TEN 2] —0/k , (6.43)

T=7/[1+(T/TE) %) v o/k , (6.44)

and
=P (Teff-TBff)g_(,/TO!l_'_W)z 02
w 1 2 T 1 2 KTz .

(6.45)
Note that [T depends only on o/ .

The optimal functions P [Eq. 6.15)], n[Eq. (6.22)],
AS,/7[Eq. 6.27)], and 11 [Eq. (6.45)] are schematically
plotted in Fig. 9 as functions of the ratio o/7.

E. Boundary optima

Abové we found the interior optima® for our objective
functions A-F with constrained ¢ and 7. This involved
finding the points (7,, 7,, o) on the line

1={(r, 7, 0); T +Ty=Toand o=0p}, (6.46)

which made the respective objective functions optimal.
The results of these optimizations are summarized in
Fig. 7. However, these optimizations were performed
over the entire space (1, 7,, 0) without regard to the
fact that we are interested only in optimal (1, 7,, 0)
which lie in the three dimensional region C bounded by
the three surfaces

0=0, 6.47)
w=0, (6.48)
0 =0Opax(T1, T) .« (6.49)

We now briefly describe what happens when the optimal
point (7;, 7, o) found by the methods above falls out-
side C. Let ¥ stand for any of the objective functions
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A-F. Then, as shown above, the point of optimal ¥
lies at the intersection of one of the lines (6.11), (6.19),
(6.26), or (6.36) and the line {. Provided InC+0, such
point of intersection can fall outside C in one of the two
ways pictured in Fig. 8. For both these cases, optimal
operation in C takes place at the nearest point of C on [,
i.e., on the boundary. In the example considered (Fig.
8), when 7, is too small for the point of optimal operation
to lie within C (line I, in Fig. 8), there is only one
nearest boundary point on I (point M, in Fig. 8). When
T, is too large for the point of optimal operation to lie in
C (line I, in Fig. 8), there are two nearest boundary
points (M, and M} in Fig. 8). We forego the analysis of
which boundary point (M, or M}) is optimal in this case
since such analysis is incidental to our development and
since the results depend on the nature of the o =0y, (7,
T,) surface, i.e., on the working fluid.

Vil. OPTIMIZATIONS OVER o AND 7

We now consider unconstrained optimizations in E,
i.e., we optimize with respect to the choices of ¢ and
7. As we saw in Sec. VI, our optimized objective func-
tions P [case A, Eq. (6.15)], nlcase B, Eq. (6.22)],
€ [case C, Eq. (6.23)], and Il [case F, Eq. (6.45)] de-
pend only on o/7, while the optimized objective func-
tions AS, [case D, Eq. (6.27)] and AA, [case E, Eq.
(6.28)] depend only on 0?/7, In neither case do the
optimality conditions

8¥/80=0¥/97=0,

where ¥ represents any of the objective functions A-F,
determine unique values of o and .7, Instead, they de-
termine values of o/7 for Cases A, B, C, and F and
o?/1 for cases D and E.® By optimizing with respect to
6/7 or ¢/ T we obtain at once the results for (1) uncon-
strained optimizations, (2) optimizations over 7 with
given ¢, and (3) optimizations over ¢ with given 7,

A. Case A: Maximum power

If we optimize the power

P=(T;‘-T§‘)%—(JT—;"+(~/T§')ZE°; .1)
with respect to o/7, we find
g _x YTE-VTF (1.2)
T 2 VT + T
and
P=ig (VT -VTER. (7.3)

Solving Eq. (7.2) simultaneously with Eqs. (6.13) and
(6.14), we find that power assumes its absolute maxi-
mum on all points (7, 7,, ¢) on the line
SO YTIAVTE

K VTP — VT
shown in Fig. 10. The efficiency 5 of any point on this

line is obtained from Egs. (2.4) (3.16), (3.17), and
(7.4) in the form

n=1 -~ (TF/T¥™V2, (7.5)

This result was first obtained by Curzon and Ahlborn, ¢

=TI=Tp (7.4)

(XY
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TA

FIG. 10. T,=T,(=7/2) sectionof Carnot space showing the lines
of optimal unconstrained power and profit. (r*, o*) and (7, &)
are the points of intersection of these lines with the surface
0= Opay (Tys To)e

The result (7.2) which corresponds to the maximum
P line on Fig. 10 holds for the maximum power opera-
tion of the engine only if ¢ and 7 also satisfy W=0 and
0= 0Opay, i-€., if (1, T, 0)€C. C is bounded by the
W=0 and 0 =0,,(7, ) curves in Fig. 10. The choice
of o/7 which lies on this maximum power line leads to
the unconstrained maximum (7.3) for P. Consider now
the case where 0=0; is given and a value for 7 has to be
found which maximizes P under this o constraint., Let
o* and 7* denote the o and 7 values, respectively, at the
intersection of the maximum P line with the o =0,
boundary (Fig. 10). For an ideal gas working fluid in a
cylinder with given V,,, and V,, we obtain

0% = 0,4y +3Cy In(T*/T3Y) ,
™ =Qc*/K)VTE+VT R/ (VTE - VT3,

where o,,, is given by Eq. (5.13). As long as o,<o*,
the maximum power operation of the engine is still de-
termined from Eqgs. (7.2) and (7.3). However, if 0,> o*,
the solution for 7 from Eq. (7.2) (with o=0,) is larger
than 7., When this is the case we see from the shape
of the P(o/7) curve in Fig. 9 that we should make T as
large as possible consistent with the relation (6.11) and
the given value o, of 0. For various o> o* the optimal
point traces part of the curve of intersection of the sur-
face o =0y, and the optimal power plane (6.11). Opti-
mization with constrained  shows similar behavior.
For 7<7* we choose a ¢ which makes Eq. (7.2) hold,
while for 7> ™ we choose the largest possible 0. This
generates another portion of the curve of intersection
of 0=0,,, and Eq. (6.11).

(7.8)

B. Cases B, C, D, and E: Maximum efficiency, effectiveness,
minimum entropy production, and loss of availability

These cases are conveniently lumped together. Ef-
ficiency and effectiveness are monotonic in o/7, and
AS, and AA, are monotonic in /7 (see Fig. 9). Each
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of these objective functions takes on its absolute mini-
mum for o/7=0%/7=0, i.e., on the bounding surfaces

0=0; 7,20, T1,>0 (1.7)

and

Opey> 00 ; Ty, Tp=+% (7.8)
Note that the constrained o, 7 optimality conditions
{6.19) and (6.26) do not piay a role here since the opti-
mal values of these objective functions are achieved at
all points on the surfaces (7.7) and (7.8). Optimization
subject to a constrained cycle time 7 requires that ¢=0,
Optimization subject to a constrained ¢ requires 7 to be
as large as possible, For o<g,,, this means 7=+,
while for o> o,,, we find the point of optimal operation
along the curve of intersection of the ¢ =0,,, surface
with the plane (6.19) for maximum efficiency and ef -
fectiveness or with the plane (6.26) for minimum entropy
production and loss of availability.

C. Case F: Maximum profit

As Eq. (6.35) shows, the profit depends on our parame-
ters exactly as the power provided that 79* and T 3" are
replaced by T and T§'*. Thus, profit achieves its

abolute maximum of

N=P, sk(VT - VT ) (7.9)
anywhere on the line
VTR /T
r=r,=Z YT #¥T5 (7.10)

K ,/Talt - Tglt

The constrained optimizations also proceed analogously.
Let & and T denote the values of ¢ and T at the point of
intersection of the line (7.10) with the ¢ =0,,, surface
(see Fig. 10), For optimization with constrained o<g,
we choose 7 so that (7.9) holds. For ¢>&, we choose
the largest 7, which is as close as we can get to satis-
fying Eq. (7.9). This gives points along the intersec-
tion of the plane (6.36) with the surface 0 =0y,,. Simi-
larly, for constrained T we operate optimally on the
line (7.10) if 7<7, and on the intersection of Eq. (6.36)
and 0 =0,,, for 7>7%. Note that for all our optimizations
the conclusions of Sec. VI remain valid: As P, /P,—0,
maximum profit operation approaches maximum power
operation, while as P, /P, ~1, maximum profit opera-
tion approaches minimum entropy production operation.

VIIl. THE PRODUCTION FUNCTION

The information in Eq. (7.10) can be used to give the
production function for our process. Though analytically
possible in general, finding the production function is
very cumbersome unless the temperature of the environ-
ment coincides with the temperature of one of our

reservoirs, say To, =T 3. Then 9,=0 and 1, =7.,. Then
inverting Eq. (3.18) using also [cf. (7.10)]
T,=7/2 8.1)
leads to
2- __1_2. , @.2)
[T3/(@u/ N - 2
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P(3)-

Ik

Q,

T

FIG. 11. The production function [Eq. (8.4)] for a Newton’s
law Carnot engine. The output (power) is plotted as a function
of the input (rate of heating).

which when substituted into [cf. Eqs. (2.3), (3.16), and

3.17)]
ex C_f ex 2
w. m(5) | mw(f)
?= 2 o - 2 o (8.3)
SE() ()
K\ K K\T
gives the production function ¢ as
ryorp-? -i)
sz(&) =(&> KT 8.4)
T T T T"—é @
Ve \T

pictured in Fig. 11. For maximum profit the slope of
this curve must be

OW/T _Pay _PaThey

8Q1;T PW PW ’

where we have introduced the symbol Py, =P, 1y,
which may be interpreted as the price of heat ;. [The
relation (8.5) is obtained by maximizing the profit
(PyW/T) = (Pq 1Ql/‘r) with respect to the input @, (see,
for example, the books cited in Ref. 14).] Thus, given
prices locate us on the curve in Fig. 10 by specifying
the slope at the point of maximal profit operation. Note
again that as P, /P, ~0 maximum profit operation ap-
proaches maximum power operation, while as P, /Py
-1 maximum profit operation approaches minimum en-
tropy production and maximum efficiency operation at the
points where the slope vanishes and where it equals the
reversible efficiency.

(8.5)

Since in our model the engine uses only a single in-
put, a given cost or a given level of output contrains us
to a single point on the curve (8.4). This makes the
other economic optimizations discussed in Sec. III un-
interesting.
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IX. CONCLUSIONS

In the sections above, we found the optimal opera-
tions of a Carnot cycle for various choices A-F of optimal
operation and subject to various constraints. The re-
sults are summarized in Figs, 7-10.

Besides possible implications for engine design,?
analyses such as the one above can be used to predict
in-principle thermodynamic bounds to the quality of
operation of a thermodynamic process within a given
technology. As shown above, such bounds can be found
over very large classes of processes independently of
specific designs and working fluids. Though no such
analyses have been carried out for important industrial
processes, such analyses could be important aides in
allocating research and development budgets with the
objective of decreasing energy consumption. Our analysis
for Carnot cycles in Newton’s law thermodynamics
serves as a-paradigm for such calculations and reveals
serveral useful tricks for simplifying such analyses.

The first useful trick is the reduction from optimiza-
tion in an infinite dimensional space to optimization in a
finite dimensional space, i.e., from choosing the opti-
mal value of T(¢) for each time 0<¢=rT, to choosing
only the values of three numbers; 7, 7,, and 0. Any
reasonable objective function for a thermodynamic pro-
cess will depend only on net effects of the process. The
space of such net effects is finite dimensional since it
can be parametrized by the initial and final states, the
time elapsed during the process, and parameters, such
as k, which represent the part of the technology we take
to be given.?! A reduction to an optimization in this
space of net effects is probably possible generally® and
allows comparison of optimal operations for different
objective functions, Following the reduction, the prob-
lem may be further simplified by using the methods of
monotonic substitution and of successive optimization
(of which one branch variations are an important special
case).

Newton’s law thermodynamics defines, perhaps, the
simplest technology in which such optimizations can be
performed and provides a wealth of analytically soluble
probiems.2 The freedom of making adiabatic jumps
eliminates all constraints except constraints on the
change in entropy and on the elapsed time. When com-
bined with the technique of local optimizations, i.e.,
optimizations of only one branch at a time, this freedom
can considerably simplify the calculations required for
the optimization. 28

The importance of the present results in Newton’s
law thermodynamics would be greatly enhanced if it
could be shown that optimal processes with only a New-
ton’s law type irreversibility always perform better than
optimal processes which have this same irreversibility
(with the same «’s) plus some other mode of irreversi-
ble entropy production, e.g., friction. This conjecture?’
has great intuitive appeal and one is tempted to accept
it on physical grounds, though a formal argument is
desirable,

Our results concerning the reduction to Carnot space
(1, 72, o) are valid even if we replace the linear New-
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ton’s law (1.1) by an arbitrary rate law
aQ/dt=f(T**, T), 9.1)

which vanishes for T'=7°* and which is monotonic in T.
Although the algebraic expressions for the optimal cycles
will be different and our boundaries and optima will no
longer be lines and hyperbolas, the qualitative features
of C and of the sets of optimal operations is the same

for a large class of rate laws.?

As mentioned in Ref. 23, if we alter the objective
function AS, (case D) and the objective function AA,
(case E) to the corresponding rates AS, /7 (case D') and
AA, /T (case E'), our definition of Carnot space implies
that C’ is two dimensional since all the objective func-
tions depend only on the ratios o/7, and 0/7,. Thus,
C’ can be identified with the projective two space formed
from (7;, T, 0). This projective symmetry comes from
the fact that an engine carrying entropy o/2 in time 7/2
performing two cycles is equivalent to one carrying en-
tropy ¢ in time 7 performing one cycle. We chose the
objective functions D and E rather than D’ and E’ to
eliminate this symmetry, This is desirable for several
reasons. First, the boundary o =o,,, does not share this
projective symmetry. Further, such symmetry would
also be destroyed by the presence of depreciation cost
terms in the economic objective functions, For ex-
ample, let us take depreciation cost to be proportional
to the number of cycles

C,=P. /7. (9.2)

While the profit without counting depreciation is radially
constant, i.e., constant along any line through the ori-
gin, the depreciation cost is monotonic decreasing as we
move out along such lines. It therefore follows that we
should move out as far as possible, i.e., optimal profit
operation including the depreciation cost (9.2) will lie
on the boundary o0 =0,,, . For small P,, such optima
will lie near the point of intersection of the o =0,,, sur-
face with the line (7.11).

In Secs. VI-VIII we saw repeatedly that economic and
thermodynamic optimizations of our energy conver-
sion process converged in the limits P,/Py,~0, 1,
Specifically, we saw that when the profit margin for en-
ergy conversion is small, the maximum profit operation
is near the minimum loss of availability operation,
while when availability is very cheap compared to the
price of work, the maximum profit operation is near
the maximum power operation. For intermediate P,/
Py, we find the implication that any publically desirable
efficiency can be made profit optimal by regulating the
ratio P, /Py, of input and output prices. A related con-
clusion for energy consuming production processes was
found by R. S. Berry, P. Salamon, and G. Heal.?®
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