Random coupling models for intramolecular dynamics. |l.
Kinetic equations for collisionless multiphoton excitation of

large molecules?

Benny Carmeli® and Abraham Nitzan®’

Department of Chemistry, Tel-Aviv University, Tel Aviv, Israel
(Received 28 February 1979; accepted 31 May 1979)

Multiphoton excitation and dissociation of large molecules under collisionless conditions is discussed in
terms of an intercontinuum random coupling model. The mathematical approach described in a previous
paper is used to obtain the general solution for a system of consecutively coupled discrete states,
quasicontinuous manifolds, and continuous (dissociative) manifolds of molecular levels (eigenstates of the
total molecular Hamiltonian), where the radiative coupling matrix elements are assumed to be given as a
linear combination of smoothly varying and randomly varying (over level indices in the molecular
manifolds) components. In the range of discrete molecular levels the time evolution is coherent and
described in terms of the optical Bloch equation. In the quasicontinuous and continuous ranges the time
evolution may be described in terms of Markoffian kinetic equations for the number of photons absorbed
by the molecule, provided that the intramolecular vibrational relaxation widths associated with the
optically active molecular modes is much larger than the Rabi frequency associated with the excitation of
these modes. The kinetic evolution itself consists of direct multiphoton excitation processes (simultaneous
transitions from the upper discrete levels to all higher energy molecular manifolds) resuiting from the
smooth component in the radiative coupling, and a consecutive excitation process described by the Pauli
master equation with rates given by the golden rule expression. The interaction which enters into the golden
rule expression is the variance in the radiative coupling. The direct excitation component contributes a
negligible part of the overall excitation even if the random and smooth radiative coupling components are
comparable. The resulting incoherent time evolution of the multiphoton excitation process is consistent
with available experimental results. Coherent effects in the time evolution are expected for higher
radiation field intensities, where the Rabi frequency becomes comparable to the intramolecular vibrational

relaxation rate.

I. INTRODUCTION

The nature of collisionless multiphoton excitation and
dissociation of polyatomic molecules in intense infrared
(IR) radiation fields is a subject of much experimental
and theoretical research.’ The gross features of the
process are best described in terms of three different
energy regions (Fig. 1): At low vibrational energies
(range 1) the molecular levels are sparse and the excita-
tion involves near resonance radiative interactions be-
tween individual levels (or groups of several levels),
leading to a coherent multiphoton excitation. Range I
processes are responsible for isotopic selectivity, co-
herent effects (multiphoton resonances, photon echoes,
coherent wave propagation, etc.) and for the power de-
pendence of the excitation process. At higher vibration-
al energies (range II) the excitation process consists of
transitions between quasicontinuous manifolds of bound
molecular vibrational-rotational states. Finally, above
the first dissociation threshold, excitation occurs be-
tween manifolds of molecular levels which are coupled
to dissociative continua. This is range III—the reactive
regime. Experimental evidence®® has led workers to
conclude that the excitation process in ranges II and III
consists of incoherent consecutive absorption (and the
reversible emission) steps with all phase memory lost
and with rates proportional to the field intensity. This
conclusion is based on the observation that when the
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laser intensity is sufficiently high to overcome range I
the multiphoton dissociation yield®® and also the delay
time for observation of products*® are determined by
the energy, rather than the power, of the pulse. Indeed,
photodissociation of some molecular ions trapped in
cyclotron trajectories under collisionless conditions was
observed® during a prolonged (~ 1 sec) irradiation with
low intensity (~1 W/cm®) IR light under collisionless
conditions, provided that the molecule enters the ir-
radiation zone being (by virtue of its thermal energy) in
range II. In addition experimental results for IR multi-
photon dissociation of SF, was shown!‘”*® to be consis-
tent with a Pauli master equation with rates constructed
using simple statistical molecular models. One should
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keep in mind however, that the number of observed pa-
rameters (i.e., dissociation probability and mean num-
ber of photon absorbed) is too small to permit a reliable
distinction between differently constructed kinetic
schemes.

The coherent excitation process in range I is by now,
at least in principle, well understood in terms of, e.g.,
the n level optical Bloch equation. No simplification
schemes beyond the rotating wave approximation (RWA)
are generally valid (or necessary) in this region. A
rapid “decay” of the upper level of range I into the
quasicontinuous range II may lead in principle to an in-
coherent consecutive evolution in range 1.” However
conditions for this behavior are generally not satisfied
(see Sec. IV).

Several theories have been advanced for the range II
and range III processes; concerning in particular the
erasure of coherence effects and the structure of the re-
sulting kinetic equations. These theories may be divided
into two groups:

{a) Yablonovitch, ® Hodgkinson and Briggs, ® Cantrell
et al.,'®® and Goodman and Stone!® have based their
descriptions on the zero order (harmonic or bond) mo-
lecular modes dividing them into a “relevant” group
consisting of the optically active modes and a “bath”
consisting of all the other modes. These two subsys-
tems are coupled by the molecular anharmounic interac-
tion. In this picture the intramolecular bath provides
the dephasing source, causing the erosion of phase co-
herence in the relevant system, thus leading to a
Markoffian master equation for the evolution within the
relevant subspace. The variables entering this master
equation are the populations of the relevant modes.

While this approach may be quite useful for describing
the time evolution of any particularly interesting mo-
lecular mode, it suffers from a few drawbacks in the
present context: First, the role of the intramolecular
bath in causing dephasing of the interesting mode is
somewhat obscure. In particular when the bath is not
or is only weakly excited, it can induce dephasing only
via population relaxation. In this case phase coherence
persists on the relevant time scale and the Bloch equa-
tion cannot be reduced to the Pauli master equation on
this time scale. Secondly, the separation of zero order
molecular modes into the optically active relevant modes
and the other nonactive modes is based on a picture,
true for low vibrational energy, of strict optical selec-
tion rules. While recent experimental data!'*}? indicate
that such selection rules hold to a large extent even in
the higher levels of range II, giving rise to a {broad-
ened) absorption resonance at the expected vy mode ab-
sorption in highly excited SF,, it is reasonable to expect
a growing background absorption resulting from the
breakdown of the low energy optical selection rules.
Such background absorption has been observed in the
overtone vibrational spectrum of benzene'® and it is ex-
Pected to be stronger in nonhydrogenic molecules like
SFs.

Finally within the context of molecular multiphoton
dissociation, the interesting variable is not the popula-
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FIG. 2. A chematic representation of multiphoton excitation

of a large molecule in the rotating wave approximation. The
different manifolds correspond to different numbers (K =0,1...)
of photon absorbed.

tion of a particular mode (or modes) but rather, the
total energy content of the molecule. Thus, the total
bath energy has to be taken as an additional relevant
variable which complicates the theoretical treatment.
Furthermore, it is not clear whether the time evolution
of the intramolecular bath can be described in terms of
a single parameter (e. g., temperature).

(b) Mukamel, !* Jortner and Schek, ** and Carmeli and
Nitzan'® have advanced theories in which the total energy
contents of the molecule, expressed in terms of the
rumber of photons absorbed, is the relevant parameter.
The model advanced recently by Quack!” may also be
phrased in this way. More explicitly let the total Hamil-
tonian for the molecule in the radiation field be

H=Hy+u

Hy=Hy+Hp ,

(1. 1)
(1. 2)

where H, is the molecular Hamiltonian, Hy is the
Hamiltonian for the radiaticn field, and where u is the
interaction between these two systems. In the dipole
approximation u is given as the scalar product between
the molecular dipole moment operator and between the
electric field operator associated with the radiation
field. The following assumptions are made: (1) The
excitation is monochromatic. (2) Throughout the exci-
tation process the population of radiation field modes
other than the exciting (initially populated) one may be
disregarded (such modes are populated in principle by
spontaneous IR emission). (3) The Rabi frequency p is
much smaller than the exciting photon frequency w, im-
plying the validity of the rotating wave approximation
{RWA).

Given some initial population of the exciting radiation
field mode (the final result has to be averaged over the
initial distribut ion of states of these modes), the zero
order dressed states (eigenstates of H,) are written as
direct products {|Ka)} of states of the radiation field
and of the molecule. The former may be expressed by
the number 0,1, ..., K, ... of photons absorbed. The
molecular basis set is taken to be the set of eigenstates
{1a)} of the total (anharmonicity included) molecular
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FIG. 3. Asimplified model for multiphoton excitation of a large
molecule, obtained from the model displayed in Fig. 2 by tak-
ing into account energetically relevant levels only.

Hamiltonian H,, The set of eigenstates of H; is dis-
played in Fig, 2 which shows also the radiative coupling
prevailing between nearest neighbor manifolds. In the
RWA we may consider only (dressed) states within a
limited energy range having width of the order of the
Rabi frequency . As u <<w we may consider the multi-
photon excitation process in terms of transitions be-
tween distinct manifolds of molecular levels (Fig. 3).
Each manifold is characterized by a number K denoting
the number of photons absorbed, and is composed of a
set of molecular levels {|a)}. The variables of interest
are now the populations Py of the different manifolds

{IKa)}.
Pl{(t) =ZpKa,Ka(’) ’

where pg,, ¢ 1S the diagonal Ko element of the density
matrix describing the molecule-radiation field system
in the zero order {|Ka)} basis. Obviously P,(¢) (K =0,
1,...) is the probability that K photons were absorbed
by the molecules at time 7.

(L. 3)

This model is the basis for the theoretical treatments of
Refs, 14-~17. The details of these approaches are different.
Mukamel has again invoked the notion of intramolecular
dephasing to discuss the erosion of coherence in this
model. As the reduction scheme leading to equations
for the {PK} is different from that leading to equations
for the populations of the optically active modes, the
description of the dephasing process is naturally differ-
ent. However the physical origin of this dephasing is
identical in both approaches and lies in the intramolecu-
lar vibrational relaxation (IVR) process. Mukamel has
thus concluded that provided IVR is fast relative to the
optical process, a Markoffian Pauli-type master equa-
tion is obtained for the number of photons absorbed. On
the other hand Schek, Jortner, Carmeli, and Nit-
zan!®'%:18 haye argued that rapid IVR is a necessary but
not sufficient condition for a time evolution governed by
a Pauli master equation. They have shown that one has
to assume in addition that the radiative coupling between
states in ranges II and III varies essentially randomly
with the state indices. The approach by Schek and Jort-
ner’ is based on some phenomenological arguments.
Qur approach is rigorous, leading to an explicit solution
which becomes exact in the (practical) limit where the
IVR rate greatly exceeds the Rabi frequency, provided
that the latter is much larger than the inverse density
of states in the radiatively coupled molecular manifolds.

The present paper gives the details of our approach
which was briefly described in an earlier communica-
tion.!® In Sec. II we discuss in more detail the molecu-
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lar model, focussing attention on the role of IVR and on
the choice of the molecular basis set. In Sec. Il we
discuss the conventional approaches to the derivation of
Pauli master equations and argue that they are not ap-
plicable in the present context. Section IV presents our
approach based on the random coupling model (RCM) de-
scribed in a previous paper!'® (referred to as Paper I).
We discuss the role of slow varying components in the
coupling and argue that such contributions are negligi-
ble. Finally we discuss the implications of the results
obtained and speculate about possible extensions of the
model used.

1. THE MOLECULAR MODEL

It is clear from the discussion of the previous section
that IVR plays an essential role in the dynamics of
multiphoton excitation of polyatomic molecules. It will
be useful for our future discussion to elucidate this point
in greater detail. As all relaxation processes within
isolated systems, 2 the existence of IVR as a relevant
observable process, stems from the ability to prepare,
at least in principle, a nonstationary molecular state
whose subsequent evolution in time is observed as vi-
brational relaxation. Within the molecular vibrational
manifold this may be achieved because of the optical
selection rules characterizing the zero order molecular
(hormal mode or bond mode) basis. Transitions into
optically active states appear as sharp resonances in
range I. In range II these zero order states are im-
bedded in a quasicontinuum of similar states which do
not carry oscillator strength for transitions from lower
states.?' They then play the role of doorway states and
appear in the spectrum as broadened resonances. Such
broad resonances {width~ 100 cm™) have been recently
observed in the overtone absorption spectrum of ben-
zene'® and naphthalene.® The width of these absorption
features provide a direct measure of the IVR or the in-
tramolecular dephasing rate.

In applying this picture to multiphoton excitation of
large molecules it is important to realize that the vi-
brational quasicontinuum which is responsible for the
broadening of absorption resonances is not optically
inert in the usual sense. Each zero order vibrational
state is characterized by a given population of the opti-
cally active mode(s) and is radiatively coupled to states
with one more or one less quantum in such mode. This
situation is portrayed in Figs. 4 and 5(a) for the simple
case with only one optically active mode. The strict op-
tical selection rules are manifested in the fact that any
given zero order level is radiatively coupled only to two
levels-—one above and one below it.

Figure 5(b) displays the same situation in terms of
the exact eigenfunctions of the total molecular Hamilto-
nian H, . This is the basis set which we use in the
present approach. In this picture the doorway state
concept does not apply. Each level is radiatively cou-
pled to a group of other levels; the distribution of
squared oscillator strengths traces the corresponding
absorption line shape. The width T'™®’ of this line shape
is again a measure for the IVR rate. It has been re-
cently shown'™!? that marked structure, like that shown
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FIG. 4. Radiative coupling between zero order molecular
levels, assuming a single 6ptically active mode.  is the
radiative coupling between levels of this mode. N denotes the
intramoleculer coupling.

in Fig. 5(b), persists in SFy even when it is excited to
high vibrational levels (e. g., following absorption of

~ 20 CO, laser photons on the average,!! or in hot mole-
cules with temperature ~ 10002000 °K'?).

The distribution of oscillator strengths between eigen-
states of the total molecular Hamiltonian resulting from
the intramolecular interactions, leads to a dilution ef-
fect®*: Consider the matrix elements L ga,xe1pp Of the
radiative interaction between the zero order molecular
states la) and 1b) (with K and K + 1 photons absorbed)
and the corresponding matrix elements L4, , (x+1)s be-
tween the eigenstates | a) and | 8) of the total molecular
Hamiltonian. We use the notations (| |}y, «.,, and
{ ul)g, k.1 to denote the average magnitudes of these
elements (|t g, (el and (I g, e1)sl)s respectively.®
These quantities roughly satisfy (see Appendix A)

<[ H l 2>K.K+1 =( ‘ n ‘2>K.m1/r1(('fr)mpm1 s (1. 1)

where pg,, is the density of vibrational states in the en-
ergy region (K + 1)iw (w is the frequency of the absorbed
photons) and where I‘,‘;‘j}m is the sum of widths associ-
ated with IVR in the energy regions K#w and (K + 1)7w.
More detailed expressions are provided in Appendix A.

With these concepts cleared, the molecular model is
described in terms of the characteristic molecular pa-
rameters as follows:

(a) Range I is characterized by the positions of those
levels which are radiatively coupled to the initial
(ground) state by multiphoton absorption, and by the ra-
diative couplings p (Rabi frequencies) for the corre-
sponding transitions. In this region |uip<<1.

(b) Range II is characterized by the density of states
Pk in the different manifolds K (corresponding to molec-
ular energies KAw) and by the diluted radiative coupling

elements p between states in these manifolds. The on-
set of range II is defined by the conditions?
r“p>1 (I1. 2a)
uppe>1. (I1. 2b)

2073

Using Eq. (II.1), condition (II. 2b) is seen to be equiva-
lent to

(E|Bp/T® > 1,

where |l now is the order of the Rabi frequency for
range I transitions. Taking |l ~1-10 cm™ and '™’
~10-100 cm™ we see that this condition is satisfied al-
ready for regions of relatively small density of states
{(p2 10° cm). Another implication of inequality (II. 2b) is
that the transitions between the quasicontinuous mani-
folds in range II (Figs. 2, 3) correspond to the strong in-
tercontinuum coupling situation where

(11. 3)

nzq 1 |2>K.K¢1prK+1 >1. (IL. 4)

In what follows we shall impose another condition on
the relative magnitudes of the radiative coupling and the
IVR widihs in range II. We require {in terms of the un-
diluted Rabi frequency)

lZ|/rw«<1. (1. 5)

Physically it means that in the zero order basis (excita-
tion in a ladder) the dephasing rate '’ is much larger
than the radiative coupling . In the molecular eigen-
states basis inequality (II. 5) expresses the requirement
that the spread I'*®’ of the absorption probability in
range II is much larger than the Rabi frequency. In
most theories which derive a Pauli type master equation
from the Schrodinger equation (II. 5) constitutes a neces-
sary and sufficient condition. We shall see however that
one has to distinguish between the case where the de-
phasing results from random modulations of the system,
created by an external source [where indeed (IL. 5) pro-
vides a necessary and sufficient condition] and between
the intramolecular dephasing where the required random
nature of the modulation leads to another restriction on
the nature of the radiative coupling i, namely the ran-
dom coupling requirement to be discussed below.

{c) Range III behaves, as far as the multiphoton dy-
namics is concerned, like range II. Photon absorption
above the first dissociation threshold again amounts to

{ix+1,b%} rw
W E=xK+ ho
m
{|K0)} i-x %W E=K7\w
(a) (b)

FIG. 5. Radiative coupling schemes in the zero order molecu-
lar basis (5a) and in the exact molecular basis (5b}. The mix-
ing of zero order states due to the intramolecular coupling W
leads to a redistribution and dilution of the oscillator strength
as shown in (5b). This redistribution determines the line shape
for IR absorption by a molecule prexcited to the energy range
E=Kkw.
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transitions between manifolds of molecular levels. We
introduce the dissociation process phenomenologically
by assigning to each level in the Kth manifold a width
Yg+ Vg vanishes (or rather becomes equal to the IR de-
cay width) below the dissociation threshold, and may be
small relative to the optical interaction slightly above it.
Well above the dissociation threshold (7-8 quanta for
SFG)6 the dissociation probability becomes larger than
the radiative transition rate and this region marks the
effective termination of the photon absorption process.

(d) Between range I where | 11p< 1 and range II which
is characterized by (I ul)p>> 1 lies an intermediate en-
ergy range where (|l ul)p= 1. Here the direct solution
of the Schrédinger equation is cumbersome while the
statistical methods which simplify the treatment of range
II are not applicable. Fortunately, the energy spread of
the intermediate region is small. For SFq in this en-
ergy range the density of levels grows by about an order
of magnitude per 1000 cm™ and it is therefore likely that
no more than one step in the multiphoton absorption pro-
cess falls within the intermediate case. For larger
molecules p rises more sharply, therefore the inter-
mediate region may be “jumped over” altogether. In
the present paper we disregard this region and assume
that range I feeds directly into range II.

Anticipating the need for an essentially random be-
havior of the coupling we introduce now the random cou-
pling model (see Paper I). We take range I to consist
of the discrete levels 10), |1)... [ - 1), and ranges II
and III as consecutively coupled manifolds {|Ia)},
{lg+1a)}...{IMa)}, where a denotes the level index
within the particular manifold. Physically K=0,1,...,
I, I+1,...,M denotes the number of photons absorbed
at each stage. It is assumed that levels in manifold M
dissociate rapidly enough so that further photon absorp-
tion may be disregarded.

In the RCM the radiative coupling elements p;, s o
W,J"=1I) or {;4,14 are assumed to be random functions
of their level indices so that

Branatar S gor + 0l ra,rrar » (IL. 6)
where
5y =0 (I.7)
and
(BLL 7 g7+ o Obh s, ot ) =(BRD) 5 o (B kB2 kBB oo
40, 40070 gBugst Ours) + (11. 8)

The averages here are simple arithmetic averages taken
over all states of the corresponding manifolds {(see Sec.
II of Paper I for rigorous definitions). Similarly

Mr-1,0e M) r-1,1 + Ols1,0a 5 (0.9)
where again {5u) =0 and where
{Blhre1,160H 1-118) =(61%) 11,1048 - (1. 10)

The rationale behind these assumptions lies in the ob-
servation that in ranges II and III the radiative coupling
elements are essentially overlap integrals between high-
ly exciting (therefore highly oscillatory) vibrational
states of the molecule. These elements are therefore

B. Carmeli and A. Nitzan: Intramolecular dynamics. 11

rapidly varying functions of the level indices. These
rapid, essentially random variations are superimposed
on a much slower variation, taking place on the energy
scale determined by the IVR rate I'*’ (see Appendix A).
The averages (i) and (5u% vary indeed on this slow
scale. In this paper we neglect this variation in the
spirit of inequality (II. 5} and assume that {(u) and (6p.%
depend only on the manifolds involved and not on the in-
dividual levels (or the energies) within these manifolds.

In summary, the excitation process within manifolds
II and III is characterized by the following parameters:
density of states p [which determines also the energy
scale for the rapid (random) variations of the radiative
coupling; this scale is of the order of the level spacing
p']. The IVR width T'*’ (which determines the range
of the slow, systematic variation of the coupling), the
radiative coupling 1, and the dissociation rate y. We
anticipate (and show later) that the multiphoton absorp-
tion process will involve rates given by 2a(| iz 1%p which
determine the interesting experimental time scale 7.
The inequality

fp> 1> R/TW, (11.11)

which is equivalent to inequality (II. 10) of Paper I, is
obviously satisfied. This is the necessary requirement
for the validity of the procedure described in Paper I
and used below in Sec. IV.

1. THE WEAK COUPLING LIMIT

Before describing the RCM solution to the multiphoton
excitation problem we dwell briefly on the conventional
derivation of the Pauli master equation which rests on a
weak coupling assumption. In fact the weak coupling
solution of Zwanzig?’ is given in a form which is appli-
cable to the multiphoton absorption problem in ranges
II and III. We review Zwansig’s solution in Appendix B.
For simplicity we consider the case where range I con-
tains a single discrete level |0), followed by manifolds
{11a)},...,{IMa)}. Provided that inequality (Il.11)
holds, the weak coupling procedure results in the Pauli
master equation

dd%(t) =E[kJ’JPJ' ®) _kJJ'PJ‘(t)]

J!

,0'=1,2,...,M), (L1

where the rates are given by the golden rule expression

kygr = 27’<l M ’ Bk1Py - (I11. 2)

It should be noted that this solution does not require any
random coupling assumption. Indeed, for radiative cou-
pling satisfying Eqs. (II.6-8), Eq. (IIl. 2) may be written
in the form

kyr =2m([ (g | 2+<] 80| D s

so that the purely random part and the slowly varying
background contribute additively to the rate. A similar
result was recently obtained by Mukamel* in the Mar-
koffian limit of his approach to the multiphoton excita-
tion problem when he keeps only the lowest order in the
radiative interaction (i.e., the weak coupling limit).
We shall see that this result does not hold in the strong

(IIL. 3)
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intercontinuum coupling limit [defined by (II.4)], which
is the relevant limit for multiphoton excitation of large
molecules.

V. TIME EVOLUTION FOR MULTIPHOTON
EXCITATION IN THE RANDOM COUPLING MODEL

In Paper I we have presented the solution for the time
evolution in a random intercontinuum coupling model.
The model discussed in Paper I can be adopted with
slight changes to the model described in Sec. 1I for the
problem of multiphoton excitation of large molecules.
The following changes are needed:

(a) The single initial discrete level which precedes
the quasicontinuous manifolds in the model of Paper I
has to be replaced by several consecutively coupled dis-
crete levels which correspond to the molecular range I.

{b) Each level in manifolds {| Ka)} with K#iw larger
than the dissociation limit should be assigned a width
¥x corresponding to the (irreversible) dissociation rate
from this level.?® This expresses the fact that above the
dissociation threshold the molecular states used are no
longer exact eigenstates of the molecular Hamiltonian:
They are states obtained in an approximation which ne-
glects the coupling leading to dissociation. %®

It may easily be seen, as noted by many workers, that
the mathematical description of the time evolution in
range I is not affected by the consecutive evolution in
ranges II and III apart from the damping imposed on the
upper I - 1) level. This results from the irreversible
nature of the transition from this level into the upper
energy manifolds, which enables us to obtain an effec-
tive Hamiltonian for the time evolution in range I. Let

ao(t)

al(t)
a(t) = (1v.1)

.

al-l(i)

be the vector of amplitudes for the levels in range L
Then the time evolution in this region is given by 19

ialt) =H ,a(t) (v, 2a)

(Hyg)s, = (B = 30Ty 08,1000+ 14304, 101 » (IV. 2b)

where T, is the inverse lifetime (discussed below) of
the level | - 1) resulting from its “decay” into the upper
manifolds.

Similarly, the time evolution in ranges II and III is
affected by the range I dynamics only through the time
dependence of the population of the state |7 -1), P;,(#)
=la,,(t)|2, which feeds these regions. This again re-
sults from the fact that the transition from level | - 1)
to the quasicontinuous manifolds is an irreversible
damping of the level |T — 1), which depends only on its
instantaneous population. This may be shown rigorously
using the diagramatic approach of Paper I.

Introducing the dissociation lifetime into the formal-
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ism of Paper I is again a trivial matter. One needs
only to realize that this amounts to replacing the Hamil-
tonian H, by an effective one, in which a diagonal imagi-
nary part is added to account for the finite dissociation
lifetime. The formalism of Paper [ may thus be used
where each free propagator of the form (U—E,{‘,‘H'n)'1
is replaced by (U — E, + 5ivg)™"', and similarly (U - E
—Ego—in) ' = (U= E - Eg, -ive ™

With these additions, the formalism described in Sec.
IV of Paper I is carried through with no other changes;
the time evolution of the populations P;, P;,4,..., Py is
determined by the kinetic equations

P() =1/7[RP () +SP, ()] , (Iv. 3)
where
Pl
Pra
P= (Iv.4)
PM

is the vector of populations of the different manifolds
(Pyt),K=I,I+1,...,M, is the probability that K photons
are absorbed at time ¢]. R is the rate matrix (with row
and columa indices taking integer values from I to M).

Ry, =~ (Tt + T e+ i) (IV.5a)

Ry ka1 = rlgl), K (IV. 5b)
where

rl(('.)x' = 2"<5#2>K1{'9K' (Iv.6)

is determined only by the random component of the cou-
pling. Finally the vector § may be written as a sum

S=8" 5@ (v.7)

S originates from the random coupling component and

is given by

(r)
Tyl

0

§7= s (Iv.8)

.

0

while S ¢’ results from the underlying smoothly varying

coupling. Its components
SI(c)
Sia
glor= (Iv.9)
S
are defined from
s =ciri., (V. 10a)
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J-1
S8, =C, [111(1 —C])] CiT{4

=2,3,...,M), (IV.10b)

where
r$hr=2n(wi,y, o (Iv.11)
Co=(l+Npsa1esCr )™, (Iv.12)

and where N is the intercontinuum coupling parameter
associated with the smooth coupling component.

Ngp= 772(“’>§(LPKPL . (Iv.13)

Equations (IV.2), (IV.3) (with Py =lga;(1%), and
(IV.5-13) constitute our final results for the dynamics
of multiphoton excitation in large molecules. The fol-
lowing points are in order:

(a) Range I processes are effectively decoupled from
the consecutive absorption steps. Range I dynamics is
determined by Eq. (IV.2) which describes a relatively
small (I level) system with an additional decay of the
upper |1 -1) level. If the corresponding decay width
was larger than the Rabi frequency, it could cause
damping of the coherence effects characterizing the
small molecule behavior in range 1.7 However we note
that the radiative coupling elements between levels in
range I are of the order || of the coupling between
levels of the optically active mode(s), while the radiative
elements between the level |7 - 1) and the levels {| 7o)}
are of the order of the diluted coupling (I p!)=ul/
VT [ef. Eq. (II.1)]. Thus

1:‘1-152”(“1'2)91z |H| (21r|ﬁ’/1"“"))<< lﬁl ’

where the expression for T, is discussed below and
where we have used inequality (II. 5). We conclude that
provided (11.5) holds, i.e., intramolecular dephasing
rate in vange 11 is lavgey than the Rabi frequency of
range 1, cohevent effects are observable in range 1.
Indeed photon echoes®‘*’ and coherent pulse propaga-
tion3*® were observed in SF.

(Iv.14)

(b) The “escape” from range I to range II originates
in principle from two processes which, in the approxi-
mations described in Paper I, contribute additively to
the rate. If the radiative coupling elements are purely
random so that <“>1-1.1 =0, the escape rate f‘,_1 is

Tpy=T%) = 2m6u®) 1,001 - (Iv. 15)

In the presence of a constant (or smooth component (i)
#0, Eq. (IV. 3) indicates that direct transitions from
level {7 — 1) to all the higher manifolds are possible.
Accordingly,

L= rl(tl),l + ZS}C) . (Iv. 16)
PED
It may be shown that
2,89 =c,Tf (IV. 17)

J=l

where C,< 1 is defined as a continued fraction by Eq.
(Iv.12).

In actual situations there is no reason to expect that

Intramolecular dynamics. 11
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FIG. 6. Model calculation of the contribution of the smooth

coupling component to the coherent (direct) multiphoton excita-
tion. Dashed line——40 manifold model. Full line—80 mani-
fold model. Parameters are given in the text.

radiative coupling elements involving molecular eigen-
states from ranges Il and III will have an unusually large
smoothly varying component. Therefore in general
either T’<«< 1" or '~ " and then Eq. (II.4) im-
plies that N> 1. [N denotes elements defined in
(Iv.13).] Inthe presence of many possible absorption
steps Eq. (IV.12) then yields C,<<1. In either case we
conclude that

fl-l =T/, (Iv. 18)

and the contribution of a smoothly varying vadiative
coupling component to the vate of escape from range 1
may be disyvegarded.

(c) The molecular manifolds belonging to ranges II
and IIT may be in principle directly populated by a co-
herent multiphoton absorption from the level |7 - 1).
These coherent transitions arise from the smoothly
varying radiative coupling component. The discussion
above leads us to conclude that contributions of these
direct steps to the overall transition probabilities may
be disregarded. To see this point in greater detail we
present in Fig. 6 two computations of the smooth cou-
pling contribution to the multiphoton absorption rate. In
one example ranges II and III are taken to contain 40
manifolds (corresponding to 40 photon absorption steps).
The parameters in this computation are chosen to be
(Wra,1=1.0, {u)g, k0 =0.9 (K=1), p;y=1.0, and py=1.5
(K=1). Shown are the transition rates for the coherent
transitions from the level |I —1) to the Kth manifold.
Their sum C,;T{%},; [cf. Eq. (IV.17)] which represents
the rate of coherent transitions from level i —1) to
upper manifolds is obtained to be 1.79, while I'{%} ;
=6. 28 which shows the damping of the coherent process.
It should be noted that the cutoff J =40 imposed in this
calculation is not based on any physical consideration:
As we consider here essentially instantaneous transi-
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tions, a cutoff based on the efficiency of the dissociation
process is not relevant here. In principle the number
of contributing manifolds is limited only by the value of
the intermanifold radiative coupling (which go to zero at
very high molecule energies) and may be much larger
than 40. This implies an even stronger damping of the
coherent transitions. In the second example displayed
in Fig. 6 ranges II and III are represented by 80 mani-
folds, p, =100 for all K=1, | V;_,;1%=0,016 and®

| Viga! 221 Viy,rl 2exp(~0.037). Here we obtain
C,T{¢) ;=0.25 while T'J9} ; =10.

It is interesting to mention that intercontinuum cou-
pling models based on a constant (or smoothly varying)
coupling have been solved before® (yielding the coherent
part of the evolution obtained here) and applied to mo-
lecular photodissociation and related problems.* These
cases involve coupling to translational continua rather
than to dense manifolds of bound vibrational states, and
a constant coupling assumption seems to be relevant
here.

(d) The time evolution in ranges II and III, as de-
scribed by Eqs. (IV.3-13) corresponds to the kinetic
scheme shown in Fig. 7. Here L marks the onset of
range III [i. e., the dissociation threshold lies between
(L - 1)/iw and L#w] and y,~0 for J<L. As we saw
above, the coherent processes in the continuous and
quasicontinuous regimes may usually be disregarded
leaving an incoherent time evolution described by the
master equation

P(t) =RP(t) +SP, (1) , (IV. 19)

which was proposed phenomenologically before, and ap-
plied for the purpose of fitting experimental multiphoton
dissociation by several workers. (8

{e) We have recently'® tested the results obtained
here by numerical simulation, solving the Schrodinger
equation for a few coupled manifolds of levels with suit-
ably chosen coupling elements. The simulation results
are in excellent agreement with the kinetic scheme de-
scribed above.

(f} The master equation (IV. 19) is similar to that ob-
tained under the weak coupling assumption, Eq. (III. 1).
The difference, as noted in Sec. III, lies in the fact that
in the weak coupling equations the random and constant
coupling components contribute additively to the rates,
while our results indicate that in the strong coupling
limit the constant coupling contribution may be disre-
garded.

(g) Itis interesting to note that according to our re-

The kinetic scheme for multiphoton excitation in ranges II and III of a large molecule.

sults, if by some accident of nature a particular radia-
tive transition in range II involves smoothly varying
coupling elements (€. 8., Kya, a1)o Or SOme K is inde-
pendent of o and o’ in the relevant energy range) the
multiphoton absorption process is effectively blocked at
the (K +1) step. It may be shown®? that for this to occur
it is sufficient that pg,, &4, i independent of a or o’
so that this coupling is practically separable.

It is interesting to note that recent calculations by
Quack® ® seem to imply that the noncoherent dynamics
in multiphoton excitation of large molecules may result
from the random initial phases characterizing the initial
molecular distribution. In fact, Quack’s calculations®®
have been performed using a random distribution of
coupling matrix elements.® In Appendix C we show
that initial random phases are not sufficient for a subse-
quent incoherent evolution in a model with smoothly
varying coupling.

(h) The calculation leading to the results (IV.3-13) is
based on the assumption that the systematic (as opposed
to random) variation of the radiative coupling in ranges
II and I is slow, so that (| tya, (reyal®) is taken to be
independent of @ and o’ in the relevant energy region.
The magnitude {I 1|2 x, x+ Of this constant is determined
in terms of the Rabi frequency of the optically active
zero order mode and by the structure of the IR absorp-
tion line shape in ranges II and III as discussed in Ap-
pendix A. We have roughly [cf. Eq. (A7)]

(‘ H |2>K, PR (¢ | H’ 2)1{, k+1/Piat)
X3k /(B g - 70) + BT &%) . (IV. 20)

If (1) =0 this quantity should enter for (|6u1%, ., in
calculating the rates (IV. 6) for the master equation
(IV.19). When transitions occur approximately on res-
onance, (IV.20) is equivalent to (II. 1).

(i) It is of interest to examine the order of the error
introduced into our results by disregarding the system-
atic variation in the radiative coupling elements in
ranges II and III. In the mathematical procedure this
approximation enters in the assumption that quantities
like

<l Hra, (k+1yar ! 2>

&, k+1(E) Za: E-FBo+Liy,

_ <IP~K,K¢1(EOU Ea')|2>
== 2_[dEap(Ea) E-E, _ijzri,yx

(Iv.21)

J. Chem. Phys,, Vol. 72, No. 3, 1 February 1980

Downloaded 15 Feb 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2078

are energy independent. Corrections to the results ob-
tained in this way are of the order dI'(E)/dE. Inserting
Eq. (AT) and performing the integral it is easily seen
that (for y, <IT'*7)

ar g gu(E)
dE

Ik

T BT (T (1v.22)

Thus the error in our results is of order |/T |2,
For high intensity fields u increases. As it approaches
the IVR rate we expect increasing deviations from the
incoherent evolution described by Eq. (IV.19).

More insight into this point may be obtained by recon-
sidering inequalities (II. 3) (definition of ranges II and
III) and (II. 5) (condition for a Markoffian behavior).
Combined, they take the form

(o)t < [ul/r <« 1.
an3 (11.5)

(Iv.23)

When (II. 3) is not satisfied, excitation takes place be-
tween individual levels —range I. Increasing the field
intensity up to a level where (II. 3) is satisfied brings us
to range II and the time evolution is governed by Eq.
(Iv.19) provided (II.5) is satisfied. Increasing the field
intensity further until g > I'*®) (the radiative coupling
within the zero order optically active mode is much
stronger than the intramolecular dephasing rate) results
in a situation where excitation proceeds mainly within a
few zero order levels-—those appearing on left in Fig. 4.
Hence, we are back into a range I behavior. In practice
' increases and | decreases with increasing molecu-
lar energy, so that increasing the field intensity may
have the effect of increasing the size of range 1.

The limit o > I'®? will be hard to reach if current
estimates of I'**?~10-100 cm™ (in range II) are correct.
The intermediate case o~ I’ is of more practical im-
portance, and is currently under study.

V. CONCLUSION

In this paper we have described the basis for the Pauli
master equation for multiphoton excitation of large mole-
cules. We have seen that the time evolution is governed
by such an equation provided that the inequalities sum-
marized by (IV.23) hold, and provided that the radiative
coupling elements between molecular vibrational eigen-
states vary essentially randomly on an energy scale of
the order of the level spacing. The rates which enter
into the master equation may be calculated from the
Golden Rule expression with the variance in the radiative
coupling entering for the interaction, and with the den-
sity of levels associated with the effectively coupled
modes. As {16u1? is proportional to the field intensity,
this master equation leads to dissociation probability
which is a function of the pulse energy rather than its in-
tensity, and to delay times associated with the appear-
ance of dissociation products which are proportional to
field intensity, in agreement with experimental results.

Inequality (II. 3) or other criteria?® for the onset of
range II always hold for large molecules after a few ex-
citation steps. When the field intensity increases so
that inequality (II.5) ceases to hold, we expect that the
time evolutions associated with the multiphoton excita-

B. Carmeli and A. Nitzan: Intramolecular dynamics. Il

tion process will become increasingly coherent. Fur-
ther theoretical and experimental studies of this point
are desirable.
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APPENDIX A. DISTRIBUTION OF IR OSCILLATOR
STRENGTHS

Consider the transition between the molecular mani-
folds K and K + 1 corresponding, respectively, to K and
K + 1 photon absorbed by the molecule (Figs. 2, 3, 5).
Let the density of states in these manifolds be p,, py.q
and denote the anharmonic widths (dephasing or IVR
rates) within them by T'{"’ and T'{4). (If W is the an-
harmonic interaction between the zero order molecular
states in the energy region corresponding to K absorbed
photons then T =27 W,1%,). We denote (Fig. 5) the
zero order vibrational states in the manifolds K and
K+1by {!a)}and {I5)}, with the zero order energies
E, and E,, respectively. The corresponding zero or-
der dressed states are {|Ka)} and {I (K + 1)b)} with ener-
gies Ey, = E, + iwK, Eg.4=E,+Hiw(K+1), w being the
photon frequency. In the simple case where there is
only one optically active mode, for any state la) there
is a single state [b) which is radiatively coupled to it.
We denote the average distance between such pairs by
Eg kv. The corresponding molecular eigenstates (diag-
onalized in the anharmonicity) are denoted {l @)} and
{I ®} and their dressed counterparts are {|Ka)} and
{I(k+1)g)}. Then®

Kalay|? =~ [ Wy |/ [(E, - Eo)* + GTE)], (A1)

where we assumed that anharmonic broadening leads to
Lorentzian line shapes. Similarly

| (BIB) |2~ | Wyt |/ I(E, - B2+ (BTEN .

Consider how the radiative interaction pq, (x+1)s
=(Ko!|ul(K+1)p). Expanding the state |a) in the set
{la)} we obtain

(A2)

Ko, (k)= Za: ke, (k+1)ale ‘ @ (A3)
or, taking the absolute squares and performing coarse
grained averaging over the molecular manifold {a} (see
Paper I, Sec. II), we obtain (assuming that cross terms
may be disregarded because of the random nature of the
overlap integrals (Ka!Ka))

<|Nxa. (mi)a‘z): Zl#xa.(xmem(a "1)]2 .

It should be noted that the residual o and B dependence
on the lhs of Eq. (A4) results from the systematic varia-
tion of the coarse grained average. Next we note that p
couples a single state | (K + 1)b) to a given state 1Ka), so
that

(A4)

<| “Ka,(xdmlz):z I “m,(xd)blszlB)l2|<ala>l2 .
(A5)
Inserting Eqs. (Al) and (A2) leads to
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2>_ (ll"'i >K K+l fdx

<| Mg, (K+1)B| Dot

(T /2n)(T i)/ 2m)
T —E)t+ (T2 ][(x+ Eg, g1 - Eg) + (T)/2)7]

(A8)

where we have replaced 3, by o, [ dx, E, by x and E, by
x+Ey g.q. We also note that | kg, (x| ° is relatively
weakly dependent on the particular zero order a and b
levels, and we have pulled its average out of the inte-
gral. The integral in (A6) may be evaluated to a rea-
sonable approximation by extending the limits {6 +«,
yielding

TE1D e s
<| Hra, (K+I)B|2>: Lﬁlﬂl
DK+1
l—\(w
2 K+l . (A7)
(E + E}( K+1 —Ea) + (1—;(10;“1)2 ’
where
Tka=T¢ + T} . (A8)

Equation (A7) relates the anharmonic width associated
with the IVR at molecular energies K#iw and (K + 1)iw
to the predicted IR absorption (or emission) line shape
between the same energy regions. For a given E, the
dependence of (A7) on E; (= E, + /iw) determines this
line shape. Note that some additional broadening may
result from the distribution of energy differences E,

- E, around their average E ,.;.

When the exciting photon frequency is approximately
in resonance with the molecular IR transition, we have
Ey g =Eg—E,~lw. Then Eq. (A7) leads to

201k gl

. (A9)
TPk 1FK, K+t

<|”| >K,K+1—

In a more compact notation we write (| i) for the diluted

radiative interaction and (| u|) for the “bare” one; the
latter being the quantity known from optical data ob-
tained in range I. Then

pi)

<l#|>ﬁw-

5 (A10)

APPENDIX B. DERIVATION OF THE PAULI
EQUATION IN THE WEAK COUPLING LIMIT

Here we review Zwanzig’s derivation?’ of the Pauli
master equation and adopt it for the multiphoton excita-
tion process in ranges II and III. Starting from the
Liouville equation for the density operator w,

ow

8_t=—l£?/U(£= £0+£1;£0:[H0, ] £1:[}J.]) . (Bl)
Zwanzig introduces the projection operator D which pro-
jects w on to its diagonal part in the representation de-

fined by the eigenfunctions of H,

<Dw) - wmmﬁmn .

(B2)

In the present problem m and n denote individual states
belonging to the different manifolds

m={Ja); n=a"). (B3)

Intramolecular dynamics. |11
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Using what is by now a conventional reduction proce-
dure, Zwanzig obtains the following equation for the di-
agonal elements of the density matrix

y t
gul"_l(i) == j; dti Z xmm,nn(ti)[wnn(t - tl) - wmm(t - tl)] ’

dat n#m
(B4)
where X is the tetradic operator
X(t)=DLexp[-itls - DILNs - D)L, (B5)

and where g is the tetradic unity, In the weak coupling
limit X is taken in the lowest (second) order in L,

X(f) = DL, exp( - itLy) £,0 (B6)

where the identity D£y= £, D=0 was used. Equation (B6)
leads, after some tetradic operator algebra to

Koy n() = = 2| by | > COS(E ) (B7)
En=E, - (eigenvalues of Hy) .
Inserting Eqs. (B3) and (B7) into (B4) we obtain
gw—’%;—“(ﬂﬂft 2 bia, s |2COS(E g oart)
0 Jtar
X[ yr g, rar{t =1) —w;a, ;alt =1)] . (BB)

Next we go through the following steps: First sum over
the states a belonging to the manifold J, putting

PJ(t) :Zw.]u, Ja(t) .

Secondly, we assume that | i, o, 1% is weakly depen-
dent (on the average) on a and a’ and we pull its aver-
age, {Iul%,,. outofthe @, ¢’ summations. Thisisequiva-
lent to the assumption (II. 5) of large intramolecular de-
phasing rates made in this paper. This leads to a
Markoffian behavior: The sum over the rapidly oscil-
lating cosine functions vanishes unless #; is close to
zero. We obtain on this coarse grained time scale

e O IIMCYH D DEPNT] | D )
Jas, Jo
~Ttge,ult) T i rezell)]

Jla, Ja

(B9)

(B10)

On this time scale the oscillating terms behave essen-
tially as 8 functions and

Z SL(E_-M._JO‘_Q NZTTOJ(E.I&—EJ’&') ,

B11
E i, sa (B11)

where p,(E) is the density of states in the manifold J at
energy E. Here the summation over o was replaced by
integration, which sets an upper time limit, ¢<#%p, on
the validity of the result. Using (B11), Eq. (B10) leads
directly to the result (III.1) and (III. 2).

This treatment may be extended to the strong coupling
situation only by invoking the repeated random phase
assumption, *:*1" However the justification for this
assumption for an isolated molecule is not clear (re-
peated randomization is physically associated with ran-
dom external perturbations as discussed in Sec. II).

APPENDIX C. RANDOM INITIAL PHASES ON THE
CONSTANT COUPLING MODEL

Here we show that random initial phases are not a
sufficient condition for a subsequent evolution governed
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by a Pauli master question. We consider two coupled
continuous or quasicontinuous manifolds{ )} and{ [m)}
coupled to each other, so that V,,, =V, independent of I
and m. We assume that at time {=0 only |]) states are
populated so that w,;,(0) =0 for 1+’ and ¥, w,,(0)=1.
w(0) is the density operator at {=0. The Green’s func-
tion elements for this model are found to be

GLEY=[V/Q+NMN/E -E, +in)E -E,, +in), (C1)
s0 that for ¥(f=0) = {1 the amplitude for state [m) is

1 * .
()=~ 3 f_” exp(- iENG! (E)dE

v exp{-iE,t) — exp(~iE,f)
T+ N E, —E,

In these equations N=7’|V1%p,p,, is the intercontinuum
coupling parameter. With the given initial distribution
the population of the {m} manifold is

(Zlent0l) =[5

1+N

XXx: w,,(O)Z

where the average is taken over the initial distribution.
Assuming that the summation over {m} may be calcu-
lated as an unbound integral,¥, ~ [ =, p, dE ., Eq. (C3)
leads to (, |a, (1% =[2/(1+ N)?]27v?t. In the strong
coupling limit N> 1 the rate for populating the {m} mani-
fold is vanishingly small. Thus the {I}~ {m} transition
is blocked. A similar situation was mentioned in Sec.
IV: When {I} is populated by an essentially random pro-
cess, the subsequent transition to {w} is blocked if v,
is weakly dependent on the level indices.

exp(—iEt) —exp(—iE,t)|?
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