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Intramolecular dynamics in large molecules is modeled as a problem involving random coupling between
manifolds of molecular levels. The random coupling model (RCM) is based on the rapid variations
observed in coupling matrix elements involving highly excited bound molecular states, and on the high
density of such states encountered in large molecules. The finite time and energy scales involved in real
experimental situations lead to the observation that the time evolution and spectral properties
characterizing the system do not depend on the detailed arrangement of states and their coupling elements
but rather on low order moments of the distribution characterizing these coupling elements. This provides
the basis for an approach based on ensemble averages. The coupling V is taken as a superposition
V = u + v of a smoothly varying component u = {¥) and a randomly varying (in state space) component
v =V — (V> We introduce a diagrammatic expansion and averaging method to evaluate the diadic
Green’s function for problems involving absorption line shapes, and a similar approach for the evaluation
of the tetradic Green’s function used in calculations of time evolution. With these methods, we study the
time evolution in systems involving discrete states and quasicontinuous manifolds. The solution is relevant
for multiphoton excitation of large molecules, and for intramolecular electronic and vibrational transitions.
We also study the effect of random coupling in absorption line shapes involving interference between

resonances or interference between a resonance and a background absorptions. The mechanism for
coherence erosion resulting from the random behavior of the coupling is elucidated.

I. INTRODUCTION

Intramolecular dynamics, namely, the pathways and
the corresponding rates associated with molecular en-
ergy redistribution, rearrangement, and dissociation
under collisionless conditions, has long been an out-
standing experimental and theoretical problem.! In-
creasing attention has been recently given to the applica-
tion of random coupling models (RCM’s) in the theories
of such intramolecular processes,?™? These processes
may be described in terms of coupling elements between
zero order molecular states which are wildly varying as
functions of state energy or state index. This rapid
variation results from the fact that these elements are
essentially overlap integrals between molecular bound
states which are, for highly excited states, strongly os-
cillatory. In spectral regions of high density of states
such coupling may be modeled by some random distri-
bution.

RCM’s have so far been considered with respect to
various intramolecular dynamics problems. Gelbart,
Freed, and Rice’ and Kay® have applied such models for
the problem of intramolecular vibrational relaxation
(IVR) in large molecules. Heller and Rice® have applied
a separable random coupling model to discuss molecular
predissociation. An RCM has been used by Delory and
Tric® and by Gelbart, Heller, and Elert! to discuss in-
tramolecular electronic relaxation (IER) in large mole-
cules, Druger8 has applied RCM to study the erasure of
interference effects associated with the interaction of
discrete levels with quasicontinuous molecular mani-
folds. Recently such models have been utilized by Schek
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and Jortner!? and by Carmeli and Nitzan'®!! to rational-

ize the loss of coherence in collisionless IR multiphoton
excitation and dissociation of large molecules, and by
Nitzan and Jortner!? to discuss the IR induced inverse
electronic relaxation in large molecules. It should be
mentioned that RCM’s have-a long history in the theory
of nuclear spectra!t and in theories of random solids. !*

While RCM’s for absorption line shapes are relatively
easy to solve (an elegant solution has been provided by
Druger?) the calculation of scattering line shapes or the
time evolution associated with these RCM’s constitutes
substantially more difficult problems. The situation is
similar to that encountered in the theories of nuclear
spectra14 and of random solids.!® The density of levels
(i.e., the distribution of eigenvalues of the relevant ran-
dom matrices) has been obtained within certain approxi-
mations (for some models exactly) while the correspond-
ing dynamical problem is still essentially unsolved.
Mathematically, the difference lies in the fact that the
spectral problem requires the evaluation of the averaged
diadic Green’s function for the system, while the dy-
namical problem is associated with the averaged tetradic
Green’s function (or, equivalently, the average of the
absolute square of the diadic Green’s function)}.

We have recently described an approach!! which makes
it possible to obtain explicit solutions for the time evolu-
tion associated with intercontinuum random coupling
models. Our approach is based on a diagrammatic ex-
pansion and averaging of the tetradic Green’s function.
Having this, the method can be also applied to obtain
cross sections for light scattering of systems charac-
terized by random coupling, The present article pro-
vides the mathematical details of this approach and de-
seribes some applications. In subsequent publications
we shall apply this method to multiphoton excitation dy-
namics in large molecules!® and to the problem of light
scattering from such molecules. !’
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Attempts to obtain the time evolution associated with
RCM’s have been recently made by other authors.
Heller and Rice® have obtained the time evolution of a
separable (see Sec. II) RCM under assumptions which
strongly restrict the validity of their results. 18 Schek
and Jortner'? have described an approach based on the
derivation of the master equation from the Schrodinger
equation. >* They had to resort however to some as-
sumptions of unclear basis in the course of their deriva-
tion. Kay® has applied an RCM for the problem of in-
tramolecular vibrational relaxation. Some of his quali-
tative ideas are incorporated into the model introduced
in Sec. II. Our mathematical approach is very different
from his and allows for a more direct and explicit evalu-
ation of observable quantities in the presence of both
random and smoothly varying components in the intra-
molecular coupling.

To end these introductory remarks, it should be
pointed out that the intercontinuum coupling models have
a wide range of applications in molecular dynamics prob-
lems. Such models have been applied in the theories of
photodissociation and predissociation of polyatomic
molecules, 2% %! vibrational predissociation of van der
Waals complexes, 22 the relaxation of excited atoms by
collisions with diatomic molecules, ** multiphoton IR ex-
citation and dissociation of large molecules, 1% 11172425
and multiphoton IR induced inverse electronic relaxa-
tion. ¥ For some of these problems (e.g., dissociation
of a triatomic molecule, *' predissociation of small van
der Waals complexes, * and relaxation of excited atoms
by diatomics?®) the constant intercontinuum coupling
model has been applied as a reasonable approximation.
For the others the corresponding RCM is more appro-
priate.

The following section describes the model and as-
sumptions invoked in our solution. Section II introduces
the diagrammatic technique and demonstrates its use for
the familiar model consisting of a discrete level inter-
acting with a continuum or a dense manifold (“quasi-
continuum”™) of levels. In Sec. IV we apply this tech-
nique to the problem of time evolution in an intercon-
tinuum coupling model, which is suitable for problems
like intramolecular vibrational relaxation and molecular
multiphoton excitation. In Sec. V we describe the ap-
plication of this approach to problems involving inter-
ference effects in absorption line shapes. We conclude
by discussing the significance of the solution obtained.
More detailed applications will be presented in subse-
quent papers. %17

1. MODEL AND ASSUMPTIONS

The most general model that is treated by our ap-
proach is displayed schematically in Fig. 1. It consists
of a few discrete levels 10), 11),..., I -1) and a few
dense manifolds {II, )}, {II+1,a)},...,{IM, @)} where
a denotes the level index within the particular manifold.
The discrete levels and the levels of the different mani-
folds are coupled to each other, but levels belonging to
the same manifold are not. Depending on the physical
problem we may be interested in absorption and scatter-
ing cross-sections associated with some of the discrete
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FIG. 1. A general system of coupled molecular discrete levels

and quasicontinuous manifolds. This system is a generaliza-
tion of all models discussed in this paper. V denotes an intra-
molecular or an externally induced coupling.

levels as initial and final states, while the rest of the
discrete levels and all the continuous manifolds provide
the set of intermediate molecular states; or alternatively
in the time evolution of the populations Py-++ P,.,, P,

=Y aPro®*° Py=34 Pys and of the nondiagonal matrix ele-
ments of the density operator associated with the dis-
crete set 0+~ /1. It is essential to our approach that
we do not seek any information about individual levels
IJa) of the dense manifolds.

Consider now the coupling elements V;, ;oo (J,J' >1)
or V, ,iq(J<I,J’>1I). Throughout this paper we as-
sume for the sake of simplicity that all these coupling
terms are real, We distinguish between different kinds
of coupling models:

(2). In the constant coupling model (CCM) Via, srar
and V, ;.. are taken to be independent of @ and a’.

VJa. Joar =Ugge s (m. 1)

(b). In the random coupling model (RCM) Via,srar
and V; ;.. are assumed to be random functions of @ and
@’ such that

Vo, grar=tgy .

(VJa'J:a:>=uJJ. ; <VJ’, ‘;.a'>=u.;';, . (H. 2)
where the averages are defined from
1
<V.ra, e =TT Z ZV.M, Jias (11. 3)
NN & ‘&
1
<V.r, rran = N7 Z Vi grars (11. 4)
at

and where N and N’ being the number of levels contrib-
uting to the sums over o and o', respectively. The case
where u; ;. =0 is referred to as the completely random
or the symmetric random model. More generally we
may have an asymmetric distribution where u,,, #0,

We write

V"a'.,lal =u_,",. +vJu'J'al

V_,,Jlal=ul'}l +1)J'Jla: (II.B)
with
<7}.ra, rran) = (111, sre)=0. (0. 6)

(c). The separable random coupling model is defined
as in the RCM, only intercontinuum coupling elements
are assumed to be separable into products of terms

J. Chem. Phys., Vol. 72, No. 3, 1 February 1980

Downloaded 15 Feb 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2056 B. Carmeli and A. Nitzan:

(Ir. 7

where V,, and V,,,. are independent random functions
of the @ and @’ indices with (V,,) = 0 in the symmetric
(totally random) case and (V,,) # 0 in the asymmetric
case.

Viesrar=Vsa" Viyrar,

To understand the scope and limitations of these
models, it is important to introduce the coarse grained
nature of the averages (II.3). We assume that:

(1). The manifolds are dense, that is the average
level spacing of,‘ in the manifold J(J = I) is much smaller
relative to the inverse experimental timescale 7!

Fpy>»1  (J=1I). (II. 8)

(2). The coupling elements V ;4 ;.o and V; .o vary
on two vastly different energy scales. There are rapid,
essentially random, variations over energy distance of
order p~! (i.e., the level spacing). These variations
are uncorrelated: the coupling elements involving the
level |Ja) are independent of those involving the level
|Ja"y {a#a’) even for nearest neighbors @ and a’. In
addition there may be a slow systematic change in the
coupling over a much larger energy scale AE,

It is then possible to divide any manifold J (J =) into
energy intervals € satisfying

h"pJ>>h'/€ »>r (J=1)

€ <AE , (11.9)

and to define the averages (II. 3) as coarse grained av-
erages over such intervals. In doing so we separate
between the rapid “random” variation and between the
slow systematic change of the coupling with the level in-
dices. This systematic change is reflected in the re-
sidual weak @ dependence of averages like (V4 ;.o )(J,
J' =1) or {V, ;ie)(J<I,J’ =1); also of higher moments
like (V%4 sear) O (V5 ,1o). The weak systematic change
was neglected in Eqs. (I.1, 2).

Having defined these coarse grained averages we fur-
ther assume

(3). A systematic variation of the coupling occurs
only over energy ranges much larger than the inverse
experimental time scale. The inequalities (II. 9) thus
take the form

Hp,>W/e>T>h/AE (J=I). (I1. 10)

Equation (II, 10) relates the relative magnitudes of
three energy scales: The average level spacing p}’ which
by assumption (2) measures also the correlation length
(in energy space) for the random variation of the cou-
pling, the inverse experimental time scale 77! and the
energy range AE for the systematic variation of the cou-
pling, The separation between these scales enables us
to introduce the coarse grained average defined over in-
tervals of energy lengths €. A pictorial representation
of this situation is displayed in Fig. 2, Similar assump-
tions characterize the RCM which was studied by Kay. 5

The calculation described in the following sections is
facilitated by introducing two further ideas by way of the
following assumptions:

Intramolecular dynamics. |

FIG. 2. A demonstration of orders of magnitudes for differ-
ent molecular and experimental parameters. The quantities
which appear here are defined in the text.

(4). The physical observables of the system depend
only on the distribution of the random coupling elements
and not on the detailed dependence of these elements on
the level indices a. The rationale behind this assump-
tion lies in the orders of magnitude expressed by (I.10)
and Fig. 2. The essential point is the existence of an
interval which is much smaller than the uncertainty
width %/7 of the individual levels, but large enough to
encompass enough levels so that the distribution of cou-
pling elements is essentially sampled within this inter-
val. Under these conditions the detailed dependence of
the elements V4 ;io: (Or V;, ;i0.) On the level indices
@ and o’ within such intervals (as opposed to the slow
systematic variation) should not influence the observed
quantities.

(5). The behavior of the system is characterized
mostly by the lower moments (average and variance) of
the random coupling distribution and is not strongly af-
fected by finer details (higher moments) of this distribu-
tion. The plausibility of this assumption results again
from inequalities (II.10), These inequalities suggest
that we may group levels together over intervals €' which
satisfy € >¢’ > p™! and consider the effective coupling
between such groups. The central limit theorem of
probability theory then implies that this effective cou-
pling will be a Gaussian random variable which is char -
acterized by its two lowest moments.

Assumption (4) enables us to introduce the idea of en-
semble averaging: Since the physically interesting dy-
namics is determined by the distribution of coupling ele-
ments and not by their detailed values, we may consider
an ensemble of molecules, all characterized by this
same distribution and take averages of observable quan-
tity over this ensemble. By assumption (2) we then have

(UJa' J! a;>:<vJu' J’d'>=o (II- 11)

<UJa, Jrar UKB,K'&'> = <U?ra, soan)(Orxd sogrDagdor g
+ 8700y O g Oarg) » (11.12)

where (') denotes here and from now on an ensemble
average.
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Assumption (5) permits us to consider only random
coupling models characterized by a Gaussian distribu-
tion. These are the two simplifying features which make
our approach tractable.

The plausibility arguments provided for assumption
(4) and (5) are by no means conclusive, We have re-
cently undertaken a numerical investigation26 which con-
firms these assumptions for all systems studied. Next,
we introduce our mathematical technique using a simple
soluble example.

i1l. ONE DISCRETE LEVEL INTERACTING WITH A
SINGLE DENSE MANIFOLD-DIAGRAMMATIC
APPROACH ’

The time evolution of an initially populated discrete
level |0 interacting with a dense manifold {| 1a)} (Fig.
2) is easily soluble within the assumptions summarized
by relation (II. 10), On the timescale {< 7 the population
P, decays exponentially with the rate

Ty =27(Vippy . (I1.1)

In what follows we describe the solution for this prob-
lem using the diagrammatic expansion technique with
ensemble averaging, as an introduction to the more
complicated cases discussed in the following sections.

The basic quantities that are calculated here are the
averaged diadic and tetradic Green’s functions which are
related to the absorption line shape and to the time evo-
lution (also to light scattering cross-sections), respec-
tively. Relevant matrix elements of the tetradic Green’s
operator are related to those of the diadic Green’s op-
erator by

S ealB)= 55 | AUIGW + i) dGTU - B+ ity )]

1 e 1 1
- 2‘75[” dU<U—H+in>ba(U—E—H—i(n' —n)),b

(' =0;7'>n) (HL2)

In terms of G, the probability that level |b) is occupied
at time ¢ given that level | a) was occupied at t=0 is
1 -
Py)= = s | AEexp(~iENS , (E) , (. 3)
also, the absorption line shape L(E) associated with a

system whose initial state is |a) satisfies (for dipole in-
duced transitions)

L(E)x - Im [uG(E) u],, , (1. 4)

where u is the transition dipole operator.

Equations (III. 3) and (II. 4) represent observables
expressed as linear functionals of the appropriate
Green’s functions. For systems corresponding to any
of the RCM’s introduced in Sec. II the evaluation of these
expressions is grossly simplified by introducing en-
semble averaged Green’s functions, By assumption (4)
of Sec. II this should not influence the final result. The
Green'’s function elements appearing in Eqs. (IIL. 3, 4)
are thus replaced by the ensemble averages (S,,, ,,» and
(G,y, respectively. Furthermore, by assumption (5) of
Sec, II we may limit ourselves to Gaussian randomness.

2057
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FIG. 3. Elementary diagrams used in the intercontinuum time
evolution problem (Secs. III and IV). Shown are the notations
for the 0-, 1-, 2-, and 3- bare propagators and for the cor-
responding dressed ones. Also shown are the different vertices
which correspond to different » (random) and c- (constant)
groups of matrix elements.

A. Evaluation of (G,)

We use the expansion

Goo=Ghy+ Ggo<ZV0,mG§’a,mvm.0>ch+--- , (1L 5)
o

where G'=(E - Hy+in)™, n— 0+, and where Hy=H - V.
Consider first the symmetric RCM, with V=v, (v)=0.
Introducing diagram elements appearing in Fig. 3, the
expansion (III. 5) becomes

(W1, 6)

where (a) for a propagator line connecting two vertices

a summation of the corresponding states is implied, and
{b) each diagram is calculated as a product of its ele-
ments, Next we take an ensemble average of the expan-
sion (III. 6) term by term. Since we deal with Gaussian
averages, an average of each diagram is performed by
pairing the different vertices (coupling elements), taking
the product of averages of pairs and summing over all
the different pairing schemes, Diagrammatically an av-
eraged pair will be denoted by the corresponding vertices
connected by a dashed line. Thus for example

(11, 7)

Note that Eq. (II.12) implies that when a dashed line
connects vertices which belong to different 1-propaga-
tors, a summation over states is done for the product of
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these propagators and not for each of them separately.

It is easily realized that of the three diagrams appearing
on the rhs of (III, 7) only the first is different from zero.
The other two vanish because [using (II. 12)] they contain
the factor

Z (10 1oz>

ot 117)

1
(E-~x+in)?
(II. 8)
This is general, the rule being that only diagrams with
pairing between vertices which belong to the same 1-
propagator survive. The averaged expansion is thus

<U%, 1ot>zpi .[ dx

== ¢+ et — b+
Sl - 6e)T
(111, 9)
or
(Goo(E)) =(E - Ey+ 3iTy) ™!, (I11. 10a)
where
Lot = - 2Im Z E <1£1f,u4>— in
=2m(vippy =T, (1. 10b)
and where
Ey=Ey+ Dy ;
Dy = PP (Z M)zb@g’ : (I11. 10¢)
« E-E,

Turning now to the more general asymmetric RCM,
V=u+v with (V)=u, we note that (a) only diagrams with
even numbers of random () vertices [and therefore also
even number of constant (¢) vertices] contribute to G and
(b) the survival rule for averaged diagrams still holds:
pairing may occur only between »-vertices which are
nearest neighbors separated by l-propagator. Then
(I11. 9) is replaced by

[l e - ena]”
{1m. 11)
so that (III. 10b, ¢) becomes

Ty =27aiy + i)y = TGP + T

-+
Dy = PP, (Z LTRAUATA 1“>> DY+ D .

E=E, (1. 12)

B. Evaluation of {Gyg o0’

We first calculate the averaged product {{z — H+ in)(',},
X(u—-E ~H-1in')s». For this process we take the prod-
uct of expansions of the two diadics. For the symmetric
RCM the expansion (III. 6) yields
= —

= + + + e

———

(111. 13)

Intramolecular dynamics. !

Now each diagram is composed of two branches: the
upper branch corresponds to G(U-+ in) while the lower
one to G'(U - E ~in'). Taking averages by pairing the
¥ vertices as before we now encounter the possibility of
pairing vertices from upper and lower branches. Thus

——\ #NO— ———Q\/\Q———
<———0\/\.——> —— ——#v»b———
,__W__
T e (1. 14)

A short calculation (Appendix A) shows that in the sta-
tistical limit ({lv41)p; > 1) diagrams in which pairing
occurs between ¥ vertices from different branches are
negligible relative to those in which pairing takes place
within each branch separately. Neglecting the former
we obtain for this model
(U -H+ iU ~ E ~ H-1n")5p)
= (U -H+in)i{(U-E-H-in")g
=(U-E,+ 5Ty WU -E - Eg=5iTy)™", (I1. 15)

where in order to obtain the last equality Eq. (III. 10a)
was used. Inserting this result into the averaged equiv-
alent of Eq. (IMO.2) leads to

(S g0, 0ol EN) =

where T'y; is given by Eq. (II.10b), In the presence of
a constant coupling component the conditions which lead
to Eq. (IT. 14) still hold and we obtain again the result
(I11. 16) with I'y given by (IIL. 12).

(E+iTg)t, (IIL. 16)

These averaged diadic |Eq. (IIL. 10a)] and tetradic
[Eq. (II.16)] Green’s function elements can be used to
evaluate the line shape and time evolution using Egs.
(I1.3) and (IO. 4). We note that the time evolution ob-
tained from Eqs. (II. 3) and (II1. 16)

P(,(t):exp(-I‘Mt) (t>0) s

may be also obtained from the Fourier transform of the
averaged diadic Green’s function using the conventional
expression?” 1(2n)"1 [ =, dE exp(- iE)(Goo(EV 2. This is
not genevally tvue: Only ensemble averages of observ-
able quantities are meaningful and the averaged Green's
function cannot be used for the evaluation of the time
evolution which is quadratic in Green’s function ele-
ments. For example, the averaged elements (G, ¢
vanish in the symmetric random case because in all or-
ders such elements contain an odd number of random
coupling elements. To calculate the time evolution of
the {l 1a)} manifold the tetradic expansion has to be
used.

(1. 17)

In the following sections we apply the same method to
calculations involving more complicated, physically
relevant models.

IV. CONSECUTIVE TIME EVOLUTION

In this section we apply the technique described in the
previous section to the more complicated problem of
time evolution in systems involving several interacting
manifolds.
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FIG. 4. Model used for the time evolution problem studied
in Sec. IV.

Consider the model displayed in Fig. 4. The system
is initially prepared in the state 10). We require the
time evolution of the populations Py, Py, P,, ... of the
state |0) and the manifolds 1, 2, etc. We assume that
only “nearest neighbor” 0-1,1-2,2-3, ... couplings are
nonzero, The coupling elements satisfy the definitions
of one of the models described in Sec. II.

The required populations satisfy

Pt)=- 2—175 f: dE exp (- z;f—t) B/E) (Iv.1a)
B,(E) = -2171 f : U B,(U, E) (IV. 1b)
where
ByU, E)={(U-H+in) " |o,[(U~E -H~in")"],p (IV.22)
B(U, E)=Zﬂ)<[(U—H+ i) ra, 0
X[(U-E-H-in)Y50,0 - (IV. 2b)

Equation (IV. 2b) is equivalent to (III. 2) under our as-
sumption that H is given as a real (therefore symmetric)
infinite matrix in our representation.

A general term in the expansion of the tetradic
Green’s function is characterized by its order in the
coupling V. The coupling elements belong to different
groups defined by the manifolds they couple and by their
random or constant nature, To each group we assign a
given vertex form. Similarly, with each manifold we
associate a different propagator form. These elemen-
tary diagrams are presented in Fig. 3. They are used
to create the diagrams for the expansion of (G,,(U + in)
XG1,(U - E - in)) and to evaluate them according to the
following rules:

(1) Create all the proper?® combinations of free prop-
agators and vertices using the given number of vertices
of each type, arranging them in upper and lower
branches (for terms arising from G,, and G},, respec-
tively). These diagrams should start on their right with
a propagators and on their left with b propagators (on
both branches).

(2) From each diagram obtained in this way form the
corresponding averaged diagrams by combining pairs of
v vertices with dashed lines in all possible combina-
tions. Any two vertices so connected are referred to as
connecled vertices.

(3) Propagator lines corresponding to a given mani-
fold, which terminate on connected vertices are as-
signed the same index o corresponding to the individual

Intramolecuiar dynamics. |
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levels of this manifold.

Such propagator lines are referred to as connected
propagalors. A group of propagators, all corresponding
to the same manifold, all connected within the group but
without connections to any propagator outside the group
is called closely connected. The smallest connected
group consists of a single propagator. (For example the
first of the three diagrams on the rhs of Eq. (III. 14) or
Eq. (III.7) consists of two singly connected 1-propaga-
tors. Each one of the other two diagrams contains one
closely connected group of (two) 1-propagators. )

(4) Evaluate the diagram as the product of its ele-
ments, summing over all the free individual level in-
dices @. Any pair of connected vertices contributes a
(Vv factor.

Several observations may be made while evaluating
such diagrams. We shall refer to these as the diagram
selection rules:

(A) A closely connected group of propagators all lying
on the same branch yields a vanishing factor {and theve-
fore a vanishing diagram) unless the group consists of a
single propagator. This results from the summation
over the group level index which is of the form

Y IF(EL) Bpfdx[F(x)] ,

where F(x) is a product of propagators which, lying on
the same branch, are analytic in either the upper or the
lower complex x plane. Furthermore when more than
one propagator is involved, F(x)- 0 fast enough as |x|
-« and contour integration shows that the integral in
(IV.3) vanishes.

(1Iv.3)

(B) In any ovder of the expansion only diagrams with
the largest number of summations (corresponding to the
lavgest number of closely connected propagator groups)
should be retained. The reason for this is that each o
summation replaces an energy denominator by a density
of states factor. The arguments presented in Appendix
A then imply that each additional @ summation makes
the term larger by a factor ep> 1 (¢ is defined in Sec. II).

(C) Any dashed line connecting an upper bvanch ver-
tex to a lowev bvanch one divides the diagvam into two
parts such that no other dotted lines connect the two
parts., Again, breaking this rule results in diagrams
which are smaller in order of ¢p than equivalent dia-
grams which satisfy the rule,

The last rule implies the following result:

(D) Dashed lines connecting upper branch vertices to
loweyr branch ones do not cvoss each other.

There is one exception to rule D, which involves con-
nections between vertices of the type v, ;. This point is
discussed in Appendix B. To each diagram of the kind
presented in Fig. 5(b) there is an equivalent counterpart
of equal magnitude like in Fig. 5(a). Thus all diagrams
may be selected according to rules C and D provided that
those belonging to the exceptional group (the ¢, diagrams
discussed below) are multiplied by two.

Examples demonstrating the construction and evalua-
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FIG. 5.

(h) S

Diagrams discussed in the text.

tion of the diagrams shown in Figs. 5 and 6 are pre-
sented in Appendices A and B. We now turn to the eval-
uation of the quantities B, and B, {Eq. (IV.2)].

A. The symmetric RCM

We first limit ourselves to the symmetric RCM, tak-
ing V=v; (v)=0. Consider first the calculation of
By(u, E), Eq. (IV.2a). The first few terms in the ex-
pansion of this quantity are shown in Fig. 7. In general
each diagram has segments which are separable into
products of terms belonging to different branches and
other segments which are nonseparable in this sense.
The first step is the renormalization of the separable
segments. We denote

+ — e +

b+ = [(—

ee ]

B (U-E,+ 2§ upper branch

= .4
(U-E-E,-3iT{")™  lower branch (V. 4)

— 00— —
——.V\AOJMLO'W\.—— —-.\N\QLILJL'-O\/\/\.—‘
(a) () . e
. ~
> RN

FIG. 6. Diagrams discussed in the text.

Intramolecular dynamics. |

BO( U,E)-‘— + +

FIG. 7.
(Iv.2a).

Leading diagrams in the expansion of B(U, E), Eq.

- Guaady] ™
5(U—Ela 3i0{)"!  upper branch

= (1v.5)
a(U—E —Ela - 211‘1') -1

lower branch

4““-0\/\/‘0*12—“ muMum
umOWwOqumu um@mm@umdeo-uu
mwévwbwéw@nuu mémw@w@mw@m
(M)"-OVVC ®’VWV®]

Ty =

! (Iv. 6)
s U—Eza zz(r(r) T 1

<

{[U E -Ey - 5T+ T¥M]?  lower branch

upper branch

In general a renormalized (averaged) diadic propagator
has the form

(U= Epo+ 3T+ T )] upper branch
(Gra,re) = §[U = E = Eyo - 36T+ T LT
lower branch (IV.7)
where
=T q=0; TR =200ip,, (Iv.8)
and where E 1o 18 the shifted energy
Erq=Eo+DfT}+ Df )y
2
D =Du=0; D =Re(T p—md ).
(1v.9)

The index () denotes the random origin of these quanti-
ties.

In terms of the renormalized 0-propagators By(U, E)

takes the form
T

BolU,El=~
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= [(U - Eo 211"01))(U E - Eo - z'Lr ) 20 ] 1
(1v.10)
where 0, is the sum of nonseparable segments which
start and end with vertical dashed lines connecting vy,
vertices, having no other similar connections

M vi(uuu(yv\,q ’v\/VV\/\N\A’
I S SRR USSP MMM

’-\/\AMM K aaatens ¢ vaombm»q
‘m}m&gwt i SO SUUF S UUUUUUUIUIIY

(Iv.11)

The factor 2 in front of ¢, in Eq. (IV.10) is a symmetry
factor discussed above and in Appendix B, The con-
structions of diagrams belonging to ¢, is done following
rules A-D above. In addition we note that v vertices
in addition to the four located at the extreme ends should
not appear in these diagrams. When such vertices ap-
pear inside o, [e.g., Fig. 6(f)] we may always find a
diagram of the same order in the coupling which is
larger in order (¢p) [compare Figs. 6(f) and 6(d)].

The calculation now boils down to the evaluation of oy,
It is easily realized that in terms of the renormalized
1-propagator, Eq. (IV.5), 0, takes the form

.gﬂ’* + o, b
Oy = ! ' ' 7'7\ J ;
1 -1

= (vhy? [(Z(U Eio+7iT{3)U-E - Em—zzl""’))

-1
- ol]

=2mip (Wip*[E + T} - 2mipyoy]™

(Iv.12)

where o, is the sum of non separable diagram segments
which start and end with vertical dashed lines connect-
ing vy, vertices, having no other similar connections.
0y is represented by the following partially resummed
series

oy =) .
: Omno
(Iv.13)
Similarly o, is given by
o O T T A
(Iv.14)
and so on. Denoting
X, =-2mip,0, (Iv.15)
we obtain the following recursion relation
r( r(r)
X,= - 8 L e L2 W IV.16
BTy v T o) T Xy (Iv.16)
with
ru ”_..I—XM'—'O . (IV. 17)

Equations (IV.10), (IV.16), and (IV.15) now provide a
complete solution for By(U, E). It is seen that X in Eq.

Intramolecular dynamics. | 2061

last Vo
vertices

{ Bo(U,E)

possxble posvble :
mgrams diagram
J

Z(U,E)

last Vo4
vertlces

o
B3(U,E)

FIG. 8. A demonstration of the structure of diagrams corre-
sponding to B ;(U,E) terms [Eqg. (IV.2a)] for the symmetric
RCM.

(Iv.16) is of order I' and therefore ¢ is of order I'p™,
Comparing to the other term in Eq. (IV.10) (which is of
order T'%) we see that 0, may be disregarded in that equa-
tion. We get

B(U,E)=[(U - Eg+ 3iT{NU - E - E - 5T ]!

(1v.18)
Inserting into Eq. (IV.1) leads to

Pyt)y=exp(-T§0) . (Iv.19)

Thus in the symmetric RCM the time evolution of the
initial state [0) is not affected by the presence of mani-
folds other than that directly coupled to it. We shall see
that this result does not hold in the asymmetric case.

Next consider the calculation of B,(U,E), J=1,2,...,
M. This can be easily achieved by referring to Fig. 8.
The diagram representing B, (U, E) starts with 0-propa-
gators on the right and with J-propagators on the left,
Identifying the first position, going from left to right,
where a vertical dashed line connects two v, ,., ver-
tices, we see that the diagram segment on its left is
essentially o,_; while on its right we have B,.,(U, E). We
obtain

B, (U, E)= (v}, ;-0™'0,4B,(U, E) (1v. 20)
Also using (IV. 1b)

BE)= (Y, ;.9 0,4B,(E) . (1v.21)
Together with {from Eqs. (IV.1b) and (IV.18)]

- 1

and with Eqs. (IV.15,16), this provides the complete
solution for the Fourier Laplace transform B, (E) of

P1).

It may be now easily seen that Eqs. (IV.1a), (IV.15,
16), and (IV.21) imply that the populations P ,(t) satisfy
the set of kinetic equations

Pylt)= - kP (1)

P ()= = (B + B, 0P () + Y, 1P yoy(t)
+RTY Pt J=1,2,... ,M-1

Py(t) = - ki i Pu(8) + B uPy(t)

where

(Iv.23)
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S =1 /1. (1v.24)

To see this we note that

- n n

and that Eqs. (IV.15), (IV.16), and (IV.21) may be re-
arranged to give

P,(H) = -(2m)™ f: dE (—iE)exp <—i-E—t>§J(E) (Iv.25)

- iEEJ == (rf;;).]-i + F(Jf,)hl)EJ

+T9L B+ T 1By . (Iv.286)
Equations (IV.1a), (IV.25), and (IV.26) lead directly to
result (IV.23). Thus, in the symmetvic RCM the popu-
lations of the different manifolds satify a vegulay Pauli
master equation. This result does not rely on a weak
coupling assumption or a repeated random phase ap-
proximation as do conventional theories. 19

B. The asymmetric RCM

We now examine the modifications which enter into
the result (IV. 23) when the randomness is taken to be
asymmetric: V=u+v, (=0, (V) =u. We assume
that both constant and random coupling components
satisfy the statistical limit criterion (12i)p, luip>1.
Also we first limit ourselves in the following discussion
to a system having one discrete state |0) and two mani-
folds {/1a)} and {I2a)} (M =2 in Fig. 4), and discuss the
general case later.

We start again with the calculation of By(U, E) and, as
before, the first step is the normalization of the 0-
propagator. To this end we note that any diagram in the
expansion of (G, must be separable into products of
terms involving either random coupling or constant cou-
pling but not both. This results from vanishing of mixed
terms, e.g.,

according to rule A for diagram selection. The renor-
malized 0-propagator therefore takes the form

- [ g - wa )

(1v.28)
where

is the sum of single branch diagrams which (1) contain
only constant coupling vertices, (2) terminate on either
side with uy, vertices, and (3) do not contain any addi-
tional u,, vertex. This series may be resummed to yield

au

b= = (Iv.30)
P+ N
where
2
U
Nyy=-— 1L - (1v.31
i ;;(U—Emﬁm)(U—Emfrm) )

Intramolecular dynamics. |

and where the numerator on the rhs of (IV.30) is the
diagrammatic representation of

2
Yot = plo) _ Line
; U_Eiot x 7'77 DOI 21r01 (IV' 32)
with
TP = 2mugypy ;
2
(e) __ Yot 3

D = PP (; U-E1a+i77) ) (1v. 33)

Note that Eqs. (IV.31-33) are written for upper branch
diagrams. The corresponding lower branch equations
are obtained by replacing U by U - E and taking complex
conjugate, Egquation (IV.28) may be now written in the
explicit form

\[U-Ey+ 30 + TET!  for upper branch

(Gop = ; . L s EEnTel
[U-E-E)~z(CP+ TN for lower branch
(Iv.34)
where
- D (1 + ReNy,) ~ 3T ImN.
_E +pwy Yo 12) ~21 0 12 .35
Eo=Eo+ Dot (I+ReNp)" + T, Np)?* (1v. 35)

(1 + Rele)Z + (Im N12)2 !

and where T'§;’ and D{;’ are defined in Egs. (IV.8,9).
We note in passing that in the many continua case these
results are still valid, only Ny, is replaced by Ny, de-
fined by

Npet, 1 =Npa, 1t/ (L+ Ny 1)

In the case where the principal part of the summations
in (IV. 31) may be disregarded we obtain the more famil-
iar forms

Ny,us1=0. (Iv.37)

Npy=1"uf ;0005 (Iv.38)

and

T =r/(1+Ny,) . (Iv.39)

Next consider nonseparable segments [segments which
cannot be represented as products of factors originating
each from a different branch of the diagram contribut-
ing to By(U, E)]. In the symmetric RCM case such seg-
ments were resummed to yield the renormalized tetradic
vertex 6,, which in turn was shown to be negligible rela-
tive to the inverse renormalized tetradic 0-propagator.
In the present case it may again be shown {Appendix C)
that nonseparable segments may be disregarded. This
leads to the result [analogous to Eq. (IV.18)]

B|(U,E)= {{v- EO + -é—i(r(();) + ]

X[U-E-E,-3i(C{+ TN, (1v.40)
which leads to [using (IV.1)]
Pty =exp[- (TP + TiNi] . (1v. 41)

Turning now to the caleulation of B(U, E), I=1,2, we
note first the general structure of the corresponding
diagrams. The diagrams belonging to By(U, E) and
B,(U, E) are of the forms displayed in Fig. 9. The main
common feature here is that each diagram contains
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By(U,E)= i <RC (
4 So
.
[S12]
(a)
i (o]
Ba(U,E) =} <RC + 1 (
! So
+ 1 RC
PrYtyYy

(b

FIG. 9. Diagrams appearing in the expansion of B ;(U,E) terms.

(J=1, 2) in the asymmetric RCM. The segments denoted by
RC contain only random vertices. The segment Sy, is defined
in Fig. 10.

three regions: Going from right to left these are (1) a
By(U, E) factor which is obtained from separable seg-
ments terminating on their left in black (vg or ugy) ver-
tices, (2) a constant coupling (CC) region which may be
resummed to yield the normalized forms Sy and Sy,
(defined in Appendix C and in Fig. 10), and finally (3) a
random coupling (RC) region which starts and ends with
vertical dashed lines connecting » vertices on the two
branches. The renormalized c vertices [Eqs. (C1-C4)]
have small magnitudes and therefore CC insertions in-
side the RC region are disregarded in the spirit of Ap-
pendix C. The CC region preceding (going from right to
left) the RC region is needed in order to keep track of
the possibility that random coupling is absent altogether.
The reader should convince himself that diagrams which
do not conform with the forms presented in Fig. 9 may
indeed be disregarded according to the diagram selec-
tion rules.

The diagrams appearing in Fig. 9 are evaluated by us-

ch ):,:; = (Vi) o, (IV. 42)
L) e LN (O WE
= )" o (v P o (1v. 43)

(a)
(b)

(d) S,

0

siodrly el

(e) ~ —l
E+il

tm.%ﬁ

Intramolecular dynamics.

Deeen(T] + [rese hrneeead ] + Dheee{ o~ e Th~{TJeas[] +
+ s

OO + Do+ TR O o] +

D+W+W + .-
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aanane Jriiiird ImO\J\zv\_ CTLTTS 2wz
! RC ; - . (Rc> = (Vs> 0, <I~c’,(\/gl)’2 00)
el e EEE uuu(}vvw st .

with o, and o4 given by Eqs. (IV.15, 16) namely
oy = iV [E +4iT (D + TP TE +4i0 )
0y = i(ipTFNE +iT5))!

(1Iv. 45a)
(Iv. 45b)

Assuming for simplicity that Ny, is real and given by
(IV. 38) we obtain

By(U, E)=(1 + (w3718, + (v}, o mlolud (k) 71s%,)

X Wi oyBy(U, E) (IV. 46)
By(U, E) = (v} M oy[(v]p) " n*piSTyut5y Bo(U, E)
+ By(U, E)] Iv. 47

Inserting these results into Eq. (IV.1b) leads to the cor-
responding expressions for Bi(E) and B,(E), the only
change being the conversion of the By(U, E) term in Eqgs.
(IV. 46, 47) into By(E) = [E + (D + r‘”)] 1. It may be
easily shown that these expressions for F,(E) are identi-
cal to the Fourier Laplace transforms of P,(¢) (I=0,1,2)
which satisfies the rate equations

Pyt = - [T + T8 /(1 + Nyy) [Py (t) (IV. 48)
BB =[D§" + (1+ Np) 2§ 1Py (1)
T3P + TP P,(D) (Iv.49)
Py(t) = [Nyp/(1+ Nyp) I Po(1)
+ T{PPy(1) ~ T3P Py(t) . (IV. 50)

Generalization of this calculation to the several mani-
fold case (M>2 in Fig. 4) is not completely straight-
forward, the reason being that the renormalized ¢ ver-
tices [Egs. (C1-4)] are not always small. For example
in the three manifolds case (M =3 in Fig. 4) the factor
Ny, is replaced by Ny, =Ny, /(1+ Nyy) [ef. Eq. (IV.37)]
which is of order unity for N> 1. There is however
another important situation where the present calculation
is valid: In the many manifolds case (large M in Fig.

4) continued fractions of the kind defined in Eq. (IV.37)
are large for N>1. For example for M- and taking
all N to be equal, we obtain

N: N gANi/Z
1+ N
1+ N

)

(for N>1) .
(Iv.51)

= B + B + B~ red Ao~ Joooeg] + - - -

FIG. 10. Diagrams referred
to in the discussion of time
evolution in the asymmetric
RCM. Renormalized propaga-
tors denoted by Ir and ¢ corre-
spond to renormalization with
only the random or only the
constant coupling component,
respectively.

LA
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The renormalized c-vertices [Eqs. (C1-4)] are there-
fore again small and the diagram selection procedure
may be carried out as for the M =2 case. In particular
the pattern observed in the diagrams contributing to B,
and B, (Fig. 9) is maintained and the results for B, (U, E)
(I=0,1,2) is obtained as a direct extension of the proce-
dure described above. This leads to results for B, (E)

[Egqs. (IV.1b)] which are identical to the Fourier Laplace

transforms of the quantities P,(t) satisfying the kinetic

equations
P(t) =kP(t) , {IV.52)

where P=(PyP, .- P,) and where the rate matrix k may

be represented as a sum of the {wo matrices
k=k©+k ™, (Iv.53)

k"’ is determined by the random coupling component.
Its nonzero elements are

YA AR o A
kl('r,)J:l = 1"}?1,,/1’2 (IvV.54)

with T’ defined by Eq. {IV.8). k®’ includes the rates
induced by the constant coupling component and its non-
zero elements are

kot =-CiToi’/R 5 ki =CiTef/n

J-1
k}“,},=c,[H(1 ~c,)] C\r&/n, {IV.55)
i=1

where T'§’ is given by Eq. (IV.33) and where the coef-
ficients C ; are defined from

CM =1

C,= a +Ng,r1nC 1*1)-1

In writing these results we have assumed that the num-
bers N, ;- are real and thus given by Eq. (IV. 38).

J=1,2,...,M-1. (IV.56)

The following points should be noted concerning this
result:

(a) The random coupling and the constant coupling
components induce two separate rate processes. The
constant coupling component induces a coherent, simul-
taneous transition from the initial level to each of the
manifolds. The random component induces a consecu-
tive process with rates given by the golden rule expres-
sion.

(b) Inthe cases considered here (M =2 and M large)
the contribution of the constant coupling component is
much smaller than that of the random one and may be
disregarded as long as {ul is not much larger than
{1v!). For intermediate M we expect deviations from
this conclusion.

(c) The results (IV.52-56) satisfy the limiting cases:
For u~ 0 we obtain the symmetric RCM result, Eq.
(Iv.23). For v~ 0 we get the CCM result known from
earlier work, 20+%

(d) Consider the two manifolds case with ug =v12=0;
that is a random coupling between the state 10) and the
manifold {| 1a)} and a constant (or rather smooth) cou-
pling between the two manifolds. Expressions (1v.48,

B. Carmeli and A. Nitzan: Intramolecular dynamics. |

50) predict that on the time scale for which these results
hold [ given by Eq. (IL. 10)] no transition occurs between
the two manifolds. We have shown before'® that this is
a characteristic feature of the separable RCM for which
a constant coupling constitutes a special case. A dia-
grammatic approach to the separable RCM is presented
in Appendix D.

(e) In the calculations presented in this paper, we
are considering cases where the random coupling com-

ponent is not correlated, e.g., for the separable RCM
ratr oty =D Bgqt + (1Iv.57

We have treated before'® the separable RCM in the pres-
ence of correlations, where

<Ulavlu'>:<v§>f(Ela_Eja‘) > (IV- 58)
taking a Lorentzian model for f
FE;, — Erg) =€/ (Erq — Er g )2 +€ . (1Iv.59)

For the ensemble average approach to be valid the “cor-
relation length” € must be small, of order € [Eq.

(II. 10)] or less. It is interesting to note that the 1-2
transition rate, predicted to vanish in the zero-correla-
tion separable RCM (Appendix D) is of order € in the
model represented by Egs. (IV.58,59).

{f) The results obtained in this section were tested by
numerical simulations for two and three manifold mod-
els® and were found to hold well. Interestingly, the
analytical and simulation results remain in good agree-
ment with each other also for times much larger than
the theoretical validity range 7~p. This seems to be a
general feature of RCM’s, where the random nature of
the coupling leads to a substantial increase in the recur-
rence times.

V. ERASURE OF INTERFERENCE FEATURES IN
ABSORPTION LINE SHAPES

In this section we present the diagrammatic expansion
approach to the calculation of absorption line shapes.
The simple single resonance case has been treated in
Sec. III: The ensemble averaged line shape is obtained
using [cf. Eq. (I 4)]

L(E) < ~Im{u(GLEN )44 » (v.1)

where ¢ is the initial (absorbing) state. For a simple
isolated resonance (Fig. 2), Eq. (V.1) leads to

L(E) < = | pgy | 21m{Goo(E)) (V.2)
and [using Eq. (IIL 10a)]
LE)« | pos| /[(E - Eg)® + GT0)?] - (v.3)

Ty is [ef. Eq. (IIL.12)] the sum of contributions from
the constant and the random coupling components.

Typical interference features arise when the width of
resonances exceeds their spacing or when the underlying
continuum {} 1&)} (Fig. 2) is also optically active. Such
cases are usually treated under the assumption that the
coupling between the discrete levels and between the '
quasicontinuous manifold is smooth, essentially a con-
stant coupling situation. The role of randomness in such
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FIG. 11. Egzcitation involving two resonances.

models has been recently discussed by Druger.® Here
we apply the ensemble average idea together with the
diagrammatic expansion approach to these problems.

The applicability of the ensemble average procedure
for time evolution problems rests on the existence of a
large number of states within the uncertainty width of
the levels. This sets an upper time limit 7 for the va-
lidity of these resuits [Eq. (II.10)]. A line shape ex-
periment is characterized by an energy resolution width
Sw, and ensemble averaging is meaningful only if fw
> !, i.e., there are enough levels within the width 6w
so that the distribution of random couplings is reliably
sampled at any excitation energy. Denoting by AE the
width of the spectral features of interest the validity
criterion for our approach is therefore

Pl dw<AE, (V.5)

which replaces for line shape problems the criterion

(I1. 10). Under the same conditions we expect that
Gaussian random models are sufficiently general as dis-
cussed in Sec. II.

A. Two overlapping resonances

Consider the model displayed in Fig. 11 where the
ground state |0) is radiatively coupled® (with matrix
elements g and pg,) to the discrete states 1) and | 2)
which are in turn coupled to the radiatively inert mani-
fold {I3a)}. We assume

Vi3a=VL3at%1,35 V2,34 =230 t%2,3
(01,300 (V2,340 =0

2
(01,3a01,30°) = (01,3000

<U2. 3a¥2, 3a'> = <U§.3>Ga o

(v1,3aV3,34:) =0 « (v.5)
The absorption line shape takes the form
L(E) < ~Imn(] oy | X Gy (E)) + | pha] XGaa(ED)
+ botk20{Ga1 (E)) + Hoabt1o{ G12(ED)) , (v.6)

Intramolecular dynamics. |
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so that we need to calculate four elements of the aver-
aged Green’s operator G=(E - H+in)?, n~-0'. We
demonstrate our approach by considering the simpler
case where only state |1) is optically active, gy =0.
Then

L(E)Y — | oy | 2Im (G (E)) . .7

The elementary diagrams for these problems are shown
in Fig. 12(a). The diagram selection rule A (Sec. IV)
imply that dashed lines may connect only nearest neigh-
bor vertices which are connected by a 3-propagator.

Gy is given by Gy, ={E — E, — 0,)"! where the self-energy
0, is the sum of all diagrams bounded on both sides by
uy3 OF vy3 vertices, which do not contain any 1-propaga-
tor. There are three contributions to oy, shown on Fig.
12(b). Disregarding level shifts we obtain

(Gn(E) = [E - E;+3i(0{3+T%)

Lplope) -1
+ al13 143

E-E,+3i(TH+ ﬂg’)] ’
which should be inserted into (V. 7). In the random
case where I'{§’ . I'ss’=0 this leads to a simple Lorentz-
ian: the optically active level | 1) does not “feel” the
presence of level 12). Note that for this to be true it
is sufficient that one of the two levels is coupled ran-
domly to the quasicontinuum. If I'{S’. I'$S’#0 (i.e., both
levels have a smoothly varying coupling component with
the quasicontinuum) interference affects sets in. In the
absence of a random coupling component the result (V. 8)
reduces to that obtained in previous works. %

(V.8)

When 4, #0 the same method may be used to obtain
the other needed elements of {(G). In particular we note
that since G;; and G are odd in either v;; or vy, their

0 6] o
o0 LSz 30,30
® m @ @

Vi,3a Y1,3¢ V2.3a Uz,3q

(a)

7= D) + Ol + I~E—g AT

[ E-E, - - @ 2 ]

(b)

FIG. 12. Diagrams used in the discussion of line shapes in-
volving two overlapping resonances. (a) Elementary diagrams
(b} Renormalized propagator and self energy.
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average must vanish in the symmetric RCM. In this
case all interference effects are erased and Eq. (V.6)
results in a linear combination of two simple Lorentz-
ians associated with the two resonances.

B. The Fano lineshape33

Next we consider the model shown in Fig. 13: The
ground state |0) is radiatively coupled to a discrete
state 1) and to a quasicontinuum {|2a)} with dipole ele-
ments fg, and pg,z.. 0 Also the state |1) and the mani-
fold 2 are coupled with elements Vy,5,. [g,24 and Vy,a,
are taken to be random

Vi2a V1,20 41,2

(v.9)

Ho,2a = (81)g, 20 +(1o,2)

where the random components v and du satisfy equations
similar to (V.5).

Elementary diagrams for this problem are defined in
Fig. 14(a). The different contributions to the element
(LGi)ge whose imaginary part is proportional to the ab-
sorption lineshape are shown in Fig. 14(b). The terms
A-D (evaluated with level shifts disregarded)

= | 1o,1|¥/[E - By + 3T+ T (V. 10)
(B)——lﬂ(#o.z) %py =~ 31Ty (v.11)
(C) == ATgT{/E - By +3i(Ty3+ T3 (V.12)
(D) = = 2mipy{ieq, 21,21 0,1/

[E = Ey+3(T{3+ T {(V.13)

are standard and appear also in the original Fano theory
(the only difference lies in the additional random cou-
pling width of the Lorentzian associated with state |1)).
The last term in Fig. 14(b)

(E) = - 5§73 = —in(6u3, 20)P2 (v.14)

represents an additional background absorption resulting
from the random 0-2 coupling. The line shape resulting
from these contributions takes the form

L( ) (F(”+F0 £)+ r(c)r(c)
1 ( )
3% = IUD3+T8)) + 29 (E — Ey)
x 2 .15
(E El)z 4(1-\1(:‘5 (c))z ’ (V )
Vi,2a
n — -
M
Ol ¥o0,2a
loy ——
FIG. 13. Excitation involving a single resonance interacting

with an absorbing continuum (the Fano problem).
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o} o}
Gy G2a,2a
AN
5 o B O O ]
Ho2a Ho,2 Viza U, Mo

(Olpoul0): B==R + B~ A + B D=8
(A) (8) (C)

(b)

FIG. 14. Diagrams involved in the discussion of the Fano
problem with random coupling. (a) Elementary diagrams (b)
Diagrams contributing to the line shape.

where

q = to,1/TPallho, 21,2 5 (V.16)

when vy 5 =06/49,,=0 for all @, the coupling is smooth and
Eqg. (V.15) reduces to the familiar Fano result

iTENE - E1+21" 30/
(c) ]

L(E) <
[(E Ey)? (V.17

On the other hand, in the symmetric RCM (ug,2) =41,s
=0 and we obtain

L(E) = 3T} 1oy |21 (E - Ey)?

+mBu 0.z>Pz

( F(r)) ]
(v.18)

showing that the line shape in this case reduces to a lin-
ear combination of a Lorentzian (arising from the dis-
crete level |1)) and the continuous background absorp-
tion, without any interference between them. Note that
such a form arises also when either the ground state

i 0) or the excited state |1) couple randomly with the
quasicontinuum. In practice, of course, the presence
or absence of random coupling will characterize both
states simultaneously.

Equation (V. 15) represents a continuous transition
from the Fano result (V.17) to the Lorentzian on back-
ground form (V. 18) as the random nature of the coupling
increases. Introducing the quantities

A= <H0,z>u1,a/\/((il 0,22 + {015, 200) (uF, 5 + % 2a))

1o

@ =g =y, 1/"92‘[(<Ho;z>2 + (B2 s N s 5+ (0E 50))

(purely constant coupling)
(v.19)
(purely random coupling)

(V.20)
€3=E — E/1p,03 5+ 0 24)) {v.21)
L0="702(<N0.z>2+<5l1(2),2a>) (v.22)
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we obtain

L(E) =Ly(Q%+2Qrep + €2 +1 = 2%)/(e2+1) . (v.23)

This result is identical to that obtained earlier by
Druger® (for the case where all transition dipoles are
parallel) who used an approach based on Fano’s configu-
ration interaction method.* We note that the solution
(V.23) was obtained in an approximation which takes the
radiative interaction up to second order. The same ap-
proximation was used by Fano and, following him, by
Druger.

In the CCM, a solution to the Fano problem has been
obtained® which is not limited in this way. Our ap-
proach enables us to avoid this approximation also in
the random coupling case. In this case we encounter
coupling between the quasicontinuum {| 2e)} and the con-
tinuum of one-photon states {| 08)} seating on the molecu-
lar ground state |0). Denoting by p, the density of
levels in this radiative continuum and defining the inter-
continuum coupling parameters

N =711, 20 %pop2 (v.24)

NT =1%6ud 2)pooe (V.25)

we obtain by extending the diagrammatic expansion tech-
nique

1)
To,2

1 N(r)
L) = e ye “W)

+3 +]I-\]+(c1},r;v(r) 'r;rl(':i) 1 2222361_ 1] ’ (v.28)
where
I =T+ T+ TS (V.27a)
{5y =2mpoui,/(1+ N +NT) (V. 27b)
I{3=2mp%f 2/ (1+N)) (V. 27c)
I'y72=2mpg(0f ) (V. 27d)
€=(E-E,+D)/T, (v.28)
and where
D =21%popattyo( gt 10/ (1L + N 4+ NT) | (v.29)

In the CCM limit where v =6p =0, also I'ly’=N*’=0 and
Eq. (V.26) reduces to the result obtained earlier®

Lye) ) 2

20023 ( ) q®+2ge -1
L(E)x TLNE 1+ —‘-irl 241 . (v.30)
In the purely random case, (iq,s) =%,,=0, We have N
=T{} =T =0 and then we obtain

L(E)x< EQ(:_%T_,_(_“Q._IFY)zL . 1
1+N* 1+N iy

i (v. 31)

showing again that the line shape reduces in this limit to
a superposition of a Lorentzian and a continuous back-
ground absorption. Equations (V.26), (V.30), and

(V. 31) represent the corrected forms of Egs. (V. 15),
(v.17), and (V.18), respectively, where all orders in
the radiative interactions are included.

The results (V. 15) [or (V.26)] should be used as a
basis for discussing Fano interference features in ab-
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sorption line shapes of large molecules. Recently Sage
and Jortner® have applied the result (V. 15) for their
discussion of overtone absorption spectra in Benzene®
and Naphthalene.?” The appearance of an almost perfect
Lorentzian feature superimposed on a continuous ab-
sorption provides a strong indication to the presence of
random radiative coupling in these molecules.

Vi. CONCLUSION

In this paper we have presented a method which allows
us to obtain explicit solutions for the spectral properties
and the dynamic behavior of systems which are charac-
terized by essentially random coupling between mani-
folds of quantum levels. Such models are essential in
understanding the behavior of large molecules in highly
excited states. The main tools that we used: the en-
semble average assumption and the diagrammatic ex-
pansion and averaging technique, lead to a substantial
simplification of the problems studied, and enabled us
to obtain explicit solutions for observable quantities in
both the time and the energy domains. The method is
useful for various molecular dynamics problems. Ap-
plication to the theory of multiphoton excitation of large
molecules is described in a subsequent paper. A ran-
dom coupling model for the theory of light scattering
off large molecule is currently under study.
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APPENDIX A

Here we discuss the relative order of different dia-
grams in the statistical limit V{V% p>> 1. We note that
as the characteristic experimental timescale 7 is often
of order 7({V®p)~!, assumption (II. 10) is consistent with
the statistical limit which qualitatively implies that width
of levels greatly exceeds their spacing.

By assumption (II. 10) there exist in this limit an en-
ergy scale € satisfying %/7> ¢ > p~l. We discuss the
magnitudes of diagrams in terms of the parameter €p
> 1. To this end we associate with each level a width €
implying a finite lifetime %/€. This should not affect the
physical results on a time scale 7 < #/¢. Furthermore
€ is negligible relative to the real physical widths, e.g.,
€ < 2m(Vp.

Consider now the diagrams appearing on the rhs of
Eq. (III. 14). The first, with unconnected upper and
lower branches yields

=[G(U +i€)GO(U ~ E —i€))?
<Uta)1> <1jau>
X ; U~ E,, +i€ ‘; U-E-E,,-i¢

~ (g}
(U-Ey+i€)?(U~E - Eq-i€l"

(A1)
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The other two diagrams are equal and give

S e” + Il 1
JERN i 1
=[GL(U +i€)G3(U - E ~ie) P

XZ <U(21.1>2
e (U -E,, +ie){(U - E - Ey, —i€)

~ 27”<U01> P
(U-Ey+i€)*(U—-E - Eqg—i€)*(E + 2i¢) ~

(A2)

The ratio between the contributions in (Al) and {A2) is
essentially | p,(E +2i€)| > p,e > 1. Thus connected branch
diagrams may be disregarded. More rigorously, con-
sider the contributions of these terms to the time
evolution Py(t). The term in (Al) yields [using Egs.

(II1. 2, 3)| and disregarding factors which appear both in
(A1) and in (A2)) p,(t/%)? exp[ - 2(¢/%)t], while the term

in (A2) results in (t/7%)* expl — 2(¢/#)t]. On the relevant
time scale { < 7ip the latter may be disregarded.

APPENDIX B

Consider the diagram in Fig. 6(a) which represents
the term (belonging to Syg,q0)

2 2
Z Z Z Z E V0,1a;V0, 10270, 1a3V0, 1agV10302a5
o
5

TR i
X Vaagi1ag(U = Ergy +i) U = Eygp +in) (U - Eg+in)™
X(U=E = Eyq, = i) (U = E ~ Eygy i)

X(U - E - Ego i) (U~ E - Eq—in')" .

Taking an ensemble average we obtain fifteen diagrams,
five of which are presented in Figs. 6(b—f). Figure
6(b) vanishes, because it contains a closely connected
group with more than one propagator lying purely on the
lower branch. Comparing 6(c) and 6(d) we see that they
differ in the fact that 6(c) contains one closely connected
group of 1-propagators, while 6(d) contain two such
groups. Figure 6(c) therefore represents a term which
is smaller by a factor of €p (¢ defined in Sec. II) than
the term represented by 6(d), and may be disregarded.
Figure 6(e) is equivalent to 6(d). Figure 6(f) is of the
same order as 6(c) and may also be disregarded.

Note that Fig. 6(c) involves connections which are
forbidden by rules C and D of Sec. IV. To see this more
clearly consider the diagrams in Fig. 5. Figures 5(e)
and 5(g) each contain three closely connected propagator
groups: 5(e) contains two groups of 1-propagators and
one group of 2-propagators; 5(g) contains one group of
1-propagators and 2 groups of 2-propagators while
Figs. 5(f) and 5(h) contain only two closely connected
propagator groups (one of 1- and the other of 2-propaga-
tors). These diagrams, which are forbidden by rules C
and D of Sec. IV may thus be disregarded.

Note that while the Fig. 5(f) is negligible relative to
5(e), this is not the case with Fig. 6(e) relative to 6(d).
To understand the difference compare the diagrams in
Figs. 5(a—d). Figures 5(a) and 5(b) are obviously of the
same magnitude. In Figs. 5(c) and 5(d) however, we
have a different situation because whenever they appear
the configuration is such that the 1-propagators on the

Intramolecular dynamics. |

two ends belong to a connected group [compare Figs.
5(e—h)]. This is schematically represented by the extra
dashed lines appearing in Figs. 5(c) and 5(d). Figure
5(c) having only two closely connected propagator groups
is therefore negligible relative to Fig. 5(d).

APPENDIX C

Here we estimate the relative contribution of non-
separable diagram segments appearing in the expansion
of By(U, E) in the asymmetric RCM. For this purpose
it will be useful to define the renormalized quantities
represented diagrammatically in Figs. 10(a-d).

So1 =tg1/ (1 +Nyp) (c1)
S;={DE — 5T/ (1 +Nyp) (Cc2)
Sy=(D) — 3TN /(1 +Ny,) (c3)
Sia =1/ (1 +Nyp) (C4)

Note that the results in Egs. (C2) and (C3) are written
for upper branch quantities. The corresponding lower
branch quantities are obtained by taking complex con-
jugates.

Nonseparable segments in B,(U, E) may be obtained
either by connecting a group of » vertices [to yield re-
normalized tetradic vertex oy, Eq. {IV.11)] or by con-
necting a group containing both + and ¢ vertices. By
examining diagrams of the later type one sees that they
may be represented as essentially a product of a dia-
gram from the o, expansion and the factor S/(E +iT"").
For example

,mmm’,ggsaa,

S)
~ i
) E*”“mr

‘mtm‘

Assuming that T’ and T are of the same order, the
factor |S/(E +iD)lis of order Ni} which by our own as-

sumption (up >>1) is very small, We conclude that non-
separable segments in the expansion of By{(U, E} may be
disregarded.

APPENDIX D: THE SEPARABLE RCM

Here we present the outline of the calculation of the
time evolution in a model consisting of one (initially
populated) discrete level and two quasicontinua (3 =2
in Fig. 4) where the intercontinuum coupling elements
V14,28 aT€ assumed to satisfy

V1,28 = V1aV28 » (D1)
where

(V14) = W2g) =(V1402) =0 . (D2)
The elementary diagrams are shown in Fig. 15(a). The

separability of v;,, 55 is taken into account by expressing
it as a double vertex. Averaging is carried out by pair-
ing the corresponding half-vertices [see Figs. 15(b, d}].
It is found by inspecting these diagrams that the dia-
gram selection rules formulated in Sec. IV also hold for
the separable case.

The calculation of By(U, E) [Eq. (IV.2)] involves as in
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FIG. 15. Diagrams involved in the calculation of time evolution
associated with the separable RCM. (a) Elementary daigrams
(b)—(d) Diagrams used in the discussion of Appendix D.

Sec. IV the renormalized 0-propagator defined as in Eq.
(IV.4), and the renormalized tetradic vertex oy In the
nonseparable RCM o, is given by (IV.11). In the sepa-
rable case the diagrams are modified. For example the
4th and 5th diagrams on the rhs of (IV.11) are replaced
by the diagram shown in Fig., 15(b). It may be easily
confirmed that pairing schemes other than that repre-
sented by Fig. 15(b) result in contributions of lower or-
der in €p (¢ defined in Sec. II). Summing diagrams of
this kind it is realized that (as in the nonseparable case)
o, is negligible relative to the product of unconnected
branch contribution, and we obtain

BO(U, E) =[(U—Eo+%iro1)(U‘E —éo "%irol)]-l ’ (D4)

where Iy =27(%)p;. The calculation of B,(U, E) leads
to a sum whose leading term is shown in Fig. 15(c).
Inspection of this sum reveals that this leading term is
larger (in order €p) than the sum over the rest of the
terms. Keeping this term only we obtain

By(U, E)={iTy/[E +i(n +v" ) }Bo(U, E) .

Finally, evaluating B,(U, E) we encounter a series with
the leading term given by Fig. 15(d). Summation of this
series yields

B,(U, E) ={2iN/(1 + N)?ap,[E +i(n +1")|}B,(U, E) , (D6)

(D5)

where

N=1Xod(wdpsp, -

Under our assumptions the result (D7) is negligible and
B,~0. Using also Eqs. (D4) and (D5) together with Eq.
(IV. 1) we obtain

(D7)

Py(t) = exp(~ Tpyt)
Pl(t) =1- exp(— rolt)
Pz(t) =0 .

(D8)
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This result indicates that on a time scale which satisfies
(I1. 10) no transition occurs between the manifolds 1 and
2, in agreement with Ref. 10.
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