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In this paper we report the results of numerical simulations of the intramolecular dynamics of a model
system for multiphoton excitation of large molecules, where the low energy range is represented by a
single discrete state, while the quasicontinuum is mimicked by two or three manifolds of molecular
cigenstates. The random coupling model (RCM), where the radiative coupling matrix elements are
assumed to be random functions of the level indices, yields conventional rate equations describing
consecutive-reversible transitions for the populations with golden rule rates. In addition, numerical
simulations were conducted for a constant coupling model (CCM) and for a separable random coupling
model (SRCM), confirming the counterintuitive analytical results for these model systems. The time
evolution of a RCM system is determined by the distribution function of the coupling elements and not by
individual coupling terms, and the intramolecular dynamics is essentially determined by the lower
moments (average and variance) of the distribution function. On the basis of numerical simulations we
have shown that a radiative RCM, based on the molecular eigenstates, is equivalent to an intramolecular
RCM founded on a zero-order molecular basis with a small number of optically active modes, random
anharmonic coupling, and constant selective radiative interaction terms. Our computer experiments
provide evidence for the validity of a strong coupling kinetic master equation for the RCM and suggest
that random coupling is essential for the erosion of phase coherence effects in the multiphoton excitation

of a molecular quasicontinuum.

. INTRODUCTION

The theory of multiphoton excitation of “isolated”
collision-free large molecules (see Fig. 1) is of con-
siderable current interest. Experimental evidence'
suggests that first-order kinetic equations for populations
provide a good description of the collisionless multi-
photon excitation processes in the quasicontinuum part
(Region II) and in the continuous (Region III) part of the
molecular vibrational manifold in large molecules, such
as SF;, while coherent effects underline the process
within the few discrete bottom levels (Region I). Much
effort has been devoted to deriving kinetic equations for
the intramolecular dynamics of a molecule resulting
from incoherent multiphoton excitation in Ranges I and
HOI.*™" Recently, we have advanced a theory?? for multi-
photon excitation of large molecules which rests on the
idea that the radiative coupling. between the molecular
vibrational-rotational eigenstates in Regions II and III
are essentially random functions of the quantum num-
bers of the molecular eigenstates. This random cou-
pling leads to erosion of coherence effects and results
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in a master equation for the time evolution of the prob-
ability distribution for the number of photons absorbed.

Alternative approaches to the problem of time evolu-
tion associated with multiphoton excitation of large mole-
cules have been formulated by several workers, ™7
These are based in one way or another on a picture in
which coherence is lost due to a rapid intramolecular
vibrational relaxation. This intramolecular vibrational
relaxation in an isolated molecule involves essentially a
dephasing process in the reduced space spanning the
populations of the optically active mode(s) or, alter-
natively, in the reduced space spanning the number of
photons absorbed. The rapid intramolecular dephasing
limit is expressed by the inequality

Tiyr > l—;—d (1a)
where Tyg is the time associated with the intramolec-
ular vibrational energy redistribution and @ is the scalar
product between the electric field associated with the
IR pulse and between the transition moment for IR ab-

FIG. 1. A model for multi-
photon excitation of a large
molecule. Each manifold L
corresponds to molecular
levels (at different degrees of
excitation) with a different
number (n — L) of photons. =
is the initial number of photons
and L denotes the number of
photons absorbed.
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FIG. 2. A simplified multiphoton absorption model. Region I
is represented by a single discrete level |s), while Regions II
and III are represented by two manifolds L ={|I)} and M ={im)}.

sorption associated with the optically active molecular
mode(s). The rhs of Eq. (1a) is the Rabi frequency,
which characterizes the molecular IR excitation process.
In the approach described in Refs. 2 and 3, Eq. (1a) is
replaced by

(Aw)ab>> Iﬁl H (lb)

where (Aw),, is the energetic width of the IR absorption
line shape of a molecule pre-excited into Regions II or
II. Assumptions (1a) and (1b) are obviously identical
since the width (Aw),, is determined by the intramolec-
ular relaxation process. However, there appears to be
a conflict between theories in which condition (1) seems
sufficient in order to obtain a simple Pauli master equa-
tion for the populations (or rather for the number of
photons absorbed), and between the approach which in-
vokes in addition the condition of random radijative cou-
pling between molecular eigenstates.

Previous studies®® indicate that the Markovian as-
sumption (1) does not by itself lead to a simple master
equation for the populations without additional assump-
tions concerning the nature of the radiative coupling.

Let us consider a simplified model system for the multi-
photon excitation process which incorporates all the
physically relevant ingredients for the problem at hand.
We shall simplify the conventional molecular model for
multiphoton excitation (Fig. 1) by replacing Region I by
a single discrete level | s) and Region II (and III) by two
quasicontinua {| )} and {Im)} (see Fig. 2). The radia-
tive coupling elements are p, and (g, Assumption (1)
allows us to disregard the systematic variations of pg;
and py, with the molecular level indices [ and m. This
still leaves us with the freedom to specify the nonsys-
tematic variations of these matrix elements. The follow-
ing models have been studied:

(a) The random coupling model (RCM),*® where 4,
and y;,, are random functions of the indices I and m
satisfying

(/J‘sl>=(ﬂ-1m>=0 ,
(hgbap) =(ud) 600

<u'lmu‘l'm'>=(p'§m) 6lt’émm' ’ (2)
(b) The asymmetric RCM, ® where
p=(p)y+du , (3
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with { u) # 0 and where 5u rather than u satisfies Eq. (2);

(c) The separable RCM®: the intercontinuum coupling
Ly, i8 separable as L, = Ui, Mg, M, and u, are
random functions of ! and m, satisfying

(hep) =C1y) =(lp) =0,

(u,p,,)=(u?) 650

(lmbime ) = Bm) e

(lophap) =(HZ) 85y s (4

(d) The constant coupling model (CCM)®: p,, and p,,,
are constants independent of the indices I and m.

In view of the assumption (1b) that the molecular IR
excitation linewidth in Regions II and III considerably
exceed any other energy scale in the problem (i. e., the
Rabi frequency, the inverse density of states, and the
widths associated with the relaxation rates), we assume
that the averaged quantities appearing in Eqs. (2)-(4)
are constants independent of the state indices [/ and m:.
Note, however, that in the simulation models described
below, the bandwidth Aw appear naturally as the energy
spread of the manifolds L and M.

All these four models lead to first-order Markovian
kinetic equations for the population P,, B, and Py of the
level s and the manifolds L={/} and M={m}. These
correspond to the probability of absorbing one or two
photons. The kinetic equations for cases (a)—(d) may
all be represented in the general form

P,=—(k ~L+ks'M)P3 ’
;.IL=_kL_”PL+kM.L Py+ksy Py

Py=—ky.  Pu+kr.yuPr+kew P, . (5)

The rates coefficients are different for the different
models and are given in Table I. The RCM yields the
“conventional” rate equation describing consecutive
reversible transitions with golden rule rates., The
separable RCM also leads to a consecutive rate process
characterized by non-golden rule rates which are bound-
ed by p7}, the average level spacing in manifold L. Thus,
the intercontinuum transition rates k,., and %, ; are
strongly damped in this case. In contrast to these cases,
the CCM is characterized by a nonconsecutive time
evolution in which the one-photon and the two-photon
absorption processes occur simultaneously. The si-
multaneous rates k.., and k., 4 are retarded for the
CCM; the retardation is appreciable in the strong inter-
continuum coupling limit N> 1, where

(6)

Finally, we note that the time evolution characterizing
the asymmetric RCM is given as a superposition of the
RCM and the CCM rates.

N=7'2|“|m|z PPy .

In view of the “counterintuitive” nature of the resuits
for the CCM and for the separable RCM, it is apparent
that Eq. (1) does not constitute a sufficient condition for
the applicability of a “conventional” Pauli master equa-
tion for the populations. The derivation of the kinetic
equations for the RCM rests on several assumptions.
Schek and Jortner® have provided a plausibility argument
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TABLE I. Rate constants.®?
Random coupling models
Separable RCM® RCM?3 Asymmetric RCM?3
Model ccm® (uy =0 (u)=0 (uy=0
N Tl PO 7 {4y n)®) proy 0 T ) Loy
277142 oL . 2m{p )2 4
ks.p —(-%,)7 2m{uy) oy 2n(uly) oy 2n(oply) PL+—(—1—fr'T,)7L
v 2m§y pr*N 0 0 2m{ug)* py N
S-u TaEmT 1+ M2
k 0 —2N 2m(udn) p 27 Sl
L-M L (L+N) im/ Py 1m) Pu
k 0 ————71+N2 2m(pd am(8pl
M-L oL (1+N) Him/ PL “1m> PL

aThe molecular level structure involves the molecular eigenstates with radiative coupling be-

tween adjacent manifolds.

Yo, and py are density of levels in the L and M manifolds, respectively.

for the applicability of the RCM which essentially rests
on the notion of diagonal singularity,‘“ while Carmeli
and Nitzan® have advanced a complete treatment using
ensemble average methods and assuming a Gaussiandis-
tribution of the coupling terms. Furthermore, in con-
trast to weak coupling methods usually used to derive
the Pauli master equation,!! the RCM results in simple
kinetic eugations under the conditions of strong coupling,
i.e., (Kg3)/? p,>1 and N>> 1. As the characteristics
of the RCM deserve further investigation, we have
undertaken a numerical simulation study of a variety of
different coupling schemes, all of which satisfy the
restrictions posed by Eq. (2), in order to provide a nu-
merical test for the results summarized in Table I.

Furthermore, these numerical simulations are useful
in order to test some assumptions which underline the
derivation of the results for the different coupling models
and, in particular, the RCM. The details of the nu-
merical simulation procedure are described in Sec. IL
In Sec. III, we present some results of these simulations
which strongly support the validity of the analytical re-
sults [Eq. (5) and Table I|. Finally, in Sec. IV, we ex-
plore the features of molecular models which provide
some justification for the notion of random radiative
coupling. Our results provide justification for the ap-
proximations and assumptions which underline the deri-
vation of the kinetic equations for random coupling
models for multiphoton excitation of large molecules.

Il. THE SIMULATION PROCEDURE

Numerical calculations of multilevel coupling models
have previously been carried out by several workers, 127
In particular, we mention the recent work by Quack,*®
who performed numerical calculations on intercon-
tinuum coupling models for multiphoton excitation of
large molecules. Quack’s approach is based on random
initial phases rather than on random coupling elements,
so that the present study is in this sense complementary
to his work.

In the present simulations, the quasicontinua L and M
(Fig. 2) were represented by manifolds of (equally or
randomly spaced) ~ 50-75 levels each. For the different
random coupling cases, the coupling matrix elements
were computer generated as random numbers with a
prescribed distribution. Different coupling elements
were assumed to be uncorrelated. The probability dis-
tribution for any given coupling element was taken to be
one of the following three:

Gaussian:
e | 1 (p=Cw)P
P = J o=y o - 2 (i = () >] @
Uniform: i
p=(b—a)-l , asusb ,
P(p) =< (8
0 , otherwise ,
Bimodal:
2 H=a ,
P(u)= p2=1-py , u=b,
0 , otherwise . (9)

The values of the constants, p,p,, a, and b in Eqs. (8)
and (9) were chosen so that the values of { 1) and of
{(u = {u))?) are identical for the different distributions.

With the set of coupling elements thus specified, we
solve the time dependent Schrddinger equation by diag-
onalizing the Hamiltonian matrix and expressing the
molecular wave functions as linear combinations of
eigenfunctions of the molecule-radiation field Hamilto-
nian, We obtainthe probabilities to populate the different
quantum states as functions of time given that P(t=0)=1.
Finally, we sum up the probabilities for all states be-
longing to a given manifold to obtain P(#), B(#), and
P,(f). At all times, these three quantities should sum
to unity, which provides a useful check on the numerical
procedure. In most cases, we have performed an en-
semble average of these probabilities, repeating the
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calculation several times with a different set of initial
random coupling elements. Typically, 10-15 “trajec-
tories” were used for this average in order to obtain
good statistics. The validity of the ensemble average
procedure is discussed in Ref. 3(b). In some of the
simulations described below, we demonstrate the ap-
plicability of this method.

The computer experiment described here suffers from
inherent limitations dictated by the need to work with a
relatively small number of states. Therefore, the di-
mensionless parameters (Mi;) p32 and (u§m> pypL are
much smaller than in a typical real-life situation. Also,
the manifolds L and M have a much smaller energetic

spread in the simulation model than in most actual cases.

However, for a time ¢ which satisfies

(AwL)-l’ (Awu)-l« t/ﬁ<< pL’ pM b (10)

where (Aw;) and (Aw,) are the energy spread of the
manifold L and M, respectively, we expect the manifolds
L and M to behave as true continua of infinite extent.
When t/%>p;, pu, the numerical results will exhibit
recurrences. When t/7# S{Aw,)™?, (Aw,)?, the uncer-
tainty width of the levels is larger than the spread of the
manifolds. In this initial time scale, the evolution is
slow and may be represented by a Gaussian [exp(- )
for the decay of initial single level] rather than by an
exponential function. When comparing the analytical
results (obtained for large-spread continua) to the nu-
merical simulations, we find that the simulation trajec-
tory has shifted to somewhat longer times due to the
slow initial evolution. In the results presented in the
next section, we corrected this nonphysical effect by
shifting the numerical result for the trajectory back to
shorter times so that its initial evolution approximately
coincides with the analytical result, A typical shift is
of the order of 2% of the absolute time scale shown in
the figures.

1 00 T T 3 7
O 75f 1
z
=)
<
2 0.50H n
o}
[«
1)
o
025 4
| oo
0.00 VAV
1 .
Q 20 4.0 10
TIME
FIG. 3. Decay of a discrete level |s) into a manifold of 50
levels. P(¢) is the population of level |s). Level spacing is

constant with p=3. D' =2n(u?) p=6.28. Full line: p=con-
stant; dashed line: u=Gaussian random with {(u) =0 (one
trajectory).
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FIG. 4. Decay of a discrete level |s) into a manifold of
levels. T¢= 2m(u?) p=6.28. Gaussian random coupling with
{u)=0. Full line: 150 levels, p=3, single trajectory; dashed
line: 50 levels, p=1, single trajectory; dotted line: 50 levels
p=1, average over 15 trajectories.

As the interesting timescale is determined by the rates
appearing in Table I, condition (10) implies that Aw,
and Aw, should be taken much larger and that the level
spacings p, p, should be taken much smaller than
these rates. If we identify the interesting time scale ¢
with the golden rule rate so that 27 u?) pt/#~ 1, inequal-
ity (10) implies that two conditions should be satisfied.
First, we require that 2{ u) p> p", which results in
the limit of strong intercontinuum coupling, i.e., N> 1,
Second, we demand that Aw> 27(u?)p. The choice of
parameters Aw, |ul, and p for the simulation model
should adhere to these restrictions.

In the presentation of all our numerical results, the
unit of time is 7% and the unit of energy is 1.

(I, NUMERICAL RESULTS FOR DYNAMICS OF
COUPLED QUASICONTINUA

Figure 3 portrays the decay of a single discrete level
into a manifold of 150 levels with level density p=3,
characterized by random and by constant coupling. We
observe the exponential decay, the recurrence at long
time for the case of constant coupling, and the Gaussian
evolution at very short times. The random and the con-
stant coupling models behave similarly within the range
t<Fp which is in accord with previous results. %13 For
longer times, the CCM exhibits pronounced recurrences.
As it is well known, the recurrence time ¢, =277p is
valid only for the CCM. For the sample level structure

of Fig. 3, the recurrence time is, in general, t,=21rﬁ]\/}/
|E;,~E,|l, where {E,} are the energies of the molecular
eigenstates, while {N,} is a set of integers. Thus, for
the RCM, ¢,=2x7/4,, where 4, is the smallest common
denominator of the energy spacings. To assess the ef-
fects of ensemble averaging, we have conducted further
calculations for the same simple model with random
coupling, which are displayed in Fig. 4. Here the re-
sult obtained for single trajectories (the two single tra-
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FIG. 5. Time evolution for the model of Fig. 2 with constant

coupling. ugr=1, uzy=90.9, pr=1, py=1.5. Full line:
analytical result; dashed line: simulation for 50 levels in
each of the L manifolds.

jectories are characterized by the same rates 2w V*)p
but different values of p) is compared to an ensemble
average over 15 trajectories. It is seen that the en-
semble average concept is reasonable; as p increases,
the single trajectory result approaches that of the en-
semble averaged one (the remaining difference in the
asymptotic behavior results from the fact that for p=3
the dilution factor is three times larger; therefore, the
asymptotic population of the state [s) is three times
smaller than for p=1). - Furthermore, different single
trajectories calculated for the case with p=3 repro-
duced each other quite well on the timescale shown.

Figure 5 presents the time evolution of the model sys-

.00

075
(72}
z
o
=
: -
5 0. Soh
a i
o 1
a f'
1
i
Q.25 |
I
P.(t)
A Lultl
__—T..—;= —AL j:—/ ————— \l]:-”
e © 2o 30 4.0 50
TIME
FIG. 6. Time evolution for the model of Fig. 2 with separable

coupling. iy, =H; ‘U Hg K, and w, are sampled from a uni-
form distribution with ug1<1.95, lpgl, In,I<1.73. This
corresponds to v (us,2 y=1.13 and v (u,zm) =1.00. pp=1, py
=1.5. Full line: analytical results; dashed line: simulation
with 75 levels in each of the L and M manifolds.
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0] 75L 7
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’V
i
H
0 25| \ .
\}
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00 ———
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0] 03 0.6 09 .2 15 1.8
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FIG. 7. Time evolution for the model of Fig. 2 with random

coupling. pg and y,;,, are sampled from a Gaussian distribu-
tion characterized by (ug) = (s> =0 and (ui,) =1.13, V (ufm)
=1.00, p;=1.0, py=1.5. Full line: analytical results; dashed
line: simulation with 75 levels in each of the L and M manifolds.

tem of Fig. 2, which corresponds to the CCM, together
with the analytical results from Table I. Figure 6 pre-
sents similar results for the separable RCM. Figures
7~9 compare the results of the numerical simulation
with the analytical results for the symmetric RCM with
Gaussian, uniform, and bimodal distributions, respec-
tively, while Fig. 10 compares the simulation results
corresponding to these three dimensions. Figure 11
displays simulation and analytical results for the asym-
metric RCM.

In all the simulations on random coupling models, we
used an ensemble average over 15 trajectories. As
mentioned above, for large enough density of states,
almost any single trajectory will coincide with the aver-

100 2 (e N A |
075 1
. R0
z e -
g2 |\ e e —=
< .
050
2 Rt
z :
e S S ity A R . L _--=---
S |\ K] T R
025 g
000 | { 1 L 1
00 03 06 09 12 15 18

TIME

FIG. 8. Same as for Fig. 7 with ugy and p;,, sampled from a
uniform distribution lug1<1.95 and 1p;,,1<1.73 (corresponding
to v (ug,) and v (u?m) as in Fig. 7).
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TIME

FIG. 9. Same as for Fig. 7 with a bimodal distribution lug|
=1.13 and |py,,1

=1, 0 with random signs (corresponding to
V{u%) and Y{uf) as in Fig. 7).

aged one during short enough times (¢< 7ip) where the
distribution of random coupling is reliably sampled over
the levels within the uncertainty width #f?. Figure 12
demonstrates this point again for the model of Fig. 2.

In all simulations involving random coupling, taking the
level spacing to be constant or to vary randomly with a

given (p) was found to have little effect on the time
evolution. The same is true also for constant coupling

cases in the relevant #<7p time domain. Some further
simulations and the corresponding analytical results for
a single level coupled consecutively to three continua
are displayed in Figs. 13 (for the CCM) and 14 ( a
Gaussian symmetric RCM). Here the statistics are
worse than in the previous cases because a smaller num-
ber of levels are employed; however, the difference

1.00 T T T T T
075 L
z P
= i
<
<050} p .
) /’
D. o3 [
S A -
U
025+ T
\\
W)
\.\
L Ry
00055 03 06

FIG. 10. A comparison of the simulation results displayed in
Figs. 7—9 (Gaussian, uniform, and bimodal random coupling,

line:
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FIG. 11.

Same as for Fig. 7 with an asymmetric Gaussian
random coupling model. Parameters are identical to those of
Fig. 7 only that {ugy)=1.0 and {y;,)=0.9.

between the CCM and the RCM behavior is clearly visi-

ble.

From the results of these computer experiments, we
conclude the following:

(A) The analytical results for all the four coupling

1 00 T T T T T
07l R, T
. ; e A
3 S
2 osof :
a P (D)
g | —— /,é:_‘\_’__ i
o2sf | -
‘\,
0.00 "l'
00 05 1.0 1.5 20 25 30
TIME
FIG. 12.

Comparison of a single time evolution trajectory and

an average over 15 trajectories for the model represented in
Fig. 2 with Gaussian random coupling characterized by (ug)

=y =0, ‘/(“szz Y \/(y,!m)=0.6. pr=8, py=5. Full line:

1933

respectively). Full line: uniform distribution; dashed line:

bimodal distribution; dotted line: Gaussian distribution.

analytical results (k,.;=12.6, k;.4=11.3, ky.;=18.1); dashed
simulation with 90 levels in the L and 59 levels in the M

manifolds, averaged over 15 trajectories; dotted line: a typi-
cal single trajectory.
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models of Table I are confirmed. We were thus able to
provide a justification for assumptions and approxima-

tions which underline the derivations of all these results.

In particular, the results of the numerical simulations
provide a clear demonstration for the validity of the
RCM which plays a central role in our theory of multi-~
photon excitation of large molecules. #*

(B) The time evolution of a system characterized by
a random distribution of coupling matrix elements is
determined only by the distribution function of these ele-
ments and not by the exact values of the different cou-
pling terms. This assumption implies that ensemble
average methods are applicable.

(C) The time evolution in a system characterized by
random coupling is determined by the lower moments
(average and variance) of the probability distribution
for the coupling elements. The results presented in
Table I for the RCM and separable RCM were derived
by Carmeli and Nitzan® assuming Gaussian distribution
of coupling elements. The assumption of Gaussian ran-
domness does not impose a stringent restriction on the
applicability of the analytical solution.

(D) The satisfactory agreement achieved between the
results of the numerical simulations and the analytical
results of Table I was accomplished for systems on the
verge.of the strong coupling situation with #{ u®)!/% p
> 1, It should be emphasized that the conceptual basis
for the RCM master equation, which rests on the strong
coupling limit, is different from the conventional deri-
vations of master equations'! that invoke a weak cou-
pling assumption. The latter, therefore, are not appli-
cable to the problem of multiphoton excitation of a large
molecule.

10 , , —
075l \} Rl .
» i
g \ Pyt
s ‘
=
Fosor % .
p P, (1)
% /
C? A -
o5k [ Y —
P2 (0
£ . -
0 O Kt — T i
0.0 Q.5 10 15 20
TIME
FIG. 13. Time evolution for a model composed of a single

level 10) and three manifolds 1={}1,)}, 2={I2,)}, and 3
={13)}. py=1.0, p;=1.25, py=1.5. Constant coupling: py
=1.0, py,=0.9, and pyy=0.8; full line: analytical results;
dashed line: simulations with 40, 50, and 59 in manifolds 1,
2, and 3, respectively.

LOO—— T

050

POPULATIONS

025

00 0I5 030 045 060 075
TIME

FIG. 14. Same as for Fig. 13. p;=1.0, py=1.25, and py=1.5.
Gaussian coupling random: <U%1> =1.0, 2;4122> =0.9, and

(p%s) =0.8; full line: analytical results; dashed line: simula-
tions with 40, 59, and 50 levels in manifolds 1, 2, and 3,
respectively.

IV. RANDOM COUPLING MODELS WITH
ZERO-ORDER MOLECULAR STATES

The RCM for multiphoton excitation of isolated large
molecules®?® rests on the notion of random radiative
coupling between the molecular eigenstates, evading the
issue of intramolecular vibrational energy redistribution.
The results of the numerical simulations presented in
Sec. III provide “experimental” evidence that random
radiative coupling results in the total erosion of phase
coherence effects. In our treatment, the Markovian
condition (1) enters implicitly, providing a necessary
but not a sufficient condition for the validity of a Pauli-
type master equation for the populations. It is interest-
ing to establish the relation between the picture based
on radiative RCM, between molecular eigenstates, and
an alternative approach which starts from a zero-order
molecular basis and considers radiative coupling be-
tween a small number of zero-order modes, which in
turn are coupled to the rest of the vibrational degrees
of freedom.

The optically active zero-order states can be taken
to be either harmonic normal modes or as bond modes.
Both experimental and theoretical evidence is currently
available indicating that for X~H bonds in aromatic and
altiphatic hydrocarbons and in water the segregation of
zero-order bond modes is physically acceptable. 16 Re-
cent experimental evidence based on IR absorption and
emission spectroscopy of a highly vibrationally excited
SF; molecule provides strong support to the notion that
in this system the zero-order »; normal mode retains
its identity up to relatively high energies, i.e., ~ 8000
em™ above the ground state.*!? The absorption spectra
corresponding to transitions between states correspond-
ing to the v, zero-order normal mode at high energies
are considerably broadened,*!? the typical widths being
T(W)~10-100 cm™, which provide an upper limit for
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FIG. 15. A comparison between two molecular models. (a)
Zero-order molecular levels with a single optically active
mode and with unharmonic interactions; (b) Exact molecular
eigenstates with diluted random radiative couplings.

the rate of intramolecular vibrational energy redistri-
bution.

In Fig. 15, we compare the two complementary models
for the description of multiphoton excitation in Regions
O and III. Figure 15(a) portrays the intramolecular and
the radiative coupling scheme in the zero-order molec-
ular basis set in the simple case where a single mode
is optically active. Consider first the radiative cou-
pling. At each level of excitation, vibrational states
are selectively radiatively coupled to states located at
the higher level. Thus, each zero-order state is radia-
tively coupled to a single higher zero-order state, which
corresponds to a change of one quantum in the optically
active mode with no change in the other modes. The
radiative coupling matrix elements 1, appearing in
Fig. 15(a), correspond to the scalar product between the
electric field and the dipole matrix elements which con-
nect (zero-order) states corresponding to the optically
active modes. The 1t terms are therefore weakly de-
pendent of the level indices and can be taken as constant
for each two consecutive manifolds.

Second, we consider the intramolecular coupling. At
each level of excitation, the zero-order molecular states
are coupled by an intramolecular perturbation W which
corresponds to the anharmonicity and to off-diagonal
kinetic energy contributions. The coupling W induces
the intramolecular vibrational relaxation (or intramolec-
ular dephasing). The characteristic time for the latter
process is!®

Tve =i/TY (11)
where
r'=2m(Wwy (12)

is the associated width. Obviously, I''"’ = Aw,5, which
was defined in Eq, (1), The intramolecular coupling

1935

terms W, connecting zero-order states ¢ and j involve
{(in Regions II and IMO) highly oscillatory vibrational wave
functions. Thus, it is reasonable to assume that the
intramolecular coupling terms involve random functions
of the zero-order level indices i and j. A random cou-
pling model for intramolecular vibrational energy redis-
tribution was previously considered by several

groups. 1818280 we thus assert that the muitiphoton
excitation model, which rests on the zero-order molec-
ular basis [Fig. 15(a)], involves random intramolecular
coupling and approximately constant radiative coupling.

On the other hand, the approach advanced in our pre-
vious work®3 and in Sec. III of the present paper con-
siders random radiative coupling between those molec-
ular eigenstates, which result from the diagonalization
of the total molecular Hamiltonian (including the inter-
action W), The manifolds {i2)} and {I m)} [Fig. 15(b)]
constitute linear combinations of the zero-order states
appearing in Fig. 15(a). The consequences of the trans-
formation between the zero-order basis and the molec -
ular eigenstates basis regarding the latter areasfollows:
(a) The intramanifold intramolecular coupling W no
longer appears, and only radiative coupling prevails.

{(b) The radiative coupling between adjacent manifolds

of molecular eigenstates involves nonselective coupling,
(c) This radiative coupling terms & can be taken as ran-
dom function of the level indices. (d) Conservation of
integrated absorption intensities implies that level
scrambling results in the “dilution” of the {constant)
radiative coupling terms 1, which combine zero-order
molecular eigenstates. We expect that in general u
«U. To derive the relation between the radiative cou-
pling terms in both representations, one has to introduce
the dilution factor for intramolecular coupling®'®

DM =g (W?) p?=aT " p/2 . (13)
The dilution is exhibited for @? so that®
(uty=ut/p" | (14)

Thus, the relation between the {(properly averaged) Rabi
frequency when the random radiative coupling prevails
in the molecular eigenstates basis and between the
(practically constant) Rabi frequency associated with an
optically active mode in the zero-order molecular basis
is

(uiHl/2 (L] /(T Mp/2)t/2

It should be borne in mind that the random radiative
coupling elements p,; and u,, used in the simulations of
Sec. IIT are approximately determined by the “diluted”
spread (variance) ( u?), which is given by Eq. (14).

(14a)

To establish the relation between the conventional
radiative RCM of Sec. III [see Fig. 15(b)] and the intra-
molecular RCM with constant radiative coupling between
zero-molecular states [See Fig. 15(a)], we have per-
formed some numerical simulations. In the computer
experiments, we took all the || terms to be constant,
corresponding to selective radiative coupling, while W
was chosen to be random (with { W) =0), and T''*? was
determined from Eq. (12). (u?) was then calculated
from Eq. (14). The diluted radiative coupling terms
Ug and p,, were subsequently determined for the radia-
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FIG. 16. Time evolution for the models described in Fig. 15.

Py(t=0)=1 in all cases. Each manifold is made from 70 levels
with p=1. Full line: Evolution based on the coupling scheme
from Fig. 15(a); @ is taken the same way between all levels
equal to v30; W is taken to be Gaussian random with (W) =0
and (W?)=3.0; dashed line: evolution based on the coupling
scheme from Fig. 15(b); p is the Gaussian random with (u)

=0 and (u?)=1.0.

tive RCM taking ( 1) =0. The relevant parameters were

so chosen that I""?> | 7|, which is in accord with Eq. (1).

In Fig. 16, we confront the time evolution for the two
models. The agreement between the time evolution in
the two models demonstrates the following:

(1) The dynamics of a system described by an intra-
molecular RCM with constant radiative coupling [Fig.
15(a)] results in a time evolution which is quite similar
to the result obtained for the radiative RCM [Fig. 15(b)].
The small difference between the two evolution pathways
displayed in Fig. 16 results from the approximation in-
volved in Eq. (14).

(2) The time evolution of a system where random
coupling prevails is essentially determined by the lower
moments of the distribution function of the relevant
(radiative or intramolecular) coupling elements.

(3) The “coarse graining” argument utilized in the
derivation of the dilution effect (14) is justified.

(4) The master equation was obtained from simula-
tions on a model system described by intramolecular
RCM and constant radiative coupling [Fig. 15(a)] pro-
vided that I'*"?> | Wi, which is in accord with Eq. (1).
This result is useful as it explicitly demonstrates the
equivalence between our®? necessary condition for the
applicability of the master equation and alternative ap-
proaches*™" to the problem of multiphoton excitation of
large molecules.

V. CONCLUDING REMARKS

We have demonstrated that both random radiative cou-
pling between molecular eigenstates or, alternatively,
random intramolecular coupling between zero-order

Carmeli, Schek, Nitzan, and Jortner: Molecular multiphoton excitation models

states in the molecular quasicontinuum is essential in
eroding the effects of phase coherence in the multiphoton
excitation of a large molecule. The equivalence be-
tween the radiative RCM [Fig. 15(a)] and the intramo-
lecular RCM |Fig. 15(b)] provides strong support for

the validity of our physical approach®® and for the de-
scription of collisionless multiphoton excitation of large
molecules. Our results demonstrate that the simple
kinetic Pauli master equation is valid for the descrip-
tion of multiphoton excitation of a molecular quasicon-

tinuum provided that two conditions are simultaneously
satisfied:

(1) rapid intramolecular dephasing [Eq. (1)] ,
(2) random coupling prevails.

We would like to conclude this discussion with several
comments, First, our approach®? for multiphoton ex-
citation of a quasicontinuum, which rests on assump-
tions (1) and (2), differs from alternative theoretical
approaches®™” which invoked just assumption (1). The
physical condition for rapid intramolecular dephasing
[Eq. (1)] provides a necessary, but not a sufficient,
condition for the validity of the kinetic Pauli master
equation for the multiphoton excitation of a congested
moliecular level structure. Second, we have provided
evidence for the applicability of a master equation which
corresponds to a strong coupling random coupling situa-
tion. Third, we have demonstrated that random cou-
pling in collisionless multiphoton excitation can be taken
to involve either intramolecular or radiative interac-
tions, depending on the choice of the molecular basis.
As long as off-resonance intramolecular interactions
between zero-order molecular modes are small, the
choice of the molecutar basis set (in terms of molecular
eigenstates or as zero-order states) is merely a matter
of convenience.'®® Fourth, we would like to draw
attention to the breakdown of the Pauli master equation
when the RCM applies but the Markovian condition (1) is
no longer obeyed. In that case, the approach of Sec. IV,
which rests on intramolecular RCM involving zero-order
molecular states, will be useful for the understanding
of coherent effects at extremely high fields, which will
be exhibited in the excitation of a congested molecular
level structure.
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