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coupling vanishes, but may persist otherwise.

t 1. Introduction

The continued interest in multiphoton processes
in atomic and molecular systems [1,2] has produced
 2substantial amount of experimental and theoretical
- studies into the nature of these phenomena. Of partic-
- ular interest is the question “when can the Schrédinger
' tquation be reduced to a simple kinetic equation for
. populations, and when do coherent phenomena per-
p tist whereupon the full quantum-mechanical descrip-
tion has to be maintained?” In atoms and in small
‘molecules it has been shown that the Schrédinger
 equation may be reduced to a classical master equa-
tion under conditions which imply a unidirectional
flow of energy [3). In large molecules experimental
tvidence (ref. [2], section 4; see also ref. [4]) suggests
 that a classical master equation provides a good de-
Kription of the collisionless multiphoton excitation
 frocess in the continuous and quasicontinuous parts
of the molecular vibrational manifold while coherent
Phenomena underline the excitation within the few
liscrete bottom levels.

So far, attempts to explain the non-coherent nature
% the multiphoton excitation through the upper vi-
.-_brational spectrum of large molecules have mostly
_heEn based on the idea of rapid intramolecular de-
Phasing processes [5]. The non-optically active modes
%e assumed to provide a thermal bath which acts to
®phase the optically active system. This implies that
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Most of the multiphoton absorption steps in a large molecule excited by an intense radiation field may be viewed as
transitions between quasicontinuous manifolds of exact molecular levels. It is shown that the assumption that the radiative
coupling varies randomly with level indices leads to simple kinetic schemes. Coherent phenomena are absent if the average

coherent effects should appear at low temperature
where proper dephasing rates vanish. Also, selection
rules which single out the optically active modes
break down for high vibrational excitation.

A different model [6,7] considers the multiphoton
absorption within the dense molecular manifold as
transitions between (quasi) continua of exact ¥ molec-
ular levels, each characterized by a different number
of photons. This picture in the rotating wave approx-
imation is displayed in fig. 1. Each level in a given
manifold is radiatively coupled to each level in the
two neighbouring manifolds. Because of the highly os-
cillatory nature of high vibrational wavefunctions,
such coupling matrix elements vary wildly between

f By “exact” we mean diagonalised in the anharmonic inter-
action.
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Fig. 1. A schematic representation of multiphoton excitation
of a large molecule. Each manifold L = 1,2, ... M 1epresents
the molecular levels with a different number (M—-L) of pho-
tons. The few initial discrete levels are represented for sim-
plicity by a single level |5).
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different levels. Also, if the bandwidth of the exciting
beam is small relative to the width of vibrational ab-
sorption resonances (resulting from zero-order selec-
tion rules) there will be no systematic variation in the
coupling elements over the range of energetically rele-
vant levels. The intercontinua radiative coupling ma-
trix elements may thus be considered as random func-
tions of the level indices. Such random coupling mod-
els, most commonly used for disordered solids have
also been used in the theories of nuclear spectra {8}
and in intramolecular dynamics [6,7,9]. It should be
noted that conventional derivations of the Pauli mas-
ter equations for isolated systems [10] # involve a
weak coupling assumption and are not applicable in
the present context.

In this communication we solve the random cou-
pling model for multiphoton excitation of large mole-
cules by an infinite order resummation of a perturba-
tion series for the averaged tetradic Green’s function.
The result is valid in the strong coupling limit and
yields a classical master equation when the average
coupling vanishes, with coherent contributions when
it does not. Corrections are of order (r/hp) where 7
is the experimental time scale and p is the density of
states in a molecular quasicontinuum.

2. Model

For simplicity we take a single discrete level [s)
and assume P (1 =0) = | where P is the probability
of finding the molecule in this level. The following
manifolds L = 1,2...M (fig. 1) consist of molecular
levels with different population numbers for the radi-
ation field. The coupling between |s) and its neigh-
boring manifold, and between each pair of levels be-
longing to neighboring manifolds is the radiative cou-
pling S(¢) ¥};, where S(£) # 0 only during the irradia-
tion time. For our purpose it is enough to note that
V;; is a random function of i and . As the simplest
possible model we take Vi =uy tuy where u;; =
(V,;» and with v;; a gaussian random variable satisfy-
ing (v;) = 0 and (v;;v;;) = W88 Here i,i' €1,
i, j' €J, I and J being two neighboring manifolds.
Each manifold J is further characterized by its density
of levels py.

* For a recent application to multiphoton absorption see ref.

{11].
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The calculation is facilitated by introducing two
ideas: (a) It is assumed that the dynamics is deter-
mined by the distribution of the random v elements
rather than by their specific values. (b) Each level in
the manifold J is assigned a width v; and we assume
pyvy > 1. For quasi-continua below the dissociation
threshold v, is taken to be much smaller than the ip.
verse experimental timescale. For continua above it
vy is the dissociation rate from the Jth energy range.

3. Calculation and results

The method is demonstrated for a single initial ley.
el |s) coupled to a manifold L = {|>} which is
coupled to M = {|m)}, and for the purely random
case u;; =0 for all I J. The objective is to calculate
the quantities (@gq o (EWs Zp(Gn, ss(ED Ty Grm 5
(E)) where o

G, aa(B) = (277 f du Gy, (u +i€)

XGgﬂ(u—EH(e'#e)), >0, ¢>e (1

is an element of the tetradic Green’s function, G
being elements of the diadic Green'’s function. The
probability of finding the system in state |b) at time
starting from state &) at ¢ = 0 is given by

Py (1) = (2mi) ! f dE exp(—iE1)(@pp, aaEV-

( ) denotes an average over the distribution of ran+
dom v elements. Putting A = Hy +v where H is the
sum of free-molecule and radiation-field hamiltonis

we expand each of the diadic Green’s functions in M
r.h.s. of (1) using Dyson’s equation. We introduce:
diagram elements shown in fig. 2. A diagrammati'c
pansfon of the product G @) Gga(u_E) is obts ’.____,
by forming all relevant combinations of free propHf#
tors and vertices and combining them in pairs of u
per and lower branches. The upper branch belo
(u-H+ % iy)—1 while the lower one results from
(u—-E-H- Liy)—1 where v represents the width
ciated with the particular propagator.
calculated as a product of its elements with int
ate propagators summed over their index. Thu
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Fig. 2. Notation for diagram components.

'_ diagram in fig. 3a stands for {(u—E + %iy)(u—EuEs
 -3iv)) ! while fig. 3b represents the term (belong-
g0 G g s (£))

: E Z; E E % Uﬁsvlzgsvlgsvhrvhmuqu

W b I3 g

X (qu“ + -lz-i'yL)—l (“_Efg + % wL)—l

X (u—E—Ey, ~3ivp) ™ u—B—-Ep, —31v,)!
X (u—E—Ep—3ivy) =L (@ Eg+ 31757

X (u—E-E,—3iv) 2.

] Next, an average of each diagram is taken by com-
 bining pairs of the same kind of vertices by dotted
 lines in-all possible combinations. Thus the diagram

b (3b) yields a sum of fifteen terms, three of which are
F tepresented by figs. 3¢, d, e. Studying these diagrams
- we realize that 3c vanishes and that 3d is of higher

E power in (yp)~! than 3e. Keeping in each order only
 diagrams of lowest power in (vp) ! we follow the
 usual resummation technique by defining renormal-

:5 ite sums of terms starting from 3g, h,1; 3k,1,m and

- Jo,p, q respectively. We also encounter seif-energy

+ terms: $0) is defined as the geometric series starting

- With the diagrams 3u,v,w where Z() is given by the

_ diagramn 3x. These summations yield (with small ener-
gy shifts disregarded)
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- ized propagators: The diagrams 3f, 3j and 3n are infin-

§ where T are golden-rule rates

- (30) = [u—E, +5i(CL +7)171, (3)
G = [u-E + 310+t @
 On) = [u—E,, + 515+ 7Pl (5)
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Fig. 3. Diagrams referred to in the text.

l"g’ = 2n(v§L)pL , T‘f = 21T<U%M>.0M ,
rf = 2nlvip0p - ©)

Egs. (3)—(5) are for upper-branch propagators. Lower-
branch terms are obtained by replacing u by u—£ and
taking complex conjugates. Also

2O = iPH W OE +i(Th + )] 7L (7)
£6) = L W) {E+ 1T +,)

+THTLIE +i(Tf + )1 7)1 8)

Expressions for the desired average tetradics are ob-
tained in terms of such renormalized propagators and
self-energies. For example (G, (u) G;S(uﬂE)) is given
by the infinite series starting with diagrams 3r, 3,1
where 2 = 2[E@—ilL @2 WE +ivy) 71} O
however is of higher order in (yp)~! than the free
tetradic propagator (3r) and the latter gives the main
contribution.) Similar summable series are obtained for

Z:(Gs () G (u—EN( =1, m). With eq. (1) they yield
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M () 2 G D

which are the Fourier Laplace transforms (eq. (2)) of
ihe rate equations

;- L
B =-Tip,

PL=F§LPs+FffPMf(Ff{+VL)PL
and
PM=TfPL’(Fﬁ+7M)PMa

with P, =1,Pp =Py =0att=0.

When the average coupling elements are different
from zero each vertex in the former diagrams has to
be replaced by two, corresponding to the u and v
parts. The expansion and resummation procedure i
sitnilar, averaging is performed by connecting v vertices.
The final result is identical to the solution of the kinet-
ic equation P(r) = DP(f) where P=(Py, Py, s Py)
are the populations of the different manifolds (Py cor-
responds to the initial |s) state) and the kinetic matrix
Disgivenby D =Dyc * D¢. The incoherent compo-
nent Dy is the tridiagonal matrix

= J- J 17
Oy = (77 + T ey, O s =TT
I _ 2 —1_0_0_M1ﬂM-
Tk =2tk oL To =10, =r)=Ty" ﬂr‘M+(19-)0,

which corresponds to 2 classical master equation. ¥y
may be disregarded for manifolds below the dissocia-
tion limit. The coherent component D is nonzero
only when (¥) =u #0 and is given by

(D)oo = €1 (2muty 1), (D)=l (2mul p1)
J-1
(DC)J() = CJ[};E {1 *C,)] Cy (27"1521 .01) s (10)
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where all other elements vanish and where e coetti.
cients (; are defined by

CM =1, Cj:(l +NJCJ+1)"1 , J= 1,2, ...M-—-l’
(1)

Wlt.h NJ: ﬂzu?f’],,_l PJPJ+1 .

4. Conclusions

For vanishing average coupling the time evolution
of the intercontinuum random coupling model is in-
coherent, with consecutive steps and golden-rule rates,
(V) # 0 leads to a coherent evolution component
characterized by direct transitions from the discrete
level to all the coupled manifolds. A purely coherent
evolution of this form has been previously obtained
[12] for an intercontinuum constant-coupling model.

Analysis of multiphoton excitation of large mole-
cules is usually done with the incoherent rate model
for which the present results provide a proper justifi-
cation. The coherent component is expected to be
small because probably ”31 < (uszl'} and also C; <L
Its contribution should mainly affect the branching
ratio for different excitation levels of the molecule
(different manifolds L in fig. 1) which was shown to
be a strongly oscillating function of L in the constant.
coupling model. Experiments aimed to yield such in-
formation are therefore highly desirable.
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