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The time evolution of a system involving separable random coupling between guasi-continuous manifelds is studied, The
problem is solved using ensemble averages. In the strong coupling maximum randomness case the continua are found to be
effectively uncoupled on the experimentally relevant time scale,

1. Introduction

In the last few years some attention has been given [1-5] to the application of random coupling models (RCMs) §
in theories of intramolecular processes. Such processes may be described in terms of matrix elements between zero 3
order molecular states which are wildly varying as functions of state energy or state index. In spectral regions of -
high density of states such coupling may be modeled by some random distribution.
The study of Heller and Rice (HR) {3] is of particular interest as it provides a possible mathematical basis for
the treatment of time evolution in systems of several interacting continua (fig. 1). However, these authors have
restricted themselves to a case characterized by a low density of states in the intermediate quasicontinua (the mani-
fold {1}, fig. 1). As discussed below this raises some questions regarding the implications of their results.
It should be mentioned that solutions of time evolution problems involving several interacting quasicontinuain
the constant coupling model (CCM) exists in the literature for some time [6—8]. The CCM solution is character-
ized by a simultancous (nonsequential) branching behavior, where all continua coupled to the initial discrete level 3
are populated simultaneously. This behavior results from the quantum-mechanical interference between the mutual-§
ly coupled continua and may disappear in the RCM [3]. 1
In the present note we study the HR model without restricting ourselves to low density of states in the interme
diate quasicontinuum. We limit ourselves to the two continua model (fig. 1) in order to establish a working approxig
mation scheme that may later be generalized to the multicontinuum case (relevant for the multiphoton excitation
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Fig. 1. Energy level scheme for the model studied. The initial
level () is coupled to the continua (or quasicontinua) {t{}} and
{Im>} (also denoted L and M in the text). In the constant
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% coupling model (CCM) Vif, Vit and Vi are taken to be in-

== dependent of the level indices / and m. In the random coupling

_—— maodel (RCM) they are taken as random functions of these
{i1e>] {im> indices.
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roblem [5]). We also limit ourselves to the HR coupling model (to be described below). Our final results, given by
egs. (23), (25)-(32) look very different than those obtained by Heller and Rice [eqs. (4)—(9)] ; however, both solu-
tions coincide in the (relatively uninteresting) case where their ranges of validity coincide. The physical significance
of these results is discussed in the last section of this note.

2. The Heller—Rice (HR) model

E

The HR model [3] is essentially described by fig. 1, provided V,,,, is set equal to zero. V; and V},,, are taken to
be random functions of the indices / and m and their averages are assumed to be zeroTT. Two additional assump-
tions characterize this model:

(a) The coupling ¥}, is assumed to take the separable form

Vlm = Vle 3 (1)

so that the theory is characterized by three random functions Vi, Vi (of the index ) and V,,, (of the index m),
with (Vb= (Vpy=(¥,,» =017

(b) The intermediate manifold {]/)} is sparse so that the spacings AE; of levels |I) greatly exceed their width.
However, it is assumed to be much smaller than the width of the level s}

ALy = 20V Py 3 CAEY > RDP) = 20 dppy = 200D (W dpyy @

R

where Pjs the density of states in (|72} is assumed to be a smooth function of the energy E; Maximum randomness
is also assumed and this assumption is used essentially in the following way: If 2; is any of the random functions
involved then

2
(Z4) -2 a4 -T o= farocpad 2
i ;T f

With these assumptions Heller and Rice obtain the following kinetic equations for the time evolution of the
population of the state s and the continua {I} and {m}

Bo=-ryp, Pp=T,p,—1p,, By =aMp, (4)

where P, =%, Pand Pyy = 2, P,,. Py and P, being the probabilities for states / and m, and where (F,M) is an
average I';" taken over the manifold {]{)} . Identical results were obtained before for the model employed by
Nitzan, Jortner and Rentzepis (NJR) [10] in which each of the levels [/) is coupled to its own continuum. This
feature of the NJR model implies that the levels |I) evolve essentially independently of each other and the similar
HR results was interpreted as a washout of interference effects due to the random coupling. This conclusion stands
in accord with the recent results of Druger [4]. The HR results however are restricted by the model assumption
Stated by eq. (2) which limit their usefulness:

(2) The assumption (2), if made within the CCM would imply an upper time limit on the validity of the results.
This is the Bixon—Jortner condition [11]

t <H/(AE)) . (3)

Eq. (2) then implies that this time is long relative to the lifetime 1/T; of the state |s) but short relative to the time-
Scale 1/(I‘IM » which characterizes the transition between the {10} and {|m}} continua. In the time range defined
by (5), eqs. (4) yield (using also T, > (I y)

Pr(f)=1—cxp(~Tyt), Py()=0. ©)

Al When Vem = 0 the nature of ¥, does not affect the solution. In the HR model ¥, was taken constant [9].

311



Votume 58, number 2 CHEMICAL PHYSICS LETTERS 15 September 1978

In the RCM the restriction on time may be weaker than that given by eq. (5) [2]. However on the time scale of
order 1/T recurrences may occur and the validity of the results (4) on such time scale is not clear.

(b) Assuming the solution (4) to be valid for ¢ >#/(AE), the condition (AL} > (P implies that in some sense
(in the long time limit), each level |{) is coupled to its own piece of the {|m}} continuum. This makes the HR modg]
(for t > R{{AE)Y) similar to the NJR model. The HR results cannot therefore be taken as an implication of the RCM
alone, and cannot be contrasted with the simultaneous decay results [6—8] obtained in the CCM without invoking
any assumption similar to (2).

(c) For the application of the RCM in the theory of multiphoton excitation of large molecules [S] condition (2)
is too restrictive and may be unphysical.

In view of these observations it becomes worthwhile to reopen the question and to consider multicontinua de-
cay models within the RCM with (I‘jw) allowed to be equal to or to exceed the mean level spacing (AE). An ap-
proach to this problem is described next.

3. The ensemble average method

Here we investigate the time evolution of a system whose level and coupling structure are displayed in fig. 1. We
adopt the HR model without the assumption (2). Thus we take Vp,, = ViV, and take Vi, Vi, Vyand Vi, to be
random functions of the parameters / and m. Unlike Heller and Rice we do not require maximum randomness and
we investigate the effects of short range corselations in the random coupling functions.

The main idea behind the present calculation is the introduction of ensemble averages. We consider a set of
identical molecules, each characterized by the same random distxibution of coupling parameters, and we take
averages of the calculated observables over this ensemble. We make the “‘ergodic” assumption that averages like in
eq. (3) may be equally taken over the ensemble.

We define our ensemble by choosing (for 4; being a random function of the index )

and |
@az) = @) €5 I1E — Ep)' + €51 ®

where ( ) denotes an ensemble average, E is the energy of the statej and C; is a correlation length. While eq. (7)
reflects the observation that the relevant random functions Vi, Vg, Vi, ¥y can take equally likely positive and
negative values, eq. (8) constitutes a rather specific choice of model, suggested by the ease of evaluating lorentzian
integrals. We do not expect that the gross features of the solution obtained below will be affected by the particular
choice of the correlation form. Eq. (8) offers the advantage of ability to consider the almost constant coupling case
(large € ;) as well as large randomness (small € ;) and intermediate cases. However, the ensemble average method
makes physical sense in the present context only for large randomness. It should be realized that when we conveit
sums Z; to integrals [ dE;p(E;), €y has alower bound of order [p(£})] —1_ This reflects the fact that as the quask
continuum is smeared to give an approximate continuum, the correlation length cannot be less than the distance

between adjacent fevels. Mathematically this is seen starting from (for maximum randomness)

2 ]
(ara;) = a7 Yo o 3
and summing over all j’
¥
2,2 ! 3
Z; (ajaj') = (a!- y= (a}. 3 E " S = (afz)p(Ej) (f?,def, 5 3 =Py Cj{a}. ).
; B - EpY H (B, —Ep) +C]
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¥ Therefore the minimum value for ¢ 7is

i -1
EFT = (mp ) (10)
n addition we shall, for simplicity, disregard levels shifts and repeatedly make the approximation
2
a’.
; / R
lim 2 — &~ —mio g, (11)

00§ E—E+im

I when summing over the {!/} or {m} continua.
£ Eqgs. (1), (7),(8) and (11} are the basic assumptions of our model. The assumption (1) enables us to obtain sim-
?"-_ ple explicit forms for the relevant elements of the Green’s function [3,7]. Using also (11) we obtain

Gy =(E—Es+5iy) ", (12)
~ where
_ ‘ 2 N , 2 N 2
[y =—mip (V) (1 “TIAN QL) — mipp (Vi (1 Ty QM) TN Qi s (13)
N=np, pp(VEI VY =ml0; ppr(VED (14)

is the intercontinuum coupling parameter, and where Q; , Qyy and Qpy; are functions which take simple values in
the extreme limits

Omi, .
Oy=0p=— : ~ 0 (maximum randomness);
oL VimVigVins =1 (CCM). (15)
Also
BTNE-E+in [tN E~E+im LS E B+ "emVm & FIE T O (16)
Vons i v, [ ViV Vo Von's
- e B e,
ms {E—-Em‘*'i‘r?‘kl'l‘NE#Emi'in L?E—-E;‘Fi?? TTI,OL(V‘J) mE ‘E‘Em""l'f? ss( )

The populations of the level |s) and the continua {10} and {}m)} are obtained from

Ps(r) exp(—l"sr) H (]8)

#10) :§3 leje ()12 = 22es (1)
7
4 12 JaEe B [ au 2G5 +ur mMGiu+iny  (F=mJ=M,L). (19)
m 7

Inserting €qs. (16) or (17) into (19) and using eq. (8) we obtain after some algebrat

Eq. (8) is used with random @] = ViVis ot by = Vi Ving. When Vo + 0 we encounter also terms of the form (ajb,y) which are
taken to be zero. This makes it impossible to take the constant coupling limit in this case. The asymmetric case (Vs = 0) is not
S0 restricted.
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FSL £, r,
PLO =T {[1 - exp(=Tyt)] Ty [1 ‘e, exp(—Fyt) T, _¢, exp(—CLf)J]
+ (‘1 fi)—z II:zM[l + rf-MéM exp(—Tgt) — ;;'_FS(SM exp(— CMf):|: (20)
Py ()= L:L [[1 — exp(~=T)] —(:2%)5 [1 + I:;—fMéM exp(—Tt) —ﬁ?{g—M eXP(—CMr)]}
+ (—lf—ﬁf? l—rii [1 + T‘SC_L(SL exp(—Tyt) — E%q eXp(—CLt)]. (21)

Here F;L =2n( Vszl or, Ff‘( =2 ( Vszm 2pps and for large randomness Iy = FSL + I‘;w.
In the asymmetric model with V,,, = 0 (considered by Heller and Rice), eqs. (20) and (21) lead to

[ [y exp(—-&;t)— € exp(~r‘3f)]
1 — :

PL(I): [1 - exp(AFSI)] 7(—I_+N)2 1'15‘7 (SL (22)
[ exp(— &, t) — € exp(-Tt)
Py (ty=- o [1 - B ] . (23)
s L

(1+nN)?

Here we used again the large randomness limit [ = FSL. Egs. (18), (22) and (23) are solutions of the foliowing
kinetic equations.

Psz _FSPS’ (24)

P, =D P ky Pty Poy (25)

PM:kL 'MPL -’kM__,LPM, (26)
where

kp oy = SN N, kgl = €L+ NDIA+N) @7

which should be compared to the results of the HR model, eq. (4).

4. Discussion and conclusions

Egs. (18)—(27) provide the solution to the two continua decay model with random coupling coefficients. The
following points concerning this solution should be pointed out

(a) The solution conserves unitarity: P+ Py + P, = 1 at all times.

(b} Strong randomness (small €) was assumed in taking I'; = [“SL + FSM and (for the symmetric case) in taking
VVerd =V Vi =V Vi 2= 0. .

(c) The asymmetric model (¥,,, = 0) yields a simple kinetic scheme, eqs. (24)—(27) which unlike the HR result,
contains bidirectional transition rates between the continua L and M. :
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(d) Consider now the different limits for the intercontinuum coupling strength & in the maximum randomness
case. In the weak coupling limit & < 1 which is typical of the coupling between radiative and dissociative continua
(12}, eq. (27) yields k; pr = (F,M> and kyy ,, =€y = (an)‘l. It should be noted that in this limit

N<el»TMy<pl=ne, . (28)

This corresponds to the HR model. Qur solution in this limit thus yields kps_,; > k; _, 37, in apparent contradiction
of the HR result, eq. (4). This discrepancy is resolved by realizing that our solution was obtained by converting sum:
over the L manifold (as well as over the M manifold) to integrals and is thus limited to times t €<% p; . On this time
scale the L + M transition does not occur and our solution is identical to the HR solution (see also comment (f)
below). For longer times our solution is not valid; the different / levels evolve essentially independently of each
other and the NJR or the HR resuit, eq. {(4) should be used.

In the strong coupling limit (realised in later stages of multiphoton excitation of large molecules) V > 1 implies
(rp> le = €y . The validity of the results (18), (20)—(27) is still restricted to times shorter than fip; (and fpyy).
however this may now cover all experimentally relevant times. Eq. (27) again implies that the L = M transition does
not take place on the relevant time scale. In other words, even for strong coupling under maximum randomness, the
decay S — L takes place as if the continua M and L were uncoupled from each other.

(e) Another way to elucidate the nature of the solution is to consider in egs. (20)—(27) the relevant time scale
for which & ¢, € et € 1. On this time scale eqs. (20) and (21) yield

Py(t)~(TIr,) [} —exp(~Cit)}, J=L,M, (29)

with similar results {(with I‘SM = ) corresponding to egs. (22) and (23). Again we see that the continua L and M

are effectively uncoupled on the relevant time scale.
(f) Another case of interest is one where the levels {{I}} and/or {1m?>} have additional widths due to decay to
other channels (e.g. spontaneous IR ernission or collision induced transitions). In this case the same treatment yields

I, N
P ()= H {exp(—er t) —exp(—T ) — mP [exp(f'th)
(O —ydepl( # E)e] - & exp(—rsr)”
e I ’ (9
2N s [ Ty — mapexp [~y + E)e] — € exp(=Tt)]
Py ()= _ - ol
u® (1+n? Es—y xp () Iy —vr - €1 J GD

where v, and v, are the (assumed constant over the manifolds) decay widths of levels in the manifolds M and L.
When Y7 2,0;] (J = L, M) these results are valid at all times; 751 and 'm}l set the relevant time scales, on which
our former conclusions remain unchanged.

(g) The discussion in points (e) and (f) refers to the maximum randomness limit. [t is interesting to note that a
larger correlation € implies an effective non-zero L < M coupling.

The implications of these results to the molecular dissociation problem, when such process occurs via an inter-
Mediate intramolecular quasicontinuum, is that the initial intramolecular relaxation and the subsequent molecular
dissociation are uncoupled from each other. This conclusion fits well the resuits obtained by Houston and Moore
on the photodissociation of formaldehyde [13]. Regarding the multiphoton excitation process in large molecules
we must conclude that the model, at least in the maximum randomness limit cannot be useful for this problem.
This probably results from the unphysical assumption (1). It is also possible that correlations in the random cou-
Pling play an essential role. These interesting questions are currently under study.

RN



Volume 58, nummber 2 CHEMICAL PUYSECS LETTIEIRS 15 September 1978

Acknowledgement

We are grateful to J. Jortner for many helpful discussions. One of us (A. Nitzan) thanks the Chemistry Depart.
ment at Northwestern University for its hospitality during the period in which this work was written.

References

(1] J.M. Delory and C. Tric, Chem. Phys. 3 {1974) 54,
(2] W.M. Getbart, D.F. Helter and M.L. Elert, Chem. Phys. 7 (1975) 116.
[3] E.J. Helier and S.A. Rice, J. Chem. Phys. 61 (1974) 936,
J.N. Kushick and 8.A. Rice, Chem. Phys. Letters 52 (1977) 208;
M. Muthukumar and S.A. Rice, to be published.
(4] 5.D. Druger, . Chem. Phys. 67 (1977) 3238, 3249,
[5] J. Jortner, Advan, Laser Spectry. 113 (1977) 88.
(6] G.A. Nitzan, J. Jortner and B.J. Berne, Mol. Phys. 26 (1973) 281.
[7] 8. Mukamel and J. Jortner, Mol. Phys. 27 (1974) 1543.
{8] R. Lefebvre and }.A. Beswick, Mol. Phys. 23 (1972) 1223.
[9] B. Carmeli and A Nitzan, to be published.
[10} A Nitzan, . Jurtner and P.M. Rentzepis, Mol. Phys. 22 {1971} 585.
[11} M. Bixon and I. Jortner, 3. Chem. Phys. 48 {1968) 715.
[12] § Mukamel and ! Jortner, J. Chemn. Phys. 61 (1974) 227.
113] P.L Housten and B. Moore, J. Chem. Phys. 65 (1976) 757.

316




