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We present a theory of impurity vibrational relaxation in condensed media based on computer simulation
of the classical equations of motion of the impurity molecule and a small number of neighboring host
atoms. The host atoms are in communication with the remainder of the lattice through the presence of
stochastic forces and damping terms that are constructéd from knowledge of the phonon spectrum of the
solid. Temperature is introduced via the fluctuationdissipation theorem. The method is applied here to a

Cl, impurity molecule imbedded in an argon matrix. The dependence of energy relaxation and dephasing

times on interaction parameters is monitored, and comparison is made with recent spectroscopic

measurements on this system.

l. INTRODUCTION

Vibrational relaxation (VR) of impurity molecules in
solids and liquids has become a subject of much experi-
mental and theoretical work in recent years, =%’ It has
been established that direct dissipation of molecular vi-
brational energy to the surroundings is a relatively slow
process. ™! The small rates result from the fact that
simple condensed media do not possess internal modes
with high enough frequency: the characteristic period
of molecular vibrations is an order of magnitude shorter
than that of modes of simple solids and liquids. For
modes of high vibrational frequency pure VR can be
so slow that other decay channels predominate; e.g.,
radiative damping,2 interimpurity energy trans-
fer, 6 glectronic radiationless transitions, > trans-
fer to medium vibronic modes, transfer to other modes
of the same (polyatomic) impurity molecule, % and trans-
fer to rotational modes.!® When, however, the residual
energy (resulting from mismatch between the high fre-
quency modes) which has to be released to medium
modes is small, the process may be very fast—up to
the picosecond time scale.®

In solids, the theoretical approach to the description
of impurity VR is based on the general theory of multi-
phonon processes, fo=14 originally used for analyzing
relaxation and transfer of electronic energy in and be-
tween impurity centers in lattices, 1% and later utilized
in the theory of intramolecular electronic radiationless
transitions.?® This is essentially a linear response
theory and it has been moderately successful in explain-
ing and predicting general trends such as energy gap
and temperature dependence of the multiphonon relaxa-
tion rates. The same type of theory has been applied

23upported in part by the Commission for Basic Research of
the Israel Academy of Sciences.

336 J. Chem. Phys. 69(1), 1 Jul. 1978

0021-9606/78/6901-0336$01.00

to the liquid case.?”? There a common alternative
approach exists based on the gas phase originated view-
point of individual collisions with the surrounding mole-
cules.

In addition to population relaxation rates, phase re-
laxation rates have been monitored for vibrational ex-
citations in pure liquids. %% 1t should be noted that
recent theoretical work on vibrational phase relaxa-
tion?!=2%2" jg egsentially a one molecule theory in
which the predominant mechanism for the phase damp-
ing is the stochastic nature of the interaction between
each individual molecule and its immediate vicinity.
Such a theory does not take into account contributions
to the dephasing rate from motions of the excited mole-
cules relative to each other, ?® and from energy trans-
fer processes, ?® Dephasing processes have recently
been observed in time resolved experiments, 3° and
corresponding effects on line shapes have been dis-
cussed.

In the present work, a new approach to the theoreti-
cal study of impurity VR in condensed media is sug-
gested and studied. This approach is based on com-
puter simulations of the Langevin dynamics type, where
classical trajectories are computed for the impurity
and a few neighboring host atoms, and where the ef-
fects of the rest of the solid are introduced by stochas-
tic forces and damping terms in the equations of mo-
tion of the host atoms. Temperature is introduced by
relating the stochastic force and damping through the
fluctuation dissipation theorem.

Classical trajectory computations in harmonic and
anharmonic lattices is a subject of long history. =%
Most studies of this kind have been of the molecular
dynamics type where the exact equations of motion are
solved for a system of, for example, a few tens of atoms
{with periodic boundary conditions) representing the
monoatomic lattice. These numerical studies have
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focused on the question of ergodicity and energy sharing
between different harmonic modes due to the anharmonic
coupling, and on the time scale for the energy transfer
processes. Recently, Riehl and Diestler®® have car-
ried out a numerical molecular dynamics experiment

on a one~dimensional lattice of identical diatomic mole-
cules. Here, in addition to questions of ergodicity,

one can study the energy migration from the high fre-
guency molecular vibrations to the soft lattice phonons.

This dynamical problem is characterized by three
different time scales: the shortest one corresponds to
the period of the hard impurity oscillations; the inter-
mediate one is given by the period for the low-frequency
lattice modes; and the longest time scale corresponds
to the energy transfer between these two types of mo-
tion. This last time scale can be orders of magnitude
slower than the faster scales and for this reason nu-
merical experiments on such systems are highly time
consuming: information is sought about processes oc-
curring on the slowest time scale while the equations
of motion have to be integrated on the fastest one.

This, together with the fact that in a molecular dy-
namics experiment many equations of motion are in-
volved, rules out such computations on real three-di-
mensional systems., Even in the one-dimensional case
studied by Riehl and Diestler, % it was found necessary
to work with a model where the molecular “hard” fre-
quency was taken artificially small (~10 em~!), This
case does not correspond to a multiphonon relaxation
process but to a resonance within the frequency spec-
trum of the medium,.

The stochastic classical trajectory approach, while
still hindered by the occurrence of the three vastly dif -
ferent time scales in the dynamics, provides a sub-
stantial simplification by reducing considerably the
number of dynamical equations that have to be solved.
This approach has recently been applied to the problem
of an atom-solid surface collision®*™*8 and was found
to yield reliable results for accommodation coefficients
and sticking probabilities. In particular, a good agree-
ment was found between averaged classical and quan-
tum mechanical results for the energy transfer.3® In
the present case we expect that the classical computa-
tions will offer the same advantages and also be sub-
ject to similar disadvantages as in the atom-—surface
system. The main problem lies in the temperature
dependence at low temperatures which will not, of
course, be represented correctly by the classical be-
havior, Other features like dependence on the impu-
rity frequency, on impurity internal anharmonicity and
on the properties of the impurity—medium interaction
are expected to be represented correctly by the classi-
cal computation.

In the next section we briefly describe the method
and discuss its applicability to the VR problem. In
Sec. III the particular model studied here is defined,
and results of energy relaxation and dephasing calcula-
tions are discussed in Sec. IV, Finally, in the last
section we present an assessment of the method and
outline possible future studies.

1. STOCHASTIC CLASSICAL TRAJECTORY
APPROACH

The stochastic classical trajectory method is based
on the assumption that an impurity molecule in a solid
interacts directly with only a small number of neighbor-
ing lattice atoms, The remainder of the lattice then has
only a passive role, acting as a source or sink of en-
ergy to these neighboring atoms. Following the nota-
tion of Ref. 38, we classify atoms into three groups,
impurity atoms (R), a small number of primary lattice
atoms (P), and the remaining huge number of secondary
lattice atoms (Q). We can write the following matrix
equations governing the motions of the three types of
atoms:

X () =Mk Fa[Xp (), X:(8)], (1)
Xp(t) = ~-M 202 M 12 X, ()
—MP2 QM X o(1)+ M T Fp[Xp(8), Xp(t)],
(2)
Xolt)= - MG4? QL MIP X, (1) - M Qe M1 Xo(®)
(3)

where Mgp, Mpp, and Mgq are the matrices of masses
of the impurity, primary, and secondary atoms, re-
spectively, and Fy and F are the (anharmonic) forces
of interaction among the impurity and primary atoms.
%, is the frequency matrix describing the harmonic
interactions among the primary atoms; Qaq is the cor-
responding secondary atom frequency matrix; Qf,Q de-
scribes the harmonic coupling between P and Q atoms.

Equations (1)-(3) rest on two assumptions. The
first, stated above, is that the forces on the impurity
atoms R do not depend explicitly on the instantaneous
positions of the secondary lattice atoms. The second
is that all interactions among lattice atoms are har-
monic.

Following Ref. 38, we can solve Eq. (3) formally
and substitute back into Eq. (2), giving

Zolf) = — O, X, (8) — fo A=) R () ar

+MPR() + M Fp [XR (), Xp(8)], (4)
where
Q=M [0 —AOMLY (5)
A() =M {20, cos(Reo )L, R4 ML | (6)
and

R(f) = - M¥Z Q2 4 cos(Rqet) M Y2 Xo(0)
- M QE o sin(Qqo )M Y2 X (0). (n

Equations (4)—(7) follow exactly from Egs, (2) and (3),
and allow us to reduce the problem to a small set of
coupled equations, Egs. (1) and (4), describing the mo-
tion of the impurity atoms and primary lattice atoms.
The effects of the remaining secondary lattice atoms
are included through the complicated quantities 22,
A(#), and R(t) appearing in Eq. (4). Q%, is an effective
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FIG. 1. Typical phonon densities of states. Solid line, from
Egs. (9) and (10). Dashed line, Debye spectrum.

frequency matrix, which is shifted from (o108 according
to Eq. (5) due to the presence of the secondary atoms.
A(#) appears in Eq. (4) as the kernal of a damping or
friction integral which takes account of energy flow from
the localized region near the impurity to the rest of the
lattice. R({) is a fluctuating force which takes account
of the thermal motion of the solid and is related to A(#)
by the second fluctuation-dissipation theorem®

(R(O)RT()) =5 T MppA(?) , (8)

where T is temperature, k5 is Boltzmann’s constant,
and brackets denote (canonical) ensemble average over
lattice configurations.

Equation (4) does not by itself offer any real simplifi-
cation of the problem, since A(¢) and R(#) still contain
the detailed dynamics of the secondary lattice atoms.
The simplification arises from two additional steps.
First, it can be shown that for translationally invariant
systems, A({#) is related to the phonon density of states
g(w) of the lattice. Focusing on a single lattice atom,
we have

2 w?A (w)
glw) = 7 [0 =8, - wA (W) +wiA Y w) ’

(9)

where A (w) and A (w) are 7/2 times the cosine and sine
Fourier transforms of A(#),3® Thus, if we know the pho-
non spectrum of the solid, we can construct an approxi-
mate form for A(f) which will best reproduce g(w)
through Eq. (9). Secondly, the fluctuating force R(#)

can be shown to be a Gaussian random force whose auto-

correlation function satisfies Eq. (8)%; i.e., obtaining

A(?) from the phonon density of states suffices to con-
struct R(?).

In this paper we construct A(f) and R(¢) by the pro-
cedure described in Ref, 38, We approximate the damp-
ing function by the position autocorrelation function of
a damped harmonic oscillator:

A(t) = Apexp(— 3 v1) [cos(w;t) + 3 ywil sin(w )], (10)

We choose the three parameters Ay, v, and w; to best

fit the experimental phonon density of states using Eq.

(9). An example of a typical phonon spectrum thus ob-
tained is compared to a Debye spectrum in Fig, 1.

With the damping kernel approximated by the form of
Eq. (10), generation of the random force R(¢) and nu-
merical solution of the stochastic classical equations,
Egs. (1) and (4), can be carried out by the method de-
scribed in Ref, 38. The trajectory is begun with initial
conditions corresponding to the initial (experimental)
excitation mechanism. At 0°K, the random force van-
ishes, Eq. (8), and a given initial condition produces a
unique trajectory.. The energy remaining in the im-
purity can be monitored as a function of time along this
trajectory. I the excitation process produces a dis-
tribution of initial configurations, than a Monte Carlo
average over initial conditions must be performed. For
nonzero temperatures, due to the presence of the ran-
dom force, the trajectories become stochastic; a par -
ticular initial condition can evolve into a distribution of
different trajectories. An ensemble average over both
initial conditions and random force variations must then
be carried out,

We should point out two areas of caution in applying
the stochastic classical trajectory approach to vibra-
tional relaxation in condensed phases. First, the num-
ber of lattice modes which are represented by the
stochastic terms must be large enough so that an ap-
propriate time resolution is achieved. Thus a process
which occurs on a time scale of the order of {wp/N)™
requires more than N modes within the Debye spectrum
in the construction of the stochastic terms, In our ap-
proach, all modes (with density displayed in Fig. 1)
are taken into account, but when using other methods
care should be taken in that respect.

37a

The second area of caution concerns the fact that the
exact phonon density of states of a simple solid will be
identically zero for frequencies higher than some maxi-
mum frequency, e.g., in the Debye model for frequen-
cies above the Debye frequency wp. The phonon den-
sity of states corresponding to our approximate form
of A(#), Eq. (10), exhibits a high frequency tail, as
illustrated in Fig. 1, which falls off as W™, In fact,
we have recently developed algorithms which allow the
use of mode densities which fall off as w™" for w>wp,
where n is any finite integer. Such algorithms will be
used for VR simulation in future work. It appears,
however, that some residual tail is a necessary price
we pay for the simplification procedure which reduces
substantially the number of effective equations of mo-
tion we have to handle. A possible unphysical conse-
quence of this tail lies in the fact that it provides an
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FIG, 2. Four-atom model. Atoms 1 and 2 are host atoms,
atoms q and b are impurity atoms.

additional decay channel that is open even in the ab-
sence of any anharmonic coupling. This unphysical
harmonic decay rate should fall off like w™ for the
present model and, for large enough w, may exceed

the correct anharmonic decay rate [expected to go like
exp(- w/wp) from quantum perturbation theories]. With
the parameters employed in the present computation
(see next section) we estimate that zero temperature
relaxation rates are not very reliable because of sub-
stantial tail interference. Fortunately, the anharmonic
decay rate is a rapidly increasing function of the tem-
perature while the harmonic one is not. Therefore

the adverse effects of the tail greatly diminish

at higher temperatures. More results concerning these
points together with zero temperature rates calculated
with more elaborate mode density functions will be pub-
lished elsewhere. %

Il. THE MODEL

Equations (1) and (3) are general in that the number
of impurity atoms and the size of the neighboring lattice
atom shell can be as large as we like. In this initial
application of the method we restrict computations to a
simplified model in which a diatomic impurity and two
host atoms are treated explicitly. The model is illus-
trated in Fig. 2. The four atoms are constrained to
move along a line. The lattice atoms are bound har-
monically to fixed sites R} and RY’, as shown. The
impurity molecule is free to move within its lattice
cage. The two impurity atoms a and b interact through
a potential V(X, - X,) which we choose to be either a
harmonic or Morse potential for the present simula-~
tions. The interaction potentials Uy, U,;, U,,, and U,,
are taken to be exponential repulsions, 4

The effects of coupling to a three-dimensional lattice
enter through the stochastic elements, i.e., the ran-
dom forces and damping terms which are derived from
a three-dimensional phonon density of states, The den-
sity of states employed is that pictured in Fig. 1, with
w p taken to be 65 cm", corresponding roughly to an Ar
lattice. No attempt was made to accurately fit the de-
tailed structure of the Ar density of states for this ini-
tial application. Note that the random force and damp-
ing terms acting on atoms 1 and 2 were taken to be un-
correlated. While these should strictly exhibit some
correlation, this would be a very minor effect. The
only correlations that should be present in these
stochastic terms are those that would remain when
atoms 1 and 2 are held clamped at their equilibrium

positions. Thus in a collinear model (in the absence
of fourth- or larger nearest neighbor interactions) the
correlations are rigorously absent, and in two- or
three-dimensional systems we expect them to be weak.

Because of the collinear nature of the model, rota-
tional motion of the impurity and coupling of this rota-
tional motion to the lattice are not included at present.
In principle there would be no problem in including these
effects. However, this would be likely to increase the
computational time of the simulations by an order of
magnitude or more. For the case of Cl, in Ar, the
case we model below, polarization measurements have
demonlstrated that rotation does not play an important
role.*

Two different experimental situations were simulated,
decay following pure vibrational excitation of the im-
purity, and following electronic—vibrational excitation.
The “standard” set of parameters used for both types
of simulations are given in Table I. These parameters
were chosen to model as closely as possible the Cl, in
Ar system. However, the frequency of the impurity
oscillator was taken to be 365 cm™!, (The frequency of
Cl, in its ground state is 556 cm=.) This was done in
order to obtain relaxation rates which are large enough
to enable us to perform relatively short (and inexpen-
sive) calculations.

The standard set of parameters was used for all cal-
culations reported in the next section, with at most one
parameter altered to test the sensitivity of relaxation
rates to that parameter. The parameters of the sto-
chastic terms given in Table I. A were used unchanged
throughout. As mentioned above, these parameters are
chosen to represent a Debye lattice with Debye fre-
quency corresponding to an Ar matrix. The param-
eters of the lattice atoms 1 and 2 given in Table I. B

TABLE I, Standard parameters.

A,  Stochastic parameters
Ao 0.774%10% gec?
¥ 1.244 x10'® gec™
W 0.622% 10" gec™t
B. Lattice atom parameters
Mass 40 amu
Reg +3.70 A
Dogs 0.622x10' sec™
C. Lattice—impurity interaction parameters
A 8.0%10° eV
a 5.44 A1
D. Impurity parameters {pure vibrational excitation)
Mass 35.5 amu
K 1.40%10° erg-cm™
X, 1.988 &
E. Impurity parameters (electronic—vibrational excitation)
Mass 35.5 amu
De 0.4125 eV
B 2.397 A
X, 2,228 A
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also rspresent Ar, with the equilibrium positions

+3.7 A corresponding to one Ar van der Waals diam-
eter. Thus the impurity molecule replaces a single Ar
atom in the lattice, The Ar-Cl interaction parameters
o and A given in Table I, C,

Ulx) = A exp(- ax), (11)

were chosen to fit the repulsive wall of the Ar—Ar Len-~
nard-Jones potential.*’ Thus we have made the very
crude approximation that the Ar—Cl repulsion is simi-
lar to that of Ar—-Ar, For the studies of relaxation
following pure vibrational excitation we employed the
harmonic C1-Cl interaction given in Table I, D, The
parameters of the Morse potential,

V(x)=D,{1 - exp[ - Blx - x)]}* , (12)

employed for the electronic ~vibrational excitation sim-
ulations, given in Table I.E, were chosen to best fit
the C1,(B®N) state potential curve, !

For all studies reported here, we performed an ad-
ditional reference calculation in which the exponential
coupling between lattice and impurity atoms was re-
moved and replaced by a harmonic interaction. The
harmonic constants were obtained by expanding the
lattice —impurity interaction about the equilibrium con-
figuration. These harmonic reference calculations
were performed to demonstrate that the unphysical re-
laxation occurring due to the previously described high
frequency tail of the phonon density of state was of
negligible importance. In all cases, relaxation times
for the harmonic reference calculations were at least
an order of magnitude slower than for the correspond-
ing anharmonic calculation, It should be kept in mind,
however, that some contribution of the unphysical tail
may persist due to mixed coupling effects. The pres-
ence of the tail is therefore expected to cause an over-
estimate of the relaxation rates.

1V. RESULTS OF COMPUTER SIMULATIONS
A. Pure vibrational excitation

As mentioned in the previous section, simulations
of relaxation following pure vibrational excitation were
performed with the standard parameters of Table
I. A-I, D, The intra-impurity interaction was taken to
be harmonic, so the only anharmonic interactions were
the lattice—impurity exponential repulsions. Except
for zero temperature runs for which only a single tra-
jectory is required, energy relaxation and dephasing
times were obtained by averaging over 10 trajectories
of 100 psec (or 10° integration steps) each. Initial con-
ditions for these trajectories were selected by the fol-
lowing Monte Carlo procedure: The anharmonic cou-
pling was temporarily linearized and the normal modes
of the resulting four atom chain were solved for. These
consist of three low frequency latticelike modes, and
one high frequency impurity mode. The small frequency
shift between the isolated and interacting impurity mole-
cule produced by our standard parameters is consistent
with experimental observations. Initial values of the
normal coordinates and momenta of the three latticelike
modes were assigned by sampling at random from a

Boltzmann distribution characteristic of the lattice tem-
perature. The initial coordinate and momentum of the
impurity normal mode was obtained by adding an ex-
citation energy of 0.735 eV {~ 14 vibrational quanta) to
the randomly chosen thermal energy in this mode.
Transformation from normal coordinates back to real
coordinates then supplied the initial positions and mo-
menta of the four particles,

Energy relaxation was monitored by following the de-
cay of the total energy of the four particle system, This
procedure is equivalent to monitoring the energy of the
impurity, and removes the necessity of making an ar-
bitrary distinction between parts of an interacting sys-
tem of particles. In addition to monitoring energy de-
cay, we computed the autocorrelation function of the
distance between the two impurity atoms, ([X,,(O)
-X,(0)][X,(t) - X, ()]). This is a damped oscillatory
function, the damping corresponding to the loss of phase
coherence of the ensemble of oscillators. It is the de-
cay time of this correlation function that we refer to as
the dephasing time.

Figure 3{(a) shows plots of local energy versus time
for two typical trajectories. Figure 3(b) shows the
same quantity averaged over 10 trajectories. We call
attention to two interesting features of these plots.
First, we see that in a single trajectory energy is lost
predominantly in small chunks occurring at random
times. This chunky behavior is smoothed out when
averaged over many trajectories. This behavior is
apparently due to a positive feedback mechanism in
which a small leakage of energy from the impurity to
nearby lattice atoms causes local heating which tends
to increase the rate of leakage. This nonlinear effect
appears to be very important and stands in contrast to
the philosophy of linear response theory descriptions
of vibrational relaxation.!*!* It may also be in con-
flict with the binary collision viewpoint?* which, al-
though predicting energy decay in chunks, invokes
chunks of much shorter duration and physically differ-
ent origin (a single favorable collision vs feedback via
local heating).

A second interesting feature of these trajectories is
the existence of an initial transient period of very fast
decay (amounting to 4% of the total) followed by a
second (major) slower decay mechanism. Obviously,
it is the second slower decay that is related to experi-
mentally measured VR processes, and it is this slower
time that will be referred to in all of the following dis-
cussions. It should be pointed out, however, that first,
there is no reason to believe that this fast decay is an
artifact of the computation, and secondly, that the
time scale for the fast decay (1 psec) is achievable
with present picosecond techniques, The occurrence
of the fast relaxation component is probably due to dis-
sipation of energy injected into nonlocal lattice modes
during the (computer generated) excitation process.
This initial local accumulation of energy in nonlocal
lattice modes may further enhance the relaxation of the
impurity oscillator itself because it has the effect of a
higher local lattice temperature. It should be pointed
out that this effect may in principle occur also under
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FIG. 3. (a) Local energy vs time for two typical trajectories.
Standard parameters (Tables I.A—1.D) are used, except
K=0.93x10° erg-cm™2. (b) Average over 10 trajectories.

real-life excitation conditions, Of course, when the ex-
citation takes place into the phonon sideband a fast initial
dissipation is expected. However, also when the excita-
tion takes place into the zero phonon line some nonlocal
modes are excited which couple to the high frequency
local modes by the anharmonic part of the impurity lat-
tice interaction potential. It is interesting to note that

a fast decay component was actually observed in the
fluorescence monitored 1 -0 vibrational relaxation of

the BZ* state of C; imbedded in solid rare gas matri-

ces,’
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FIG. 4. Autocorrelation function of impurity internuclear
separation. Standard parameters (Tables 1.A-1.D) are used,
except impurity force constant K=0,93 % 10° erg—cm"2 .

Figure 4, a typical autocorrelation function of im-
purity internuclear separation, illustrates the slowness
of decay relative to the impurity oscillation frequency.
Figure 5 shows the envelope of the autocorrelation func-
tion of Fig, 4, plotted on a semilog scale so that the in-
verse of the slope equals the decay time; i.e., the de-
phasing time, Figure 6 is a similar plot of the envelope
of the autocorrelation function for simulation of relaxa-
tion following electronic —vibrational excitation, to be
discussed below. Dephasing times are somewhat faster
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FIG. 5. Envelope of autocorrelation function of Fig. 4.
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FIG. 6. Envelope of autocorrelation function of impurity inter-
nuclear separation for Morse oscillator with standard param-
eters, Tables [.A~I.C and I.E, and v'=13.

than energy relaxation times in almost all cases.® In
addition, at very small times dephasing follows Gauss-
ian decay, going over to exponential (Lorentzian) after
1 or 2 psec. This is consistent with the following phys-
ical picture. At the instant of excitation each oscillator
in the ensemble is in a slightly different environment
(slightly different positions of neighboring host atoms),
and begins to oscillate with slightly different frequency.
This produces the initial Gaussian loss of coherence.
Soon, however (on the time scale of lattice atom mo-
tion), the initial frequency of each oscillator is forgot-
ten and dephasing occurs due to frequency fluctuations
arising from the stochastic motion of the lattice. This
produces the observed exponential decay.

1. Dependence on A

We have examined the dependence of the major (slow)
energy relaxation rate and of the dephasing time (which
we monitor only after the onset of the slow energy de-
cay) on several of the parameters of our model. We
discuss first the dependence on the strength of the ex-
ponential impurity-host repulsion, 4 of Eq. (12). Re-
sults are shown in Table II for all parameters given by
their standard values of Table I, except for A, which
is varied. The temperature of these runs is 50 °K,
Both energy relaxation and dephasing rates increase
markedly with increasing A, The variation of the en-

TABLE II. A dependence.

A Energy relax. Dephasing

(eV) (1072 sec) (1072 sec)
4.0x10° 2263 205
8.0x10° 950 147

16.0x10° 317 75

TABLE llI. @ Dependence.

R Energy relax. Dephasing
(a1 (1072 sec) (1072 sec)
2.84 54 26
3.78 404 55
5.44 950 147
7.56 >7500 300

ergy relaxation rate with A is somewhat more rapid
than the perturbation theory expectation!®'* of pro-
portionality to the square of the anharmonic interaction
strength A% exp(- 2aAX), while the variation of the de-
phasing rate follows this expression quite closely. Note
that this expression involves AX, the equilibrium sep-
aration of the impurity and near-neighbor lattice atom,
which changes somewhat when A is altered. Thus we
would not expect, and do not find, proportionality of the
rates simply to A2,

2. Dependence on «

The dependence of relaxation and dephasing times on
the range of the interaction, a of Eq. (12), is shown in
Table ITI. Again, all parameters are “standard” from
Table I, except . Note that the root mean square de-
viation of the impurity oscillator, with our standard pa-
rameters, is ~7,5x107 A. In these units the standard
value of the range parameter « is 0.4. Thus we are in
a “weak coupling” case, a<1.

The energy relaxation and dephasing rates both de-
crease with increasing @. This is in agreement with
perturbation theory predictions, ! and is simply due
to the fact that the anharmonic interaction A exp(- ax)
becomes weaker as « is increased. Notice that the
collisional theories®! of relaxation and dephasing do not
contain the term exp(~ ¢AX) and naive application of
such theories to the impurity-lattice system may lead
to the incorrect conclusion that the rates should in-
crease with a.

3. Dependence on impurity force constant

The dependence of the energy relaxation and dephas-
ing times on the impurity force constant K is shown in
Table IV.* As we see, the energy relaxation rate de-
creases very rapidly with increasing impurity force
constant while the dephasing rate varies relatively
little. Both observations correspond well to experi-

TABLE IV. K dependence.

K Energy relax. Dephasing
10° erg-cm™ (107 gec) (1072 sec)
0.62 23 33
0.93 110 40
1.24 430 144
1.40 950 147
1.68 5015 152
2.02 >10000 156
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FIG. 7. (a) Plot of the natural logarithm of the energy relaxa-
tion rate vs K2, (b} Plot of the natural logarithm of the energy
relaxation rate vs K.

mental trends. Measured energy relaxation rates vary
widly over a range of 10'-107!? sec, with variations of
impurity force constant apparently responsible for most
of this effect, Dephasing seems to be much less sen-
sitive. A notable example is VR in pure liquid nitrogen
where energy relaxation occurs on the time scale of
tens of seconds? while dephasing occurs in picosec-
onds, %

Perturbation theory'®! predicts that in the “weak”
and “strong” coupling limits the log of the energy re-
laxation rate should be proportional to K!/? or K, re-
spectively. Figures 7(a) and 7(b) show that, within
numerical accuracy, our results fit either relationship
equally well; the present set of computations cannot dis-
tinguish between these limits,

TABLE V. Temperature dependence.

T Energy relax. Dephasing
(°K) (1072 sec). (102 sec)
25 5522 297
50 950 147
100 190 34
150 60 19
200 40 16
500 4 8

343

TABLE VI. Electronic~vibrational excitation.
Vibrational Energy? Exptl
level relax. Dephasing (Ref. 41)
V4 (1072 sec) (1071? sec) (107*? sec)
5 2800 12
7 960 6
9 440 2.8
10 290 2.6 1.1
11 340 2.4 0.9
12 ' 0.4
13 74 1.2 0.4
14 0.3
15 63 1.1

an order to compare with decay times extracted from experi-
mental linewidths, Ref. 41, the classical mechanical energy
relaxation times appearing in this column have been multiplied
by AE,/E,, where E, is the energy of vibrational level » and
AE,, is the energy difference between the v and v — 1 Morse
levels.

4. Dependence on temperature

It can be seen from Table V that both the dephasing
and energy relaxation rates are rapidly increasing func-
tions of the temperature, *? in agreement with both
existing theoretical’®!! and experimental® work. Since
our approach is based on classical mechanics, however,
we do not expect the temperature dependences to be
relevant at very low temperatures, In particular, en-
ergy relaxation rates are seen experimentally to be
independent of temperature as T—~0. This behavior is
also exhibited by quantum mechanical perturbation
theories. By contrast, our method shows a substantial
(unphysical) increase in energy relaxation rate as tem-
perature is increased from 0°K to 4°K., This results
from the fact that the population of a classical oscil-
lator increases more rapidly with temperature than that
of a quantum oscillator of the same frequency at low
temperatures. This is particularly important for the
high frequency lattice modes which dominate both the
energy relaxation and dephasing processes, We there-
fore expect classical mechanics to overestimate the
temperature dependence of the rates at low tempera-
tures.

B. Electronic—vibrational relaxation

Bondybey and Fletcher* have recently reported mea-
surements of the excitation spectrum of the transition
Cly{X'Z*, v=0)=C1,(BM, v') in argon matrix at 4 °K.
They observed that the linewidths increase significantly
with increasing final state vibrational level over the
range v’ =10-15,

We have simulated energy relaxation and dephasing
in the excited B®II state of Cl, using the parameters of
Tables I. A-I.C, and the Morse potential parameters
of Table I.E. The initial conditions were prescribed
in the following way. A normal mode decomposition
of the four-atom system was performed as before, and
initial coordinates and momenta of the three lattice-
type modes were selected at random from a thermal
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distribution, just as in the previous simulations except
now for T=4°K, Excitation of the impurity mode was
achieved using the classical Franck-Condon principle:
the position and momentum of the impurity oscillator
were taken to be equal before and after excitation. For
each particular transition Cl,(X'=*, v=0)-(B’N, '),
there is a single unique value of position and momentum
that satisfies this requirement, Relaxation rates were
then obtained by integrating 10 trajectories of 100 psec
duration {2x10° integration steps each).

Results are shown in Table VI, Included in this table
are the experimental lifetimes estimated from the zero-
phonon linewidths reported by Bondybey and Fletcher. ¥
The dephasing as defined operationally in our calcula-
tions should provide a major contribution to this zero
phonon linewidth, Thus the calculated dephasing times
should be greater than or about equal to the experimentval
lifetimes, as they are. In fact, the computed dephas-
ing times are of the correct order of magnitude and
vary in the correct way with final vibrational level v/.
The large difference between computed energy relaxa-
tion and dephasing times, Table VI, may indicate that
energy relaxation provides only a minor contribution
to the observed linewidths.

Unfortunately, we cannot expect our classical me-
chanical theory tobe reliable for temperatures as low as
4°K. The caleulations predict a rapid increase in line-
width with increasing temperature in this range, in
contrast to the experimental observation of essentially
no change in linewidth from 4°K to 15°K,*! Thus the
qualitative agreement may be fortuitous, Even the ob-
servation that dephasing and not energy relaxation do-
minates the linewidth must be considered suspect.

Before leaving this example, we present one more
result which we do not understand. In addition to carry-
ing out the simulations described above using a Morse
potential for the impurity, we repeated the calculations
with a harmonic impurity oscillator. However, we al-
lowed the frequency of the oscillator to vary with vibra-
tional level ' so as to reproduce the splitting between
the Morse quantum levels v’ and +' —1; i.e., the har-~
monic frequency was decreased with increasing vibra-
tional level v'. These calculations produced energy
relaxation times that were very much shorter than the
Morse times, and in fact agreed quite well in magnitude
and " dependence with the experimental lifetimes, i

V. CONCLUSIONS

We have demonstrated that numerical simulations
based on classical stochastic trajectories provide a
useful method for studying impurity VR processes in
condensed media. The method has some obvious de-
ficiencies: first, it is based on classical mechanics
and as such will lead to incorrect results whenever
quantum effects become important. Secondly, because
of the high computational demands, it is limited to
relatively fast processes; i.e., those occurring on time
scales faster than 100 nsec. Finally, for the sake of
computational convenience a model density of modes
with a nonphysical high frequency tail has been em-
ployed.

As was mentioned before, we are now able to use a
more physical mode density and, with computation cost
being the only limitation, can approach arbitrarily close
to a Debye specirum for the stochastic terms represent-
ing the medium. For a high frequency impurity we ex~
pect that existence of the cutoff rather than the particu-
lar structure of the medium spectral density is the most
important factor,

We expect that the classical nature of the method
leads to unphysical results only for the temperature de-
pendence of the relaxation rates near T—- 0, Other im-
portant features of the VR process, like the dependence
on the impurity frequency and on the detailed impurity
medium interaction, are expected to be represented
well by the classical results. In this context it is im-
portant to note that the quantum nature of the impurity
levels which restrict energy transfer to be in multiples
of Zw is represented well also by the classical equa-
tions of motion. Also, no inherent quantum effects like
tunneling are expected to play an important role in the
present problem.

Even though the model that we use seems more ap-
propriate for an impurity in a solid, it is expected to be
useful also for simulations on VR in liquids. Our con-
tention that the existence of a sharp cutoff in the fre-
quency spectrum is its most important characteristic
as far as VR is concerned implies that VR in liquids
should not be much different than in solids, The simi-
larity of N, behavior in both phases’¥* might be an
indication for the validity of this viewpoint.

The results presented in this work are based on a
one-dimensional geometry where the three-dimensional
nature of the solid is taken into account only in the form
chosen for its mode density, This is of course not a
restriction on the method, and three-dimensional cal-
culations can be done. Such calculations, which we de-
fer to future work, could yield new information on the
role of rotational and librational motion in vibrational
relaxation. Recent experimental work®!%%® suggests
that such rotational motion indeed plays an essential

role in the VR process.
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