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The analogy between equilibrium phase transitions and chemical instabilities is studied in detail in the
vicinity of the critical point of a nonequilibrium reacting diffusing system characterized by multiple
homogeneous steady states. The critical point of such a system is defined and its mathematical properties are
discussed. These properties are shown to be essential in the subsequent reduction of the equations of motion
near the critical point. The order parameter characterizing the transition is defined, and its equation of
motion near the critical point is obtained in the form of a time-dependent Ginzburg-Landau equation.
Fluctuations are taken into account phenomenologically using a Langevin-equation approach. Fluctuations
originating from diffusion processes are shown not to be important near the critical point. The size of the
critical region for chemical instabilities is estimated using an equivalent of the Ginzburg criterion of
equilibrium critical phenomena. The reduction method fails within this region. It is concluded that critical
points of chemical instabilities can in principle exhibit “nonclassical” critical behavior. Systems involving the
photothermochemical instability and computer simulations of model systems seem currently to be the best
candidates for studying the critical properties of chemical instabilities, and for experimental or numerical
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tests of the predictions of the present theory.

I. INTRODUCTION

Instabilities and transition phenomena in non-
equilibrium systems have been in recent years
subject to extensive research effort. Much atten-
tion has been particularly given to universal fea-
tures characterizing different phenomena of this
kind and to their close analogy to equilibrium phase
transitions.! Laser transitions,? hydrodynamical
instability,® and chemical instabilities*® are some
of the most common examples that were studied
in analogy to equilibrium phase transitions and
critical phenomena. It has been pointed out®*® that
enhancement of fluctuations, long-range order, and
critical slowing down are typical to nonequilibrium
transition phenomena in much the same way as
they characterize equilibrium critical points. In
macroscopic nonequilibrium systems where stoch-
astic dynamical equations of motion are the start-
ing points of most theoretical considerations,
these features of the nonequilibrium critical be-
havior can all be traced to the existence of slow
mode (or modes) near the transition point. If 7
is the lifetime of the soft mode, the amplitude of
fluctuations is of the order 7-! (in the linear ap-
proximation®), while v7D (D is a typical diffusion
coefficient) is a characteristic length which be-
comes large near the critical point.

Unlike most equilibrium phase transitions, non-
equilibrium transitions often give rise to states
which are structured in space, in time or in both
space and time (traveling structures). For such
temporal and spatial symmetry-breaking transi-
tions the mathematical analogy to equilibrium cri-
tical phenomena has recently been demonstrat-

ed,'®d3e345 In particular, it was pointed out that
the amplitude of the (spatially or temporally)
ordered mode plays the role of an order param-
eter for the nonequilibrium transitions. This
order parameter was shown to satisfy, near the
nonequilibrium critical point, an equation of mo-
tion similar to the time-dependent Ginzburg-Lan-
dau (TDGL) equation which is used to describe
critical dynamics near equilibrium.

In this paper we focus attention on transitions
in chemical systems characterized by multiple
homogeneous steady states. Such transitions are
usually induced by the homogeneous mode which
becomes soft as the transition point is approached.
Transitions of this type are expected to be the
most closely related to equilibrium phase transi-
tions which usually take place between homogen-
eous stationary states. Typical examples are giv-
en by the Schlogl model*®

A+x=2x, B+x-C

in which the concentration of A, B, and C are kept
constant and play the role of externally controlled
parameters,” and by the Edelstein model de-
scribed in Sec. V. The main motivation for the in-
terest in this type of nonequilibrium transition is
the recent experiment by Creel and Ross® who,
following a suggestion by Nitzan and Ross,® demon-
strated the occurrence of multiple steady states

in a photothermochemical system. In the particu-
lar experiment performed,® the reaction 2NO,
=N,0, + (heat) is taken away from equilibrium in

a closed system by illumination with a high-inten-
sity light beam of a wavelength which is absorbed
by the NO, only. The system is characterized by
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FIG. 1. Schematic description of multiple steady states and the approach to the critical point. (a) Situation with
three steady states x§°, x§{°, and x5° which may coexist in a given range of A. A, are marginal stability points and
A ; is the value of A for which the branches x; and x, are equally stable. (b) The approach to the critical point as A is
varied for p=pu.. (c) The approach to the critical point as p is varied for A=A, .

two-state variables, (the concentration of NO, and
the temperature say)' and by two externally con-
trolled parameters (external temperature and in-
cident light intensity).!! Far enough from equili-
brium the system may appear in two stable steady
states; one with large NO, concentration and high
temperature and the other in which the NO, con-
centration and the temperature are both low. The
transition between these states is induced by the
homogeneous mode. Unlike many other nonequili-
brium chemical systems, this system is relative-
ly easily controlled and it should be possible to
study its critical properties.

Figure 1 displays a typical situation with three
steady states in a system characterized by two
external parameters u and A. In the usual situa-
tion shown in Fig. 1(a) we expect to observe a
hysteresis loop when a state variable x is moni-
tored as a function of A. The marginally stable
points corresponding to 7&3,, and A}, can never be
realized because finite amplitude fluctuations will
cause a transition from the less-stable to the
more-stable branch before these points are
reached. In fact, if A is changed infinitely slowly
we expect the transition to occur at a well-defined
point A,, and the hysteresis loop shrinks to zero.
This situation is quite analogous to equilibrium
phase transitions where A, corresponds to the Max-
well construction on the van der Waals equation,
and where the extensions beyond it correspond to
metastable branches. For a particular value, u
= I,, of the other controlled parameter, the three
steady states coalesce at a critical point x =x,,
A=2, [Fig. 1(b)]. This point is in principle attain-
able within an uncertainty distance which depends
on our ability to control A and u. The situation in
which X is fixed at its critical value A=, and u
is changed is shown in Fig. 1(c).

To study critical properties of such a nonequili-
brium system we have to focus on the vicinity of
the critical point A=2,, u= .. From the theore-
tical point of view the following questions come to
mind: (i) What is the order parameter character-
izing this transition? (ii) What is the equation of
motion for this order parameter? (iii) How do
fluctuations affect the critical behavior? (iv) What
is the limit of validity of a mean-field theory and
can we expect “nonclassical” critical exponents?
In this paper we discuss and partly answer these
questions for the case of nonequilibrium systems
characterized by homogeneous steady states. We
rely on methods developed before3® 3512 for sym-
metry breaking transitions which we modify to
admit also the treatment of homogeneous transi-
tions. It will be seen that this approach fails in
the immediate vicinity of the critical point but we
argue that it is sufficient to give a reliable esti-
mate of the critical region. :

In Sec. II we investigate the mathematical proper-
ties of marginal stability and critical points which
correspond to homogeneous transitions. In Sec.
III we perform the reduction of the kinetic equa-
tions and obtain an equation of motion for the or-
der parameter. We show in this section that this
reduction is possible only provided that the cri-
tical conditions obtained in Sec. II are satisfied.
In Sec. IV we discuss fluctuations and in Sec. V
we work out a particular simple example in de-
tail. Finally, in Sec. VI we obtain and discuss the
Ginzburg estimate for the size of the critical re-
gion in diffusing reacting chemical systems.

II. PROPERTIES OF MARGINALLY STABLE AND OF
CRITICAL POINTS

We begin by considering a system characterized
by a set of deterministic dynamic equations of the
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form

%:B-v%’cﬁ(ﬁ,ﬂ, (2.1)
which is typical to a reacting-diffusing multicom-
ponent system. The variables X(¥, ¢) define the
state of the system at any given time, while the
parameters X are externally controlled. The dif-
fusion matrix D is assumed to be constant. As
mentioned before, we limit ourselves to systems
where transitions to instabilities occur via homo-
geneous nonoscillatory modes. Such transitions
usually occur between multiple homogeneous
steady states. .

In what follows we consider explicitly only a
single externally controlled parameter A which is
changed in order to approach a marginally stable
or a critical point. ‘The set of equations

F&,0)=0, (2.2)

characterizing a steady state of the system, will
be called equations of state. Let X,(A) be a solution
of this set for a given . We introduce the deriva-
tive matrix*3

8F, 2)=0FF, 1)/0%. (2.3)
We also define the associated Jacobian
J(X, ) =det[QF, 1)] (2.4)

and the corresponding steady-state matrix and
determinant

£,00 = Q[X,0), 7], (2.5)
Jo(\) =det[Q,(\)]. (2.6)

The partial derivatives appearing above are all
taken with A kept constant. In addition, it will
be convenient to define derivatives taken along the
steady-state line of the (% +1)-dimensional (%, A)
space. Along this line A, or any one of the '
x,***x, variables, can be taken as an independent
variable. Such derivatives will always be written
as total (d/dx) derivatives, with specifications of
variables which are kept constant added if neces-
sary to avoid confusion.

For a stable steady state all the roots of §,())
are negative. At a marginally stable point at least
one of the roots of §, vanishes, while the rest are
still negative. Equivalently,

To0pg) =0, ‘ @.7)

where X, denotes the value of A at the marginally
stable point. As was discussed before,* such
points are characterized by a divergence of the
“response functions” dx,,(\)/dx or, equivalently,

A .
lim -0, 7=1,2,...,n. (2.8)
)—»Ams dxoj .7 b ’ b

To see the equivalence between conditions (2.7)
and (2.8) we consider one of the equations of states,
e.g.,

F,(X,))=0, (2.9)
and take its derivative with respect to one of the

variables, e.g., x,, keeping all conditions for
steady state, F;=0,j=2,...,nholding. Thisisjust

(5 1 ) nin &)
ax,) pyeer, \%1/ ek \O ) ppiiFny dx,

(2.10)
This is a derivative along the steady-state line so
that the left-hand side (2.10) vanishes. Also, at
a marginally stable point, d\/dx,=0. Hence -

(2.11)

(aFl/axl)Fz...an =0 (marginal stability).

Using some known identities from the calculus .
of Jacobians it is easy to show (Appendix A)

OF \/3%)) .. pr =J /1, (2.12)
where ‘
Jy=8(F, +F,)/8(x,°"x,). (2.13)

In the derivatives entering into J and J,, X is kept
constant. We have thus proved that, provided J,
#0, the conditions J =0 and d)\/dx, =0 are equiva-
lent.'*® J,#0 generally holds unless the first row
component of the null eigenvector of the matrix
€,(,¢) vanishes (see Appendix B).

We turn now to the definition and properties of
critical points. In analogy to the Landau-Ginz-
burg theory we define a critical point as a point
on the steady-state line satisfying

dx/dx;=d®)/dx;=0 (2.14)

for at least one x,'*® and in addition to the steady-
state condition F(X,1)=0. We now wish to recast
this condition in a form which does not involve the
explicit dependence of X on x,. To this end we
start again from Eq. (2.10) and take its derivative
with respect to x,. We note that all contributions
arising from the second term on the right-hand
side of (2.10) are proportional to either d\/dx, or
to d®\/dx?, and therefore vanish at the critical
point if Eq. (2.14) holds for j=1. We thus find

(8%F,/8x})pyee.pyn =0 (critical point).  (2.15)

Equation (2.15) should hold at the critical point,
together with the equations of state F=0 and the
marginally stability condition J=0. Together we
have 7 + 2 conditions for the n+1 (X, 1) variables.
Obviously, another external parameter besides A
shoud be adjusted appropriately to insure the exis-
tence of a critical point. Equation (2.15) may be
recast in the form
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[(a/axl)(J/Jl)]Fz,_,an =0 (critical point).  (2.16)

Equation (2.16), together with the conditions J =0,
J,#0, yield

(89/8x,)p,...p ;=0 (critical point). (2.17)

In Appendix A we show that Eq. (2.17) is equivalent
to the equation

8(J,Fy+++F,)/8(x,,%,***x,)=0 (critical point).
(2.18)

Obviously, x, and F, have no special standing in
our arguments and an equation equivalent to (2.18)
is easily shown to hold for any variable for which
Eq. (2.14) is satisfied, together with the require-
ment J;(A,)#0. (%, is the critical value of 1.)

It will prove useful for our future purpose to ex-
press the condition (2.18) in another form. We
start by expanding the rate vector _IF()?, )\c) around

(% 9], [ 0]~ [ -9,

(Qc)zl (Qc)zz oo (R0)z

. . .
. . .
. . .

(Qc)m (Qc)nz eee (Qc)nn

The subscripts (c) indicate that all quantities
are to be calculated at the critical point. Expand-
ing the determinant in the first row we obtain

u 9 [5G -) . .
iz=1: cl!m(ﬁ :C)=0 (critical point). (2.23)

Equation (2.23) may be recast in still another form.
Define the right and left eigenvectors of £, which
correspond to the vanishing eigenvalues, in the
form

Q,°0,=0, Q,-T=0. (2.24)
(5 is the transpose of 5); then Eq. (2.23) is shown
in Appendix C to be equivalent to'®

-> az - = 2L .
a§ ‘<T§_= :u0u0>=0 (critical point) (2.25)
where the left-hand side should be interpreted as

5 080, )l

ijk

In summary, a critical point of a system charac-
terized by a set of dynamic equations of the kind
(2.1) and having transitions between homogeneous
steady states is defined as a steady-state point
satisfying Eq. (2.14), and was shown to satisfy
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the critical point X, which we choose here as our
origin for X(%,=0),

FE ) =0X+CR), (2.19)

where §,=§(X,, 2,) and where G(X) contains all the
terms which are nonlinear in X. The determinant
J now takes the form

J=det(§, +9G/8%) for A=1A,. (2.20)

The condition (2.18) involves derivatives of J
with respect to x;,%,+**x, at X=%X,=0 and at A =1,
The only terms in J which may contribute to such
derivatives are those linear in 8G/8%. We may
thus replace J in Eq. (2.18) by

3G . = 3G
J= 53 €= W;c,,, (2.21)
if

where C;; is the cofactor of Q;; in $. Equation
(2.18) then takes the form

0. (2.22)

—

also Egs. (2.7) and (2.18). Equation (2.18) was
shown to be equivalent to Eq. (2.23) and to Eq.
(2.25).

III. REDUCTION OF THE EQUATIONS OF MOTION

In this section we utilize the methods of reduc-
tive perturbation theory in order to extract an
equation of motion for the order parameter de-
scribing the transition. This equation is valid
near the critical point and is obtained by focusing
on the slow-time and long-distance scale which
characterize the motion of the order parameter.

The method is based on the multiple time and
space scales perturbation expansion of the equa-
tions of motion. It has been extensively used in
analyzing bifurcation phenomena in various non-
linear systems. In particular, it has been applied
in studying symmetry breaking transitions in hy-
drodynamics,*®3® in lasers'® and in diffusing re-
acting chemical systems.® In the chemical case
it was contended®® that the method is not appropri-
ate for analyzing transitions without either tempor-
al or spatial symmetry breaking, but as we shall
show, the expansion can be performed in a self-
consistent way provided the critical conditions are



satisfied.

For the time being we disregard fluctuatlons and
we take as our starting point the deterministic
equations of motion (2.1). In a later section we
shall introduce fluctuations in a way similar to
Graham’s approach to the convection instability3¢
and to the laser transition.!¢

Our expansion parameter is denoted € and is
defined as the order of deviation from the critical
point,

A=), +€2Bn, (3.1)

€ does not appear at the end of the calculation and
51 will be retained as the measure of the physical
distance from the critical point. It is assumed that
the choice of A was made such that the root of
€,(\) which vanishes for A =X, is proportional to
dx. Next, we follow previous works®*®® in assum-
ing that near the critical point the time and length
scale characterizing the order parameter are of
order €2 and €™, respectively. As we are inter-
ested in the case where the transition involves a
homogeneous nonoscillatory mode, it is possible
to disregard the fast-time and short-length scale.
We thus put

9/0t~€(8/87), V,~€V,. (3.2)

Finally, the deviation of the state variable vector
X from the steady-state value x%(A) is expanded in
the form

X-%,0) =) €'x,. (3.3)
=1

Some comments on these choices of scaling are
made in Appendix E. Note that we have chosen
as our variable the deviation X~ %X () of the state
vector from its steady-state value for given A.
An alternative way is to choose ¥ - %,—the devia-
tion of the state vector from its critical value.
As X (\) - %, is itself of order € (cf. Appendix E)
the first term in both expansions is of order €.

It is sometimes assumed that the matrix £,(\)
can be expanded near the critical point in the form

2,(0) =Qc+(d;;> 8. (3.4)
This assumption which is usually valid for sym-
metry-breaking transitions does not generally
hold for homogeneous transitions within our ex-
pansion scheme. To see this we note that Q (V)
-—Q[xo()\) 1] where Q(x 1) =0F /0%, %X, (1) bemg the
solution to the equations of state F('i, A) =0 for a
given A. Thus, '

d,(\) <a§i>

L% | ag,(\)
dx 0%

a a

(3.5)
o)

and since %X,(A) is a nonanalytical function of \ near
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marginal stability or critical points, the expansion
(3.4) will not be valid. In most chemically rele-
vant cases (involving bimolecular reaction steps)
Q(x \) contain terms linear in components of X

so that the leading term in the expansion of Q

‘around , will be of order O(vGX). A more explicit

form of this term will be useful to us in our future
manipulations. Near the critical point we have, to

order €,
Q) =§2[x,(A), ] =82, + (8—“(—’61)) EM-%]. (3.6)

Actually, to this order, (cf. Appendix E)

XN =%, =ad,, o,~0(), (3.7
so that
2% \ . ~ A
SN = (W) Uy = €VOrQy, (3.8) .
where we use the expans1on
a,=€VONa, +€20xa, +o- - (3.9
and define

- 2 F - 82 G ) -
= —_—] = ————] .1
28 '“l(a?:aﬁ)c to al(a?{ai . o (3.10)
Contributions of order € to {y(}) — &, may orig-
inate from three terms: First, O(e2?) contributions

to ¥°(1) ~ X, give

‘ 083\ ~ ., (855 -
D, 0 — ) *u;+€?0na,|—) *u 3.11)
jzl: J( 9x )c i SR 9X /¢ 0’ (
(from Appendix E, a;~O0(€?) for j#0); second,
O(a?2) contributions to the seécond-order term'

(8822 ) [Z,(N) =& ] [Z,(N) = %,]

828 -
—~ €25 ra? (—a—-aﬂ—> TUU,;  (3.12)
Finally, when 9} depends explicitly on A we have
the term

€2(a sy /o0), O, (3.13)

In our following calculations we denote the sum of
these three terms by €20)§},, where §, stands for
the sum of matrices. We note that using expres-
sions (3.11)=(3.13) we may write an explicit ex-
pression for £}, for any particular case.

Turning now to the nonlinear term é(i ), weex-
pand it in the form

e L[ O\
8- 5 (Sgag ) [E-RMZ-50)

=
+%(%§3—§)0[i = o] (% = Fo(V)

X[E=Z )] 400 (3.14)
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The index 0 denotes evaluation at-the steady-state
point. To O (€?) only the first term in this expan-
sion contributes. Also, if there are higher than
quadratic nonlinearities in the expressions for the
rates we have, to order ¢

%G ) . 82§> < 22G (£0)=%.]
o%0% ), \0%0%/, " aiaia}?)c %X - %

2G ) 9°G -
N\ == 6 === ° .
(a?;ax L te Ml(axaxax >c Yo
: (3.15)
The second term on the right-hand side of Eq.
(3.15) contributes only in O(€?). Equation (3.14)
is thus seen to be equivalent (to order €%) to

8@ (reor) [E-Z O -5 0]
+ %(g;?—;gﬁ—)c[x = %o (M)][x = %, (V)]
X {[x —x,(¥)] + 3€VX a, Uy} - (3.186)

We now proceed in our program of reducing the
equations of motion. In terms of our scaled vari-
ables these read

[-§, — eVBAQ, +€2(8/97 - DV - 6182, X = G(%),

(3.17)
where here X denotes the deviation from the steady
state and is given by the expansion (3.3). We now
insert this expansion into Eq. (3.17) and consider
it order by order.

- First orvder. To order € we obtain

Q,°%,=0, (3.18)

which implies
X, =WR,1)G,. (3.19)

W(ﬁ, 7) will be identified as the order parameter
for this problem. It varies near the critical point
on the long time and length scales. We require
its equation of motion on these scales.

Second ovder. To order €%, Eq. (3.17) yields™

6% - v RE - L (28) xx (3.20)
—Q.X, - VoA QX = > 3};{—8—; K XX, . .
The integrability condition for this equation,
sy 5 oz 1= [(2G) 22 (3.21)
—muo ‘ﬂl‘Xl— 2U, —a—.xra;c.xlxl s .

is automatically satisfied near the critical point.
Both sides vanish as may be realized from Egs.
(3.19), (3.10), and (2.25). The solution X, is ob-
tained in the form
%, = ~[aW(®, 7) + SWA(R, 7)]%;! < 32G) g

2 ’ 2 ) o "\(e%ox /" Ul

.22
a=a,Vor, (3.22)

where Egs. (3.19) and (3.10) were used again and
where a, was defined by Eq. (3.9) and is an O(1)
parameter.

Denoting
- (G .- -
V= (—B;gﬁciuouo‘——‘ ;B,U!, ‘(3.23)
Eq. (3.22) may be recast in the form
ne1l ‘B
izz_(aW+§W2)Z—yLﬁ,. (3.24)

g=1 ¥
We note in passing that 4" *X, =0.
Thivd ovder. In this order, we obtain

P = . - - -
_Qc-xs—m%'x2+<a-_’_—DV%-GAQ2> X,

<326> - -
=l == X;X
oxox o 172

L (FG ><1§ . > L,’,>
<8§8§8§ .* \6 1X X, 200X, X, .
(3.25)

Note that from (3.10) it follows that (92G/8%9%) X, X,
=(1/a,)WQX%,. Denoting

ﬁé”'ﬁl'ﬁ? ;EAz;
- (3.26)
10 (28 ) :,5,8] -4
oxexox /+ ° ° 0 T

We obtain, from the integrability condition for
Eq. (3.25), the following equation of motion for the
order parameter W,

(8/8T —DVZI)W=(A, +a,A,)5AW
+3(34, +a, A NEAW?

+(A,/2a,+A,/6)W3, (3.27)

This is an equation of the Ginzburg-Landau type.
The absence of a W-independent term in this equa-
tion from choice of io()\) as the origin for the state
vector. Details of the calculations with some dis-
cussion of possible intricacies are provided for

a particular example in Sec. V.

We have thus completed our task of formally
extracting an equation of motion for the order
parameter W. In this equation (3.27), 61 measures
the distance from the critical point.?® We note that
all the physical quantities characterizing the state
of the system (components of the vector X) are
given near the critical point (to order €) in terms
of W by Eq. (3.19). Next we turn to considering
fluctuations and their effect on the behavior of the
system near the critical point.



IV. FLUCTUATIONS

In this section we consider the effect of internal
fluctuations on the reduced equation of motion for
the order parameter. We follow Graham?®? in in-

troducing fluctuations as Langevin-type fluctuating

terms in the original equations of motion (2.1).
We also follow his reasoning for obtaining the ef-
fect of these stochastic terms on the reduced
equation. ) '

~ Introducing fluctuations phenomenologically as
Langevin terms added to nonlinear dynamic equa-
tions is presently a matter of some debate.'%17

It seems to be generally agreed that far enough
from critical and marginally stable points this
procedure is valid. In this case, a Gaussian ap-
proximation for the probability distribution of the
dynamic variables holds. Our main concern in
analyzing the effects of fluctuations on the critical
behavior will be to estimate the region near the
critical point where this approximation breaks
down. The answer to such a question can be given
by approaching from the direction in which the
Gaussian approximation (or equivalently mean-
field theory) holds, in much the same way as the
size of the critical region is estimated in theories
of equilibrium critical phenomena.'’® A Langevin-
type approach is therefore valid for this purpose.
Also, since we are interested in rough estimates
rather than in exact numbers, it is enough to use
an order of magnitude estimate for the random
terms which we add to the equations of motion.
We therefore follow the procedure used in sta-
tistical hydrodynamic theories'® and approximate
the correlation functions of the random terms by
their equilibrium values.?® Such Langevin terms
for chemically reacting multicomponent fluids
near equilibrium have been recently provided by
Grossmann.?*® For our system where the only
transport processes are reaction and diffusion,
we have

ax/a'r=1'5-V2§+_f‘(§)+?, 4.1)

where the Langevin terms f may be written as
sums of diffusion originated and of reaction or-
iginated terms. These are Gaussian stochastic
variables with zero mean and with correlation
functions given by

G 0. @, 1)) =Y (fHE 0f, F )

+(f;&@ 0 @ENP; (4.2)

the index « goes over all the chemical reactions
involved in the system. The D term stands for
the contribution of the diffusion processes. If

we assume for simplicity that the diffusion matrix
Dis diagonal and that the systems behave as an
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ideal fluid mixture, we obtain®
(&0 @, )P

e%éﬁ, v,lx;(@)V,.0(F - T)6(t - ') (4.3)

and

G, 05, @ 1)

=v, v, MM, e Ex

Vuc v! K iti Ao

where D; is the diffusion coefficient j, A, is the
Avogadro number, v;, is the stochiometric co-
efficient of component j in the reaction «,M; is the
molecular weight of component j, and t,, T, are
rates of the reaction k in the forward and back-
ward-directions, respectively. In writing Eqgs.
(4.3) and (4.4) we allowed for nonequilibrium sit-

5(r-1o(t-¢t), (4.4)

. uations in making it possible that 'f,g#}—K and that

x; is space dependent. These generalized forms
are obtained if we start with a master equation
and go over to a Fokker-Planck (and the equivalent
Langevin) equation in the conventional way in-
volving a truncated Kramers-Moyal expansion.!’
We note that in writing Eqgs. (4.3) and (4.4) we
have taken {x;} to be concentrations measured in
mass/unit volume. The reaction 7, are measured
in moles/unit volume /unit time.

Assuming for simplicity that x; is T independent
and denoting

SJ.=2D].xJ./Ao (4.5)
and l
M.M, - -~
QN’ZE Vi V]'K_ALL(I'K‘*‘I'K)’ (4.6)
K (4]
we obtain

i 05 G )
=Q,;;6(F -T")8(t-1")
+0,;; 8,9, V6 =T )60 -t'). (4.7)

J

With the choice (3.2) for scaling Eq. (4.7) takes
the form

(f; ®, 7Y @470
=etr2q,, 0 (B -RO(T - 17)

+€%%45, . S; VgVp 0R ~RO(T = 7'),  (4.8)

where d denotes the dimensionality of the system.
This form for the correlation function suggests
that close enough to the critical point (¢ - 0) the
diffusion-originated contribution to the random
force is negligible relative to the reaction-origi-
nated one. This makes physical sense: We focus
on variations of long wavelength and thus the
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gradients involved in the diffusional contribution
become very small. It remains to be seen whether
in experimentally feasible cases there is an ac-
cessible region near the critical point where Egs.
(4.1) and (4.8) are still valid and the diffusional
contribution negligible.

In order to estimate the order of magnitude of
.the @ and S terms, it is convenient to transform
Eq. (4.1) to a dimensionless form. To this end we .
assume that we can identify in our system a char-
acteristic time 6 (inverse of some characteristic
rate), a characteristic diffusion coefficient 6 and
a characteristic concentration y. The choice of
these parameters is made such that the concentra-
tions x, expressed in units of v, the diffusion co-
efficients expressed in units of 6, and the reaction
rates M(T +T) expressed in units of y/6 are all
of order one [obviously scattering of a few orders
of magnitude around O(1) may be expected in par-
ticular cases]. Note that 6, 5, and y define also a
characteristic length (66)'”2 and a characteristic
mass y(60)*/2, Weé transform Eq. (4.1) into a
dimensionless form by expressing all quantities
in dimensionless (6, 5, y) units. Thus

)8(1 = ')~ (86)/26718(F = F/)6(¢ ~ '),

Vrvr’"’ (69)-1V7Vr”

aX/01—~(y/0)(8%/0t),

D -VZ&~ (y/0)D - V*%,

F&) -0 /0)FR),
where all the quantities on the right-hand side be-
sides 6, 6, and y are dimensionless and of com-
parable orders. Equation (4.1) retains its form
when written in terms of the dimensionless quan-
tities and functions. The new, dimensionless
parameters @ and S are given in terms of the old

dimensioned quantities D, x, 7, etc. and in terms
of 6, 8, and y in the forms

5(F-1’

(4.9)‘

/2 )
Q~j—i M(Zu r) 9(59 - (4.10)
and
~(Dx/AO)[9(59)'“*2”2/%]. . (4.11)
Taking
u( 2 v )/ n/s-xiy=1, @)
we obtain
~(M/AN(66)*2 /], (4.13)
S~ (1/A,) (56)"*"2/y]. (4.14)

We see that @ = S and thus close enough to the cri-
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tical point (¢<<1) we may indeed disregard the dif-
fusional contributions to the random forces.

For a typical liquid system characterized by
6=107% sec, 6 =107° cm?/sec, y=10"2 g/cm?®, and
M~100, we have, in three dimensions, @ ~1078,

It is also of interest to consider the resolution in
controlling the external parameter A which de-
termines the approach to the critical point. If A
measures a feeding rate for one of the chemicals

in the system, a good resolution is probably

~107% g/(sec ¢m®)=10"%¢/y in dimensionless units.
For 6=107% sec and y=10"2 g/cm?, we have®® &
~¢>10". This is a bound on the closest measurable
approach to the critical point in our system.?

Following Graham3®¢ we now repeat the procedure
described in Sec. III, this time starting from the
stochastic equation (4.1). As long as @< €@+ the
stochastic force terms (with correlations given by
Eq. (4.8) are of order €3 or higher and will not con-
tribute before the third order. If we take the stoch-
astic contribution to be O(€®), Eq. (3.27) will be
modified by the appearance of a stochastic term

(essentially G- ) on the right-hand side. Equa-
tion (3.27) thus becomes a Langevin-Landau-
Ginzburg equation for the order parameter W. It
may be converted to a functional Fokker-Planck
equation and a solution for the steady-state proba-
bility distribution may be obtained in terms of a
general Landau-Ginzburg potential, as described in
previous works.?? This approach ceases to be valid
too close to the critical point. The condition

Q<eid (4.15)
gives the corresponding limit of validity. We note
that the dimensionality d =4 naturally appears as
a borderline: For d <4 the theory breaks down for
a close enough approach to the critical point. For
d >4 the theory is always valid. We further note
that for d =3, the condition @ <e always holds for
the choice of parameters as described above. It
should be kept in mind, however, that other ex-
perimental situations may be imagined where the
distance from the critical point is much better
controlled than what was assumed before (e.g.,
variations of the light intensity in a photothermo-
chemical instability),

It must be adm1tted that the procedure that we
followed here 3¢ is not entirely satisfactory. One
would like to get a Langevin equation for the order
parameter, if such equation is valid, without the
need to consider the order of magnitude of @ rela-
tive to that of e. We shall see that the condition
(3.15) for the validity of the present approach holds
as long as the Ginzburg criterion for the validity
of mean-field theory is satisfied. This assures us
that the derivation of this Ginzburg criterion in
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Sec. VI is self-consistent. However, the present
approach is not sufficient within the critical region
itself. An approach based on Mori’s scaling pro-
cedure®® where, following van Kampen,'” the de-
terministic and the stochastic motions are scaled
differently, may be a better way to approach this
problem, We leave this question open for future
work.

V. ANALYSIS OF A MODEL

In this section we apply the theory presented in
Secs. II-IV to an analysis of the Edelstein model.
This model is characterized by the set of chemical
equations

A” +x="E 2%,

x+y%C-+M, : (5.1)

C+M¥y+B". ,
Here the concentrations A”, B”, M, and K=C +y
are externally controlled parameters, while x and
y may be considered as the variables character-
izing the state of the system. To have those fea-
tures of the model retained also in a local descrip-
tion, including diffusion, we assume that y and C

do not diffuse. The kinetic equation corresponding
to (5.1) are

3x/31=DV3x +k, A”X = kyx® — kyxy + R, M(K =),
(5.2)
3y/at=—kyxy +k,M(K=y) +k; MK ~y) +kgB" .
We go over to dimensionless quantities by dividing
by 2, MK and redefining the variables:

k,Mt~t, (D/k,M)V>-V?,

(5.3)
v/K—-vy, x/K-x.
We then get
0x/8L=V2x +A'x - Bx2 = axy+1~y,
P yri=y (5.4)
9y/dl==axy+1 =y +k(1=y)=B'y,
where
A’ =k1A”/k4M, B’ =k6B”/k4M, (5.5)

a=k,K/k,M, B=k,K/k,M, k=k,/k, .

For definiteness we retain A’ and B’ as our con-
trol parameters and choose fixed values for the
other parameters. We chose for the present spe-
cific example @=9, B=0.5, £ =3.5. With this
choice the steady-state equations may be written
in the form

y=%/©Ox+B"+ £) (5.6a)
F(x)=2x®+[5(B'+2)-9A | x2
+{L-A B +$))x-B"=0. (5.6b)
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Equation (5.6b) implies that there may be three
homogeneous steady states coexisting. It can be
shown that instabilities in this system occur first
in the homogeneous mode. The critical point
should satisfy Eqgs. (5.6) together with 8F /86x=0
and 9%F/ax2=0. This provides four equations for

determining A}, B, x_, and y,. We obtain
AY=2, Bl=%, x.=1, y.=3.
In terms of the deviations from the critical
the equations of motion are
0L/01 =V2E - $E2 - 9tn+(A - 3)E~10n+A,
an/ot==9¢n-(B+18)n-$§-3B, '
where v
A=A'-2, B=B' -%,
£=x-1, n=y-1i

At the critical point A=B=£(=71=0, we have

@ <—% —10>
Q.= )
““\-2 -18 .

with its eigenvectors

1 8 w__1 /9

wm (&) = ()

and

uz_l_<5> m__l__<1> ‘
T \e ) T \s )

(5.7)

point

(5.8a)

(5.8b)

(5.8¢c)

(5.9a)

(5.9p)

(5. 90')

It is easily checked that the critical point condi-

tions, Egs. (2.7) and (2.18) | or (2.23), (2.25

)] are

satisfied for A =B =0 at the critical point £=7=0.

Turning now to the Langevin force terms,

use the theory of Sec. IV to rewrite Eqs. (5.

the form

we
8) in

9t/a1 =V?g —38-9tn+(A-3)E-10n+A+f (T, 1),

on/ot=-9n~- (B+18)n—- %t~ 5B +f,(F, 1),

with

(Fe@, ) fe(F, 1) _
=Q0(F =T")6(t— 1) +S,V,* V,» 6(F - T')5(¢

‘ <fry(?: t)fn(?,’ ll» =Qn6(—f —?')5“ - t')v

<fn(?’ t)fg(.fl, t,» :anﬁ(Y -Fl)é(t - t’).

(5.10a)
(5.10b)

"[/)9

(5.11a)
(5.11b)

(5.11c)

For the @ coefficients we obtain (using critical
point values of all parameters and concentrations)

Q§:1§l19 Qn:%llj
Q§":3I, Sg :(Z/IWx)I,

(5.12)
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where ‘
1=(1/A KDk, M), (5.13)

d being the dimensionality of the system, and
where M, is the molecular weight of the diffusing
species x. Note that in Egs. (5.10)—(5.13) all
concentrations are expressed in moles rather than
in grams as was done in Sec. II. Taking this dif-
ference into account we readily see the connection
to the general formulation of Sec. IV: D, which
is the only diffusion coefficient in our problem,
is identified with & of Eqs. (4.13) and (4.14); the
characteristic time is 9:(134M)'1 and the char-
acteristic concentration is y =M, K.

Equations (5.10) lead to the following equation of
state for £ with A and B as controlled paramaters

-3 8+(9A-3B)¢
L (B+27A +AB)E+(3B +18A +AB)=0.  (5.14)
7 is uniquely determined in terms of £ as
n=-(B+9£)/4(B +9¢+18). (5.15)

Consider now the approach to the critical point.
This can be done in principle by keeping a certain
linear combination of A and B zero, and studying
the approach to zero along the orthogonal linear
transformation. Based on the similarity of Eq.
(5.14) to cubic equations of state appearing in the
Landau theory of phase transitions, we can ex-
pect to encounter two types of parameters which
may be called temperaturelike and magnetic-
field-like. When a temperaturelike parémeter T
approaches the critical point (7'=0, say) we ex-
pect a mean-field theory prediction &, ~T1/2,
When a magnetic-field-like parameter H does the
same we expect £, n~H'/3, Clearly, any linear
combination of 7' and H must be magnetic-field-
like. Only a unique combination of the physical
parameters can be a temperaturelike variable.

From Eq. (5.14) it is easily realized that A and
B are both magnetic-field-like parameters and
that the only approach to criticality characterized
by a temperaturelike behavior is the one for which
5B +36A =0. We proceed to analyze the two dif-
ferent typical situations.

(i) A magnetic-field-type approach: Let B =0.
As A —~0 we have from Eqs. (5.14) and (5.15) the
(A-dependent) steady-state values £,=(44)'/* and
No=—(1)(4A)'/5. The matrix Q (A) may be written

in the form
-9 10
+A . (5.186)
-9 00

1t is easily checked?® that the root of §0 which
vanishes when A -~ 0 goes like A2/3, We therefore
relate 5 not to A but to A%/3, and put

Q,=0,+(4A)/5 (

ol ool

(4A)1/3=€a ,

9/dt=€2(9/371),

(5.17)
8/0r=¢€(8/5R),
S:Z.=§0+ €a§1+0 (€3),

where a (=V5)) is a measure of the deviation from
the critical point and where

§1=<% ‘9) (5.18)

8

is the matrix defined by Eq. (3.8). The following
points concerning this expansion should be noted:
(a) In contrast to the expected behavior of Sec. III
there are no terms of order €2 in the expansion £
around fio, (b) the term O(€®) in the expansion of
§? does not contribute to the ¢ expansion of the
equations of motion up to the relevant third order
and, (c) it can be checked using Eqgs. (5.9b) and
(5. 18) that the matrix ﬁ has the property
Ao, h,=0, in agreement with the results of
Sec III

The asymptotic expansion of the equations of
motion proceeds now along the lines described in
Sec. III. The result is

(8/37‘— VZ)W—— (@W + 12 /77 aw?
+:7-7—W)+fw, (5.19)

where the new random source term is obtained
from

fw=.ﬁé”'-f

and where Wu is the state vector measured from
its (a- dependent) steady-state value. Transform-
ing the origin to the critical point we obtain

< : >=a ( ! )+ Wi, . (5.20)
n W ‘

8

The analogy to a magnetic-field-type approach
to criticality is seen by considering an equatlon of
motion of the kind

ay

Td-t——23+H (5.21)

with a steady-state solution z,= -H'/%, Putting

z=2z,+2', the equation for z’ becomes
‘Z =2/ Z 3H/3 272 L 3H2/% (5.22)

which resembles Eq. (5.19) in which a plays the
role of H'/3,

(ii) A temperaturelike approach: Taking
B=-%A in Eq. (5.14) we obtain for A~ 0, the
steady-state values £,=(2-A)!/2 and 7,= -1(ZA)!/2,
For A—~0_ % =7,=0 is the only real solution.
Consider first the case A>0. For this case
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0,=8, +(2A)8, +AG,, (5.23)
where 51 is given by Eq.(5.18) and where

§2=1 0 .
0 -2

The root of ﬁo which vanishes as A -~ 0 now goes
like A. We define

A=¢e%, (5.25)

 (5.24)

where b measures the distance from the critical
point and plays the role of 6A of Sec. III. Thus
Eq. (5.23) becomes

o=, + €@D128, + €20, (5.26)

The expansion of the equations of motion goes now
exactly as described in Sec. III, and leads to the
following equation for the order parameter W:

@/dT - 0.94V2)W=2.260W — 1.01v5 W2 — 0.78W*
+f®R,7) (0>0). (5.27)

For the correlation function of f}, we get

o ®, TR, 7)) =4.4UsR-R)o(r—7)  (5.28)

where I is given by Eq. (5.13).

For A<0 we saw that £ and  are zero at
steady state. This implies that the §, term does
not appear in the expansion of £ Eqgs. (5.23) or
(5.26). The expansion of the equations of motion
now yields

(d/dT - 0.94v2)W
=0.4T0W - 0.718W° 4+, (R, 7) (b<0), (5.29)

where f, is the same as in Eq. (5.27) and satisfies
Eq. (5.28)

Equations (5.27) and (5.29) are exactly what we
expect for time-dependent Ginzburg-Landau equa-
tions describing a temperaturelike deviation from
the critical point. b stands here for the temper-
ature variable. We point out that the form (5.29),
which is similar to what is obtained in symmetry-
breaking transitions,® is obtained in our example
only in a very special case.

VI. GINZBURG CRITERION

A Langevin equation of the form
9 -
WW=0V2W+F(W) +f(F, t), (6.1)
with f being a Gaussian random variable satisfying
(f(.f,'t» =0, .
Gt YE)) =20F -T)5( -t7), (6.2)

is known to yield a steady-state probability dis-

tribution

W) =sem(- & [ arfupwessolowe),

(6.3)
where Z is a normalizing factor and U is related
to F by

F(x)=-3U(x)/5x . (6.4)
For the case
UW) = pW?2 4+ svW*., (6.5)

Ginzburg'® has provided a criterion for the validity
of mean-field theory or of the Gaussian approxi-
mation (which neglects the quartic term). The
Ginzburg criterion is, in our notation,

L (a~d) /2 ‘
®K VN (20_) «1

27 6.6)
@rfGo) \ 1 (

b

where d is the dimensionality of the system; K,,
the surface area of a d-dimensional unit sphere;
and where

N=f dx
A 1

with d’ being the noninteger part of d. Equation
(6.6) provides a measure for the size of the “crit-
ical region, ” near the critical point where mean-
field theory or the Gaussian approximation fail.

It can be directly applied to the time-dependent
Ginzburg-Landau equation (5.29) that we obtained
in studying the particular example of the Edelstein
model. Of more interest is to see the relation
between the Ginzburg criterion (6.6) and the con-
dition @ <€*“ [ @ is defined by Eq. (4.13)] for the
validity of the asymptotic expansion of the stoch-
astic equations of motion discussed in Sec. IV.
Assuming

K,wNo™/2/(2IY¥ ~0(1),
Eq. (6.6) yields _
P << “(4-11)/2 . (6.8)

Comparing Eq. (6.5) to Eqs. (5.25) and (5.29) we
see that p should be identified with €2, and ¢
identified as the dimensionless diffusion coeffi-
cients.?® & is equivalent to @ of Sec. III,

e=Q~M/A N (06) 2 /y]; (6.9)

M, 6, 6, and y being characteristic molecular
weight, diffusion coefficient, time, and concen-
tration, respectively. With these chosen cor-
rectly, the order of magnitude estimate which
leads to Eq. (6.8) indeed holds. We conclude that
the Ginzburg criterion can be identified as a con-
dition for the validity of the expansion procedure

(6.7)

xd'
+x2 7
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which leads to time-dependent Ginzburg-Landau
equations of the kind obtained in this paper.
Equation (6.9) may be recast in the form

Q~1/A.g, (6.10)

where g is the characteristic amount of reactants
(in moles) in the volume (56)"?/2, We have esti-~
mated in Sec. IV that in many cases the condition
Q@ <e (for d=3) will always hold in any practical
measurement. It should be pointed out however
that chemical parameters, like concentrations
and reaction rates, may have values ranging
through many order of magnitude. For very fast
reaction, and very low concentrations, very small
values of g may be attained (e.g., g£~10"%° mole
for 6~10°sec,D~10"°cm?/sec, and y ~10™® mole/
cm?®). Thus critical points of chemical instabil-
ities potentially may give rise to breakdown of

the mean-field picture and to nonclassical critical
behavior. This is in contrast to other nonequilib-
rium phase transitions, i.e., the laser transition
and the convection instability where for physically
realizable parameters the true critical region is
experimentally unattainable. ’

VII. CONCLUSION

In this paper we considered the critical behavior
of a system where nonlinear chemical Kinetics
lead to the coexistence, far from equilibrium, of
several homogeneous steady states. It was demon-
strated that by imposing conditions which restrict
the system to the vicinity of the critical point,
the equations of motion can be reduced to yield a
dynamic equation for the order parameter charac-
terizing the system. As in treatments of sym-
metry-breaking transitions® the appropriate order
parameter was identified as the amplitude W of
the null vector @, of the critical matrix &, in the
first-order expression for the state vector X near
the critical point, x—x,(X)=Wu,. '

We further discussed the effect of fluctuations
on the critical behavior in a way which was shown
to be valid outside the Ginzburg critical region.
The size of this region was estimated and we con-
cluded that although in many cases it is too small
to be experimentally accessible, it is possible in
principle to find chemical systems for which the
critical region can be reached. In this case we
expect a breakdown of the present theory and a
“nonclassical” critical behavior in the sense used
in equilibrium phenomena. )

The treatment of fluctuations within the present
approach is incomplete mainly because of the un-
certainty involved in the scaling of the random
force. Wunderlin and Haken®® argue that the ran-
dom force scales as €. If we accept their argu-

ment, the resulting TDGL equation is valid at

any distance from the critical point. However
these authors treat, specifically, a one-dimen-
sional problem, and their argument fails for high-
er dimensionality. In the present paper it was

- shown that if we assume that the random force

scales only according to its spatial and temporal
dependence, the validity of the reduction proce-
dure is determined essentially by the Ginzburg
criterion. This argument can be extended to yield
generalized Ginzburg criteria for other types of
nonequilibrium critical phenomena.?”

After this work was concluded we received a
manuscript by Gardiner and Walls? in which an
estimate of the critical region is provided for the
particular case of the Schlogl model mentioned
in Sec. I. Also the special nature of this example
makes a direct comparison with our general re-
sult (Sec. VI) difficult, there is a qualitative
agreement between the two results.

Presently there are not many systems for which
a controlled approach to the critical point may be
attempted. The best candidate seems to be the
photothermochemical instability®® where the fact
that the system is taken away from equilibrium by
physical means and not by chemical flows makes
it more controllable than other chemically un-
stable systems. Another way to get more insight
on the critical behavior of nonequilibrium chem-
ically unstable systems is by computer simulations
of the kind performed by Ortoleva and Yip.?® We
hope that such experimental and numerical studies
will be used to test the present theory and to shed
more light on the nonclassical behavior within the
critical region.
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APPENDIX A: PARTIAL DIFFERENTIATION BY JACOBIAN
CALCULUS

Here we prove the identity (2.12)

(8F 1/ 0% )pyeuer, =I /9 ‘ (A1)
where

J=3(F1'~-F")/8(x1°°'xn), (A2)
and where

Jy=8(F,  F)/0(x, 0 %) . (A3)



To prove Eq. (A1) we use the following identities
from the calculus of Jacobians:

d(uv - - rw) d(xy.--2)\ )

3(7;;)1:)) =(a(:v...w)) , | (A4)

a(u'uo.-w) _a(uvo--w) 8(1’8"‘t)

3(xy---z) - 8('}’8""t) .a(xy.,.z) ) (A5)
and

ou _duy<-z)

(az) yooee By e2) (A6)

Utilizing these identities we, obtain
(3_11) _(F,F,---F,)
8’?1 / FpeseF, (%, % * * * %)
_AF FyeeoF)) 8(xyx, """ %)
a(x1x2 .o .xn) 3(.‘)61 _F'2 .o 'Fn)

(w0 x,) J_
R, @0
Similarly we show [cf. (2.18)]
aJ _(JFy et F) _3(JF,eeeF,) /)
(8x1> g Fyy a(xle o ‘F") - 8(x1x2 *e 'x,,) /Y
(A8)

so that for J,#0 at the cr1t1ca1 point, Eqgs. (2. 18)
and (2.17) are equivalent.

APPENDIX B: STABILITY CONDITIONS FOR THE REDUCED
SYSTEM

In Sec. II and Appendix A, we have seen that the
marginal stability identities J=0 and d\(x)/dx=0
are equivalent provided that J,=8(F,-+-F,)/
3(x,+++x,) #0. Here we discuss the significance
of the condition J, #0. We require that this in-
equality will hold at the point of marginal stability.
Thus holding x, fixed at its marginal stability val-
ue we require that the resulting new system re-
mains stable as we change X\ to approach the mar-
ginal stability point of the old system character-
ized by unrestricted x,. To cast this in a more
mathematical form consider the matrix SZ written
in the form

oF, ,

= | % ? '

o=\ Tt _ |, ‘ (B1)
b9

with ﬁl, the matrix corresponding to the deter-
minant J;, and

+_(3F, O8F, oF ‘
5 ~1
A= <8xz axy’ 7 0, > . (B2)
- 3F 3F oF transpose
—l
b= (le Yox, ’ 8x1> (B3)
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Let U,(A) be the eigenvector of £,(A) correspond-
ing to the eigenvalue which vanishes at marginal
stability, ’

. () *T(W)=0 for x=x_,, (B4)

(A, denotes the marginal stability value of ). Let

= T
Uo2
=] = (“) (B5)
: %
C “on J
Then
- a-u
= . aF ° Y
Q uo"um'g;"l' +< 'Ql.'ﬁ6> ’ (B6)
and for A=) _ we get
an/axl \b
51 “Gg=ug : y A=A (B7)
oF,/bx,

Thus uy(A,,) #0 is a necessary condition for the
nonsingular character of 91(7\ o). This seems to
be the only general condition and excluding patho-
logical cases we expect that um(xms);eo insures the
nonsingularity of £,(A_,). .

APPENDIX C: EQUIVALENCE OF TWO CRITICAL POINT
RELATIONS

Here we establish the equivalence between Eqgs.
(2.23) and (2.25). In Eq. (2. 25) we insert the iden-
tities (see Appendix D)

fcll Cll
C12 CZI
R A T (e
L.CI"J : LCm J
to obtain '
", %G,
Z ox 0%, Ci1Cy;C1,=0. FCZ)

ife=1

This has to be compared to Eq. (2.23) which may
be written as

n .
82
> 2% ¢ oc.=o0. (C3)
iir=1 0%;9%, HTLR ‘
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We thus have to show that the coefficients of 9%G,/
9x ;0x, are equal, up to multiplication by a constant,
to each other. In Eq. (C2) the coefficient is
2C;;C,;Cyp. In Eq. (C3) it is C;,C,,+C;,Cy;. In-
deed from Eq. (D2) we have C,;=C,,C;,/C,, and
C;,=C.,C;,/C,,. Thus

CiiCrat CipCyy= 2Cilcljclk/cu! (C4)
which establishes the equivalence between Eqs.
(C2) and (C3).

APPENDIX D: PROOF OF EQ. (C1)

Here we show that for a singular matrix § having
a single zero eigenvalue, the right eigenvector cor-
responding to this zero eigenvalue can be written

i Ckl
Ck2

for any k&, (D1)

[=1]
i

- Ck" -
where C;; is the cofactor of the term ;; of Q. We
note in passing that under the same conditions the

identity
Cki/ckj= Cli/ctj’ (D2)

implied by Eq. (D1), holds.
We start by rewriting the equation

£:4=0 (D3)
in the form
Qlk
Qrl=-| Qu | up (D4)
e

where §” is an n X (n — 1) matrix obtained from
by eliminating the kth column. Similarly ¥’ is ob-
tained from 1 by eliminating the kth row.

Next we eliminate the kth row of Eq. (D4), thus
obtaining the (r - 1) X (z - 1) system

= - Q" bu,, , (D5)

where b is the transpose Of (R Qg
Q1,0 " Q) and where Q' is the (n 1) X (n -1)
matrix obtained from £ by eliminating its kth row

and column. We may write
(291 =C'/det(R) = €/C,, 5 (D6)

where C’ is the cofactor matrix of $2’. As we are
free to choose one term in the unnormalized vec-
tor U, we take u,=C,, so that

=&%. (D7)
A typical term from Eq. (D7) is
B-1
ui—Z Chilyp+ Z CiiSpe (D8)
j=o0 J=k+1

By inspection it may be seen that this is just an
expansion of the determinant C,; in what was the
kth column of the parent matrix . This concludes
the proof of Eq. (D1).

APPENDIX E: COMMENTS ON SCALING

Here we bring arguments for the scaling assumed
in Sec. IIL '

(i) Time. Our choice of X makes O\ proportional
to the decay rate of the slow mode. This makes
our slow time scale of order €2,

(ii) Length. The k=0 mode is the first to be-
come unstable. The lifetime of associated modes
of small finite % is proportional to (Dk?)™, where
D is the diffusion constants. Thus the vicinity of
criticality in 2 space is defined by k£~ €.

(iii) Amplitude. Consider the equations of state

F(&,2)=0, (E1)

and consider a variation of the parameter A, and
consequently of the variables X, which leaves F
invariant. Then'®

- oF . 1 9°F 33
= . - -—-5
AF= o= 045 omg 1 0X0X 4 55 O
92F 92F
+% e (67\)2+—;—6x67\ 0. (E2)

We wish to show that the assumption || 6x”
~O0(¥ b)) is consistent with the critical conditions.
Making this assumption we have up to order €2,

3-F.‘> . 1 32-1?- - a-l‘:
37 ) ozt . OF) x=
<3X X+2 (m)c : 0x0xX + ( E3Y )05)\ 0, (E3)

c

where ( ), denotes terms evaluated at the critical
point. The rlght e1genvectors and the elgenvalues
of the matrix §, = (8F/5%), are denoted G, and Y
respectively, with ¥,=0._ We also require the left
eigenvectors defined by &, 1y =y 0. We now ex-
pand the vector 0X in the set {3 }:

6§=Z o= g, + Zaj'ﬁj. (E4)
p i%o

Inserting Eq. (E4) into (E3) we obtain
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Za,‘/,uﬁ (ax8x> : [ ououo+z a a,uﬂu,+z Z 00,1, uk] < F> M =0. (E5)

j#0 j#0

Assuming that v,~O(1) for j#0 it is clear from
Eq. (E5) that a;~0(8) for j#0. If we assume that
a2 is of the same order, we obtain

-

F\ ..  [BF)
2. a0 +z03 (a 3x> 'u0u0+(8—x>c5h=0,

i%o
(E6)

where all the terms here were asserted to be
O(€?). The consistency of our assumptions at the
critical point is realized by noting that the first
and last term in the left-hand side of Eq. (E6) are
orthogonal to U,. This is certainly true for the
first term, while for the last term it follows from

J#0 k#0

CIRNE RO/

so that taking a scalar product with 4" from the

left we obtain

- oF
ar - <’a‘i> =0." (E8)

[

These two terms are orthogonal to U, also near
any other point of marginal stability. However,
only at the critical point we have seen that the
term (82F/8%06%),1 4, is also orthogonal to U, [cf.
Eq. (2.25)]. This establishes the consistency of
our assertion that aZ is O(8)) near the critical
point.
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