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A classical mechanical generalized Langevin formalism is applied to the study of gas—surface collisions.

Procedures are described for constructing generalized friction and fluctuating forces which accurately

represent the motion of real solids, and which can be conveniently implemented in a classical stochastic
trajectory calculation. Energy transfer computed using this approach for He-W collisions is in excellent
agreement with results of a quantum mechanical distorted wave calculation employing the same phonon
density of states. The method is further applied to the study of residence times and sticking probabilities.
Results indicate that the stochastic trajectory approach is feasible and capable of accurate simulation of

gas—surface collision phenomena.

I. INTRODUCTION

A major problem in gas—surface collision theory is
incorporation of lattice many-body effects, i.e., treat-
ment of energy exchange between gas molecules and the
solid, Several approaches to this problem have been
proposed, ranging from simple “cube” models' to full
scale numerical solution of the equations of motion of a
sizeable cluster of atoms.? Previous classical and
quantum mechanical studies of this type are summarized
in a review by Goodman and Wachman.?

Recent developments by Adelman and Doll (hereafter
referred to as AD) represent an important advance in
this area.*® They combine the generalized Langevin
equation (GLE) formalism of Kubo® and Mori’ with
standard classical mechanical (gas-phase) scattering
techniques., Their formulation, in principle, encom-
passes the effects of an infinite lattice at nonzero tem-
perature to arbitrarily high accuracy.

The basic idea of the approach is as follows: atoms
are classified into three groups, gas atoms (R), a
small number of primary lattice atoms (P), and the
remaining secondary lattice atoms (Q). The formula-
tion rests on two basic assumptions. First, interac-
tions between gas atoms and the solid depend on the in~
stantaneous positions of the primary lattice atoms, but
not on the instantaneous positions of secondary lattice
atoms. Second, interactions among the secondary lat-
tice atoms and between the secondary and primary lat-
tice atoms are harmonic. Under these assumptions,
we can write the following matrix equations governing
the motions of the three types of atoms:

% () =ML Fplxp (), % (0], 1)

%o() =— ML/ 202 . ML2 X0 () = M/ 2 Q2o MEZ X, (1)
+M3s Folxe(8), %], (2)

R () =~-MEZ 02 M % (1) - M G2 QBMES X (1) . (3)

The forces Fy and Fp describing the interactions be-
tween the gas and the lattice are completely arbitrary.
©2p is the matrix describing the harmonic interactions
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among the primary atoms P; QZQQ is the corresponding
matrix for the secondary atoms Q; and 0%, = 2%, de-
scribes the harmonic coupling between P and Q atoms.
Mz, Mpp, and My, are the matrices of masses of gas,
primary lattice, and secondary lattice atoms, respec-
tively.

Equation (3) can be solved formally and substituted
into Eq. (2), giving after some manipulation

i -
% (1) =~ Q2% () - A% (0) = [ Alt= )51t
0

+M£:1p R(t) +M;)lp Fp[xn (t) , Xp (t)J s (4)

where
Qi =M 3 [QFp - AO)IMEE (5)
A(t) =M"52 Q% cos(figq 1) R 4p MEE ®6)
and
R(t) = ~ML22 02 o cos(Rqqt) MGG X4 (0)
- MEL2 024 sin(Qqq?) Q3o MG %6 (0) (7

Equations (4)-(7) are exact, and are equivalent to those
derived by AD.?

Thus, we have replaced the infinite set of coupled
equations (1)-(3) with 2 small number of equations (1)
and (4). The matrix Q% appearing in the GLE, Eq.
(4), is an effective frequency matrix. As discussed by
AD,® R{#) can be considered a Gaussian random force,
with a frequency spectrum that is characteristic of the
lattice. The damping (friction) kernel A(¢#) is related to
R(#) through the second fluctuation-dissipation theo-
rem, %% This follows directly from Egs. (6) and (7),

(ROYRY(®) =k TMpp A() (8)

where brackets denote ensemble average, kg is the Boltz-
mann constant, 7T is temperature, and we have made
use of the relations

(%o (0)x5(0)) =k TMZ{2 QF MY (9)
and

(%o (0)x5(0)) =0, (10)
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which are valid for a harmonic lattice in thermal equilib-
rium,

Adelman, Doll, and Myers*?*®? show that by linear-

izing the stochastic differential equation (1) and (4),
equations of a Fokker—Planck form for the particle
probability distribution functions can be generated.
They demonstrate convincingly that in cases where lin-
earization is valid, this procedure is far more efficient
than direct solution of Eqs. (1) and (4).® Unfortunately,
linearization is justified only when particle trajectories
do not deviate excessively from the zero-noise trajec-
tory. Therefore, this procedure cannot be expected to
be useful except perhaps for the simplest direct atom-
surface encounters. The method does not appear capable
of describing such processes as trapping, molecular
dissociation, desorption, or chemical reaction.

In this paper we investigate the feasibility of obtain-
ing direct numerical solutions of the GLE’s, Egs. (1)
and (4), via Monte Carlo sampling of classical stochastic
trajectories. Related studies by Adelman and Garrison!®
and by Doll and Dion!! have just been reported. In the
next section we discuss the implementation of this pro-
cedure. We focus particularly on the question of how
to employ known lattice properties to construct the gen-
eralized friction kernel A(¢), fluctuating force R(¢), and
effective frequency QZ,, required in the GLE, Eq. (4).
We describe a simple procedure for producing a fluc-
tuating force and generalized friction that is capable of
accurately representing the properties of real lattices.
‘We apply this method, in Sec. III, to calculate energy
exchange during a collinear atom-surface collision at a
variety of surface and gas temperatures. Results are
compared to those obtained by the quantum mechanical
single phonon approach of Lennard-Jones, Devonshire,
and Strachan.!? In Sec. IV we apply the method to trap-
ping collisions, thereby demonstrating its utility for
such problems and shedding further light on the role
played by the damping and fluctuating forces. The final
section is a short appraisal of the outlook of the gener-
alized Langevin formalism for describing the dynamics
of realistic gas—surface interactions,

Il. STOCHASTIC TRAJECTORIES

The GLE’s, Eqs. (1) and (4), can be solved numer-
ically for the classical stochastic trajectories which
describe the motion of the gas and primary surface
atoms, This can be carried out by a procedure analo-
gous to the familiar classical trajectory method em-
ployed for gas-phase collisions.!® The classical tra-
jectory method requires prior specification of the
forces of interaction between the atoms for all relevant
interatomic separations, i.e., of a potential energy
hypersurface. This has been done to varying degrees of
accuracy by methods ranging from ab initio quantum
chemical calculations to empirical fitting of experimen-
tal data. Analogously, the generalized Langevin ap-
proach described here requires specification of the
forces of interaction among the gas atoms and between
the gas and primary surface atoms. In the calculations
reported in this paper we employ simple model poten-
tials and do not address the question of constructing ac-
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curate interactions for realistic systems.

In addition to the interatomic forces ¥y and Fp of
Egs. (1) and (4), the generalized Langevin approach re-
quires specification of the effective frequencies QZ,,,
damping kernels A(¢), and fluctuating forces R(¢) de-
fined in Egs. (5)-(7). The success of the approach de-
pends on how effectively these quantities can be de-
signed to mimic the motion of the solid. Methods for
obtaining these quantities from known properties of the
solid, and implementing them into the numerical pro-
cedure for generating stochastic trajectories, are the
subject of this section, Questions concerning the ac-
curacy and utility of the approach are addressed in suc-
ceeding sections.

Our object is to find connections between measurable
properties of the solid and the microscopic quantities
in the GLE which are to represent the infinite number
of degrees of freedom which are not explicitly treated,
To show how this can be done, consider a case where
the primary lattice consists of a single atom, and where
all gas atoms are distant so the interaction Fp vanishes
in the GLE, Eq. (4). By multiplying Eq. (4) on the lhs
by xp(¢=0) and performing an ensemble average over
initial conditions and initial values of R(f), we obtain

% (xp(0) xp(t) =- ey (xp(0) xp (1))

- j Alt=t) Gp O xp(t at’ | (11)
0
where we have made use of the relations
(rp(0)xp(0)) =0 (12)
and
(xp (O R()=0. (13)

Equation (13) follows directly from the definition of the
fluctuating force, Eq. (7).

Takihg the cosine transform of Eq. (11), we obtain
2 [~ . .
Co=2 [ dtcos(w) Gp(0) e (t)
0

_ (2/mM)w? A (w)xp(0) Xp(0)
[w?- Q- WA (WP +w? A%(w) ?

(14)

where C,, is the cosine transform of the velocity auto-
correlation function, and A,(w) and A,(w) are 7/2 times
the cosine and sine transforms of the damping kernel of
Eq. (6):

Ac(w)=j:dtcos(wt)A(t) s (15)

A= [ dtsinwh) A . (16)
0
Equation (14) is an exact relation between the velocity
autocorrelation function, an observable, and the quan-
tities ©2,, and A(#) appearing in the GLE. For atoms
in translationally invariant systems for which the X, 9,
and z directions are equivalent, e.g, , a bulk atom in a
3D simple cubic lattice, the normalized cosine trans-
form of the velocity autocorrelation function is equal to
the phonon density of states g(w).'* Thus we have
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( )_g wiA (w)
B TP~ %y — WA, (@) + o AZ(w) -

(17)

More general relations are required for more compli-
cated lattice structures,

Equations (14) and (17) allow us in principle to de-
termine Q2, and A(#) from presumably known informa-
tion about the solid. To accomplish this we propose a
specific functional form for A(#), to be described below,
and then choose the parameters in this function to best
reproduce the behavior of the surface. This also pro-
vides us with the autocorrelation function of the fluctuat-
ing force, (R(0)R(#)), through the fluctuation—-dissipa-
tion theorem, Eq. (8).

The simplest possible choice for A(¢) would be
Ay =g5() , (18)

where 8 is a constant and 6(¢) is the delta function. We
will refer to this as the Brownian limit. In this limit
the damping no longer retains memory of previous
times, and the fluctuating force R(f) becomes white
noise; i,e., Eq. (4) becomes identical to the phenome-
nological Langevin equation, Figure 1 illustrates the
cosine transform of the velocity autocorrelation func-
tion, C,, of Eq. (14), and A (w) of Eq. {15) obtained by

I
(a) |
! \

\
\
\\
\\.\\
~
1 ) 1 —r
[¢) o.l 0.2 0.3 0.4 0.5
w (x10" sec™)
(b)
1.5+
To -
Y
2]
s 091
‘o
» L
3
03
1 | 1
o] 0.1 0.2 0.3 0.4 0.5
w (x IO_'4 sec-|)
FIG. 1. (a) The density of states for a bulk solid (dashed)

curve), and the surface density of states generated from it us-
ing Eq. (20) (solid curve). The dash—dot curve is the density
of states for a Brownian oscillator. (b) The cosine transform
of the friction kernel associated with the surface oscillator
(smooth curve), and the Brownian oscillator (straight line).
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the approach using typical values of 8 and Q,,,, the only
two parameters. We would expect the Brownian limit
to be useful when the time scale of the thermal motion
of the solid is fast compared to the motion of the collid-
ing gas particles. Since this is rarely the case for
realistic gas-solid collision phenomena, we must view
this approximation with suspicion. The validity of the
Brownian limit is examined computationally in Sec. IV.

A more realistic functional form for A(f) is the fol-
lowing:

A =Age™ Y 27 cos(w, 1) +5 ywit sin(w, 1)) . (19)

This is the form of the position autocorrelation function
of a Brownian oscillator,!%!® It exhibits the damped
oscillatory behavior expected for lattice atoms. As
shown in Fig. 1(b), A (w)—0 as w-, in contrast to the
Brownian limit. This can have important consequences
with respect to accommodation of high frequency mo-
tion, as discussed in Sec. IV.

As illustrated in Fig. 1(a), Eq. (19) can reproduce
the qualitative shapes of typical density of states spec-
tra. More complicated spectra can be constructed us-
ing a linear combination of two or more terms of the
form of Eq. (19). The justification for using Eq. (19),
in addition to physical arguments, is ease of computa-
tion. Generation of the damping functional and fluctuat-
ing force produced by Eq. (19) can be accomplished
easily and exactly by the procedure outlined in the Ap-
pendix,

In order to apply this approach to a realistic situation,
we need to choose values of four parameters A, v, and
w, of Eq. (19) and Q2,,. In some cases we may have di-
rect information about the velocity autocorrelation func-
tion of surface atoms, e.g., from electron diffraction
experiments or from molecular dynamics simulations.
In such cases we can use Eq. (14) directly, selecting
parameters to best fit C,,. In other cases we may not
have enough information about surface dynamics but do
know the bulk phonon density of states, e.g., from neu-
tron diffraction, It may then be possible to use the bulk
data to obtain satisfactory estimates of the four param-
eters appropriate for the surface.

As an illustration, consider the perpendicular (z-di-
rection) motion of a surface atom in a 3D simple cubic
lattice, We can use the bulk density of states in Eq.

(17) to choose the parameters A,, ¥, w;, and %, to
optimally describe the z-direction motion of a bulk atom.
A typical example of g(w) generated in this way is given
by the dashed line in Fig. 1(a). The main contribution
to A(#) is due to the two nearest neighbors of the bulk
atom in the +z direction. A surface atom differs from
a bulk atom, very crudely speaking, in that one of these
two neighbors is missing. It is not unreasonable to esti-
mate that the frequency and decay parameters w, and ¥
of the damping kernel remain unchanged while the
strength parameter A, and squared oscillator frequency
szf,, are reduced by roughly a factor of 2 for a surface
atom compared to the bulk. The solid curve in Fig, 1(a)
is the resulting cosine transform of the velocity autocor-
relation function for motion of a surface atom in the per-
pendicular direction, obtained from the bulk density of
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states shown by the dashed curve of Fig, 1(a), using the
following relations:

Ag(surface) = 3 Ag(bulk) |

y(surface) =y (bulk) ,

w, (surface) = w, (bulk) ,

Q24 (surface) = 3 @2y, (bulk) . (20)

This is an example of a very crude way in which bulk
information can be used to provide surface parameters.
In cases where information about force constants is
known, a procedure that is similar in spirit to this but
systematic and accurate can be formulated.

In this section we have attempted to show how quan-
tities appearing in the GLE, Eq. (4), might be obtained
from information about the solid. Once the effective
frequencies Q,q, friction kernels A(#), and interaction
forces Fp and Fp havebeenspecified, numerical solution
of the GLE’s proceeds almost exactly as inagas-phase
classical trajectory study. Initial conditions (vibration-
al phases, vibrational amplitudes, impact parameters,
etc.) are selected at random from distributions chosen
to mimic the experimental situation to be simulated.®
The only additional complication incurred with the gen-
eralized Langevin approach is initialization of the fluc-
tuating force and damping terms in Eq. (4), both of
which have memory of previous times, While this may
pose some problems in certain situations, e.g., sur-
face diffusion or desorption studies, for gas—surface
collision simulations of the type reported here, the
problem is easily eliminated. All that is required is
to begin the calculation with gas-surface separation suf-
ficiently large that the damping and fluctuating force
terms have time to randomize before impact.

Once initial conditions have been selected, a stochas-
tic trajectory is generated by numerical integration of
Eqgs. (1) and (4), including the fluctuating force and gen-
eralized friction terms, which can be easily treated by
the method described in the Appendix, In the applica-
tions discussed below we have employed an Adams—
Moulton predictor—corrector numerical integrator, with
Runge—Kutta—Gill starter.'® Once the trajectory is
completed, a new set of initial ¢onditions (and a new
sequence of the random force) are selected and a new
trajectory computed. This process is repeated until
adequate statistics on the outcome of the collision are
generated.

Ill. ENERGY TRANSFER AND ACCOMMODATION

Here we apply the method described in the previous
section to the calculation of energy transfer during an
atom solid collision. Energy transfer, usually ex-
pressed in terms of energy and thermal accommodation
coefficients, has long been a popular observable in the
study of nonreactive interactions between gases and
solid surfaces. The subject has been recently exten-
sively reviewed.® Our main concern here is not merely
to provide an additional method for calculating accom-
modation coefficients, but mainly to demonstrate on a
simple, familiar system that the method of classical
stochastic trajectories provides a simple, reliable, and

relatively cheap way to perform computations on non-
reactive lattice gas interactions,

With this objective in mind we have performed com-
putations on a one-dimensional model for the collision
of a helium atom with tungsten solid surface. Only one
primary lattice atom was considered. A purely repul-
sive interaction exp(- b7) was assumed, where 7 is the
distance between the He atom and the primary surface
W atoms, and b is taken to be 1,3 A™,® The parameters
describing the lattice have been chosen to yield the best
fit to a Debye spectrum with Debye temperature 380 °K
(W bulk Debye temperature). The corresponding sur-
face parameters have then been obtained as described
in Sec. II. The bulk parameters are Q,,=2.488x10"®
secl A,=1,238x10%" sec?, y=4.975x10" sec™, and
w, =2.488x 10" sec™!; while for the corresponding sur-
face parameters we have Q,,,=1.759x10"sec™ and A,
=6.19%x10% gec™. The bulk and surface density of state
functions which correspond to these parameters are dis-
played in Fig. 2.

To test the reliability of the classical stochastic tra-
jectory approach we have compared the results obtained
by this method to those obtained using the quantum
mechanical Lennard-Jones, Devonshire, and Strachan
(LJDS) approach.!®* We have used the single phonon ap-
proximation in the form

_8riM2 | wl sinh(mg;)sinh(nq )
Plw)= b’M 7 g(|eDRe) [cosh(ﬂq,)l— cosh(n";,,.)]2 !
2
qr= g;? VzugEg b
qr= % v2M,(E, —Fw) ,
n(w)+1  w>0
Flo) _{n(w) w<0 ’ (21)

where M, and M, are the masses of the gas and solid
atoms, g(w) is the density of surface phonons, n(w)
=[exp(fiw/kT) — 1] is the thermal population function,
and E, is the gas atom initial kinetic energy. P(w) rep-
resents the probability density that the gas atom gives
to (w>0) or takes from (w<0) the solid an amount %w of
energy during the collision process. For the small
mass ratio of the He—~W system and for incident ener-
gies which are not too large (such that multiphonon pro-

/l' FIG. 2. The Debye spectrum
/1 of a solid (dashed curve). The

| bulk density of states chosen

- /! ‘ to fit this Debye spectrum

/ ! i (dash—dot curve), and the sur-

/ |\, face density of states derived

// ) :\ from it using Eq. (20).
. 7///'/ { \‘
Z A
0.5wp 10wg 1.S5wp
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The results of a calculation of energy transfer for va-
rious incident gas beam energies. The dashed curves were ob-
tained from the quantum mechanical calculation. The points
with error bars are the results of the classical calculation.
The solid curves are the results of a least squares fit to these
points. The dash—dot curve in (a) is the hard-sphere limit.

FIG. 3.

cesses are unimportant), the LIDS approach, which is
based on the Jackson—-Mott distorted wave approxima-
tion, }” is expected to yield results which are accurate
to within a few percent. In what follows we compare
these results to those obtained using the classical sto-
chastic trajectories approach. We use exactly the same
surface density of states in both calculations. We com-
pute the energy transfer as well as the second moment
of the distribution P(w), both for a well-defined initial
energy E; of the incident atom and for a Maxwell-Boltz-
mann distribution corresponding to a given gas temper-

Shugard, Tully, and Nitzan: Dynamics of gas-solid interactions

ature.

In Figs, 3{a)-3(c) we present the result of the calcula-
tion of the average energy transfer to the solid as a
function of the incident atom energy for three different
surface temperatures. The classical trajectory results
have been obtained (for surface temperatures 7, > 0) by
averaging over 10! trajectories. For any surface tem-
perature except zero the average energy transfer has a
minimum, This is of course expected as collisions are
adiabatic at E, =0; at small incident energy (AE) is less
than zero (for T, greater than zero), reflecting the fact
that the gas atom gains energy during the collision pro-
cess while as E, becomes larger (AE) has to change its
sign. The minimum in ( AZ) occurs at incident energy
for which E/k is roughly equal to the surface tempera-
ture, which implies the existence of a region with nega-
tive energy accommodation coefficients. In all cases
the agreement between the classical and the quantum
mechanical results is remarkably good.

The thermally averaged energy transfer resulting
from the classical and quantum mechanical calculations
for gas temperature 7, =300 °K is displayed in Fig, 4.
The quantum mechanical results are obtained by aver-
aging Eq. (21) over a Maxwell-Boltzmann distribution
for E,. The classical average has been done using a
least square fit of the results of Fig. 3(b} to a second-
order polynomial. Thermal accommodation coefficients
are presented in Table I.

In addition, we have tested the behavior of the classi-
cal trajectories for very high incident energies and veri
fied the approach to the hard sphere result:

4u
AE=——"——
1+ p)? E
The close agreement between the classical and the
gquantum results should not be taken as evidence for the
suitability of the classical approach for any calculation

T,=0 . (22)

£

TABLE I. Thermal accomodation coefficients,?
TS
T, 0°K 300°K 800° K
100°K 2,78 1.72x0.37 2.14+ 0,17
(1. 40) (2. 00) (2.02)
200°K 4,79 3.83+1.01 4.76+0.28
(3.62) 4.54) (4.59)
300°K 7.25 7.26+0,33
(5. 98) (7.17)
400°K 9.71 8.04+1,22 9.49+0.50
(8.31) (9.57) (9. 65)
500°K 12,2 10.6x1.2 11.4+£1.3
(10. 6) (11.9) (11.9)
600° K 14.3 12.9+1.4 12,3+3.3
(12.7) (14.1) (14.2)
700°K 14.5 14.2+ 4,9 9.3+10.5
(14.8) (16.2) (16.3)

*The values listed are in units of 10°, The classical calcula-
tion values are given first. The values obtained from the
quantum calculation are given in parentheses.
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FIG. 4. Energy transfer for various thermal beam gas tem-
peratures. The points and solid curves are the results of the
classical calculations. The dashed curves are the results of
the quantum calculations.

of this kind, This depends mainly on the nature of the
observable. To show this we give in Table II the E, de-
pendence of the second moment of the distribution P{w).
Here the results differ at low temperatures, reflecting
the fact that the zero temperature classical trajectory is

unique while in the quantum case there is a finite spread
of AE,

It is interesting to note that the energy transfer AE as
associated with a collision of the incident atom with a
single harmonic oscillator is very unreliable as an esti-
mate for the true (AE). The reason is that, depending
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on the choice of parameters, AE may be strongly de-
pendent on the oscillator frequency. This is the case
for the He—W system where AE changes by 3 orders of
magnitude over the spectrum of the solid.

In conclusion, the stochastic trajectory approach has
been shown to be an accurate and practical way for per-
forming computations on direct (nonsticking) gas—sur-
face collisions. In the next section we extend the meth-
od to the study of adsorption and desorption processes.

1V. TRAPPING AND RESIDENCE TIMES

In this section, we apply the stochastic classical tra-
jectory approach to the calculation of sticking probabili-
ties and residence times in gas—solid collisions. Our
primary concerns here are to demonstrate that the
method is flexible enough to treat these problems and to
investigate the dependence of the method on the forms of
the stochastic elements used. We apply the method to
a one-dimensional model for the collision of gas atoms
of various masses with a solid composed of atoms of
mass 184,

The interaction is taken to be a Morse potential with
a shallow well:

V(r)={D[1 -e*"]? - Dy} , (23)

where # is the distance between the gas atom and the
single primary surface atom, For the purposes of this
study the potential parameters were chosen to be D,
=0.75 kcal/mole, and @=1.2 a,u.™. To model the
solid, we again employ a generalized friction kernel of
the form of Eq. (19), with parameters given by A,
=2.01x10% sec™, y=2.83x10" sec™, and w,;=1.417
x10 sec™!, The effective frequency Q2,4 of Eq. (4)
was taken to be 1,0%x10'® sec™. The resulting surface
density of states is given by the solid curve in Fig. 1(a).
It can be thought of as arising from the bulk density of
states given by the dashed curve in Fig. 1(a), using the
prescription of Eq, (20). Because of our unrealistic
assumption of collinear collisions, we have made no at-
tempt here to reproduce the true tungsten phonon den-
sity of states. Nevertheless, the density of states we
employ is a fairly reaonsable one, and it would be pos-
sible using one or two terms of the form of Eq, (1 9) to

TABLE II. Widths of energy transfer distributions.

T, Eg(kcal/mole)  {(AE)? — (AE)?) (kcal/mole)?
Classical Quantum
300°K 0.19872 1.83%10™ 2.00x% 10"
0.39743 9,17x 10 9,23x10%
0.59615 2.29x10° 2.25%x 1073
0.79487 4,24%10% 4,21% 1078
0.99359 6.93x 107 6.84x107°
1.1923 1.02x 1072 1.01x10"2
1.3910 1.33x1072 1,40% 102
1.5897 1.85x10% 1.85% 102
1.7885 2.34x 102 2.37x 102
1.9872 2, 87x% 1072 2.92x10-2
0°K 0.19872 0.00 5,34x 10
1.9872 0. 00 4.39x1073
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obtain a quite accurate reproduction.

Calculations based on the generalized Langevin equa-
tion with these parameters are referred to as Case I.
In addition we have carried out calculations in the
Brownian approximation (see Sec. II) in order to inves-
tigate the necessity of using a friction kernel with mem-
ory and a non-white-noise random force.!®* The Brown-
ian parameters were generated from the Case I parame-
ters in the following way:

Case II: The effective frequency is chosen to be the
same as in Case I, and the friction constant is taken to
be the time integral of the damping kernel defined by
Eq. (19), The numerical values obtained for this case
are

Q,1:=1.0x10"* sec™

B=f At dt'=0.709% 10" sec™ .
0
Case II is the classical definition of the Brownian
limit,

Case III: We choose Q,,; to match the peak position
and B to be equal to the half-width at half-height of

plw) . Their values are

Qorr =1.842Xx10° sec™
B=0.1417%x10" sec™ .

b4

These values match very closely values which would be
obtained using Adelman and Doll’s prescription for the
Brownian parameters

Qo12 =wp/V3 ’
B=mwp/6 ,

0 0.1 0.2 03 0.4 0.5
w {(x107'% sec™)

FIG. 5. The density of states for a generalized Langevin oscil-
lator (Case I), for various Brownian oscillators (Cases -1V},
and for a single bare harmonic oscillator (Case V).
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FIG. 6. The critical trapping energy for various incident gas

masses for Cases I-V as defined in text.

with a value of wy which is consistent with our bulk den-
sity of states,

Case IV: We choose £,;, and 8 such that the frequency
spectrum of the Brownian oscillator matches as closely
as possible p{%..,. This leads to

Qorr =1.417x10" sec™

B8=0.0945%10* sec™ .

The frequency spectra of these Brownian oscillators
are pictured in Fig. 5.

In addition to the Brownian approximation, we inves-
tigate the case of a single harmonic oscillator with no
damping. We choose the frequency of the undamped
oscillator to be the unshifted frequency of the general-
ized Langevin oscillator §,, of Eq. (5). This gives us a
fifth case.

Case V:
Qpp =V Q&g +A,=1.735x10" sec™ .

To test the difference between the generalized Langevin
approach, the Brownian approximation, and the bare os-
cillator, we have undertaken an extensive study of the
sticking probability for atoms of varying masses with
a surface at 0 °K, For these 0 °K model calculations
there exists a critical incident gas energy above which
nothing will trap and below which everything traps.

The sticking probability is given directly intermsof this
critical energy E*. Fora monoenergetic beam

1 E<E*
Pstlckinx={0 E>E*» (24)
For a thermal beam of temperature 7,
Ps‘ticklng = (1 - e..E*/kBT) (25)

We have measured this critical trapping energy for
gas particle masses of 4, 20, 40, 84, 131, 184, and 238
colliding with a solid composed of atoms of mass 184
and modeled according to each of the five cases dis-
cussed above. The results are plotted in Fig, 6. The
curves all have the same general shape. At first the
sticking probability increases with increasing mass as
the energy transfer becomes larger, At still higher
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masses, the atom loses so much energy upon the initial
collision that it stays in the interaction long enough for
the solid atom to help push it out, so the sticking prob-
ability goes down again, Comparing the generalized
Langevin results with the zero friction results, we see
that for masses below 40, the effect of damping is to
lower the sticking probability. The friction kernel,
which might be pictured as a viscous medium surround-
ing the oscillator, has a response time which is long
compared to the collision time so the particle is ineffi-
cient at transferring energy to it, The major effect of
friction is to make the oscillator stiffer and thereby re-
duce sticking. As the mass increases, the collision

" time gets longer and the atom can efficiently transfer
energy, so the effect of friction is to increase the stick-
ing probability. In the case of the Brownian oscillator,
the friction enters as a constant which is independent
of time; hence it does not respond properly to changes
in the collision time. We see the shapes of the curves
of E* vs mass for most of the Brownian cases are com-
pletely different from that of the generalized Langevin
behavior. For Case IV, where we choose the spectrum
of the Brownian oscillator to approximately match the
surface density of states, the general shape is correct,
but in the region where the damping begins to help in-
crease sticking, we see the critical energy differs by
as much as a factor of 2.

These studies indicate that results obtained from
modeling a solid in the Brownian limit are very sensi-
tive to the choice of the Brownian parameters used.
They also imply that it is not possible to find a single
choice of Brownian parameters which can reproduce at

0.6 -
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P (tp) (picosec™)

0.2 |-

y S—
18 20

8 10 12 t4 16
TIME (picosec)
FIG. 7. Histogram plot of P(¢p) obtained from stochastic tra-

jectories for incident energy of 2.4 kcal/mole and T,=300 K.
The smooth curve is an exponential fit of the long time tail.
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FIG. 8. Typical direct trajectory, showing the positions of the

primary surface and gas atoms as a function of time.

every mass the results of a solid modeled with a gener-
alized friction force.

The 0 °K results presented above probe effects of the
friction kernel but not the fluctuationg force. To study
the effects of using a correlated random force rather
than one with a white noise spectrum, we have per-
formed calculations at nonzero temperature. At non-
zero temperature, concepts such as sticking probability
and mean residence time do not have unique definitions.
We define them so that they can be obtained from a sin-
gle function P(t,), the time delay function. Consider a
hypothetical experiment in which an ensemble of gas
atoms is prepared at position », outside the range of in-
teraction of the surface and directed toward the surface
with velocity v;. The time delay function is defined such
that P(t,)d¢, is the fraction of particles which, in travel-
ing to the surface and back to position 7»,, experience a
time delay between £, and {5, +df,. The time delay ¢, is
defined to be

tp=t—t, , (26)

where /, is the shortest time required for any of the
particles in the ensemble to return to 7,. Defined in
this way, P(f,) is independent of any assumptions about
the spatial extent of the surface region. We take P(t,)
to be normalized:

IQ P(tp) dtp =1, (27)

A typical histogram plot of P(f,) is shown in Fig. 7.
The function is composed of two parts, a sharp peak at
small ¢, arising from direct trajectories, and an expo-
nentially decaying tail due to atoms which have been
trapped and collide with the surface several times be-
fore desorbing. Typical examples of each type of tra-
jectory are shown in Figs. 8 and 9.

We define a lifetime, 7, of trapped species from the
exponential tail of P(¢)) by fitting it to a function of the
form A exp(-1,/7). The corresponding rate constant
for desorption 7 is defined to be 71,
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FIG. 9. An example of a
trapped trajectory.
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We define a mean residence time of an atom on the
surface (including contributions from direct trajector-
ies) to be

tR:f tp P(tp)dto . (28)

Now that we have defined a mean residence time and
a desorption rate, we can use detailed balance to obtain
a sticking probability, x. In steady state, the number
of atoms sticking to the surface has to be balanced by
the number of atoms leaving. If I is the flux of incom-
ing particles, then Ity is the mean density per unit area
of particles on the surface. The rate of particles de-
sorbing from the surface, n/tz, must then equal the rate
of particles sticking, Ix; i.e.,

K=nlg . (29)

We will take this as our definition of sticking probabil-
ity. Our nonzero temperature studies were carried out
for an argon atom colliding with the generalized Lange-
vin oscillator (Case I) and with the Case II Brownian
oscillator., Case II, again, is the classical definition
of the Brownian approximation. For Ar, the critical
trapping energy determined in the 0 °K study is about
0.9 kcal/mole for both of these models., We have mea-
sured the lifetimes and sticking probabilities as previ-
ously defined in each of these systems for monoenerget-
ic beams of energy 1.2 kcal/mole and for surface tem-
peratures of 200 °K and 300 °K. The results are given
in Table III, A histogram of the function P(f) for one of
these cases is given in Fig, 7. The effect of incident
energy on both of these models is the same, serving
only to change the fraction of direct versus delayed tra-
jectories. The lifetime 7 of the atoms which stick on
the surface longer than a few vibrational periods is not
affected by the incident energy. The lifetime decreases
with increasing surface temperature, as expected.

We have also monitored the final energy distribution
of the gas particles as a function of time delay. This

140 160

distribution peaks at high energy for particles with
small time delay, and at larger times levels off to an
energy characteristic of the surface temperature,

V. DISCUSSION

The object of this work was to investigate the poten-
tial value of the classical stochastic trajectory approach
for simulating real gas~surface dynamical processes,
We have described techniques for constructing general-
ized friction kernels and fluctuating forces which ac-
curately represent the effects of the solid. We have
presented convenient procedures for incorporating these
terms into the numerical solution of the trajectories de-
scribing particle motion,

We have performed classical stochastic trajectory
and quantum mechanical distorted-wave calculations on
the same model, using identical input, and have shown
that the results are in remarkably good agreement. We
have demonstrated that it is feasible to apply the meth-
od to studies of adsorption and desorption processes.
The effects of the solid, which are manifested via the
generalized friction and fluctuating forces, are seen to

TABLE HI. Mean residence times, rates of desorption, and
sticking probabilities.

TJ(°K)  E,(kcal/mole) n(10* sec!) 7x(10"* sec) K
A, Generalized Langevin oscillator (Case 1)

200 1.2 0.11 4,1 0.45
200 2.4 0.12 1.9 0,23
300 1.2 0,18 2,9 0.52
300 2.4 0.19 1.6 0,30
B. Brownian oscillator (Case II)

200 1.2 0.11 3.3 0.36
200 2.4 0.11 1.5 0.17
300 1.2 0.21 3.0 0.63
300 2.4 0.18 1.6 0.29
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be very important and qualitatively understandable.

In summary, the stochastic trajectory approach ap-
pears to be a tractable and potentially accurate way to
investigate the dynamics of a wide variety of gas—sur-
face interaction phenomena. As with the closely re-
lated gas-phase classical trajectory approach, its most
serious drawback lies not with its accuracy or difficulty
of implementation, but rather with the current lack of
realistic gas—surface interaction potentials required as
input to the method.

APPENDIX: GENERATION OF THE RANDOM
FORCE AND DAMPING INTEGRAL

We wish to generate 2 Gaussian random variable R{¢)
which exhibits an autocorrelation function of the form

2543

e™ /27 [cos(w,f) + §yw;! sin(w, 1))

=mkT A(?) (A1)
Since this function has memory of previous times, it is
not Markovian, However, as discussed by Wang and
Uhlenbeck, *° it can be thought of as the “projection” of
a Markov process in a higher (2D) space. Because of
this, we can generate R(¢f) from knowledge of it and its
time derivative R(f) at any single previous time, using
a conditional probability function defined as follows:
P(R, R, tIRy, Ry, 0) is the conditional probability that if
the variables R(¢) and R(f) have the values Ry and R, at
time 0, they will have the values R and R at time ¢,

The conditional probability function for a Brownian os-
cillator satisfying Eq. (Al) is given by Wang and Uhlen-

(RO)R() beck:
1
PR, &, t|Ry, Ry, 0)=(27ro,0,,)'1(1—pz)'”zexp[—2(11_ pz)<(R;f)z_2"‘R;x’:3(R‘R) . (R%R’z)] , (a2)
with means and variances
R-= 'IR e~ 1/27 gin(w,t) +R, e'“/z’“[cos(w B+ 3ywl sin(w,8)] (A3)
I_§ =Rye /27t [cos(wy 1) - & yw sin(w,)] - wil Rge /2"t gin(w,4) | (A4)
=((R - R)z) WETo{l ~wiZe Wi +3 7 smg(wlt) - yw, sin{w; ) cos(w, )]} , (A5)
ol =((R R =T, {1-owie [wf+37sin®(w,?) + yw, sin(w,#) cos(w, )]}, (A6)
P =({(R-R}R - R)) =Tyrwi we™ sin®(w,t) , (A7)
wi=wliy?/4 (A8)

It is more convenient in the numerical generation of
this process to express the two-dimensional Gaussian
probability distribution as a product of two, one-dimen-
sional Gaussian distributions. This is easily done by
defining reduced variables

X :RG:R , (49)
and

y =Rc; R (a10)
and completing the squares in the exponent of Eq. (A2).
This procedure gives

P(RRt| RgRo0) = (0, 6,) (1 — p?)/2

X P(x) P[(y - p)(1 ~ p?)*/2] | (A11)

where

P(x)=(2m) 2 exp(- L x2). (A12)

Equations (A2)-(A12) allow us to compute R(¢) and R(¢)
at any point along the trajectory from their values at
the previous point by generating two independent Gauss-
ian variables x and (y — px)(1 - p?)Y/2, We accomplish
this computationally by employing a rational approxima-
tion to the inverse error function, The resulting R(¢)
displays the autocorrelation function Eq. (Al) exactly,

a fact which we have verified numerically, Note that

r
with a predictor—corrector type integrator such as the
one used here, a new value of the random force must be
generated only at the predictor step and retained for the
corrector,

In addition to generating the random force, we must
evaluate the generalized friction integral which enters
into the GLE, Eq. (4). Since the random force and gen-
eralized friction are related through the fluctuation-
dissipation theorem, Eq. (8), it is necessary that they
be consistent in order that surface temperature be
maintained correctly over time. If it were necessary
to explicitly evaluate friction as a quadrature over past
times, the numerical implementation of the GLE would
become very cumbersome. Fortunately, the Brownian
oscillator form which we have chosen for the damping
kernel allows one to avoid this problem entirely,

A(#) of Eq. (19) is a solution of the differential equa-
tion

A+ B AW +vAQ) = (A13)

where w, is defined in Eq. (A8). The friction integral
we wish to evaluate at each step along the trajectory is

t
v = [ AG-Hiar' (A14)
)]

Differentiating Eq. (Al4) twice, and using Eq. (A13),
we obtain!*
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y(=2() ,
2(0) == Wy (D) = v2(D) + Ay 2 () + YA (D) .

(A15)
(a16)

Since ¥ and x are generated at each point along the tra-
jectory the damping can be evaluated easily by including
Egs. (Al15) and (A16) as two additional first-order dif-
ferential equations to be integrated along with all of the
Hamilton equations for the particle positions and mo-
menta. Thus a generalized Langevin equation with ran-
dom force and damping of the form employed here can
be integrated numerically with only a modest increase
in computation time over the ordinary set of Hamilton’s
equations involving the same number of particles. For
all of the nonzero temperature calculations reported
here, including the Brownian limit, we carried out
careful numerical verifications that the correct surface
temperature was maintained,
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