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ON THE IMPACT AND THE SEPARATION APPROXIMATIONS IN THE THEORY
OF MULTIPHOTON INTERACTIONS WITH THERMALLY PERTURBED SYSTEMS *
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Criteria are provided for the factorization of thermal averages incurring in the calculation of cross-sections for several-
photon processes, into products of independently averaged single-photon processes. These criteria are compared to those
involved in the impact approximation for single photon spectra, and are shown to be less restrictive.

1. Introduction

The effects of thermal perturbations on single-
photon spectral lineshapes, like pressure broadening
in gas-phase spectroscopy and phonon effects in solid-
state spectroscopy, have a long history of both experi-
mental and theoretical research. Much less studied and
understood, is the problem of thermal perturbations
in processes involving several photon transitions. Huber
[1] was the first to investigate this problem with re-
gard to resonance light scattering (RSL) in gases and
solids. Similar and more extended studies were made
by Omont, Smith and Cooper [2] and by Hizhnyakov
and Tehver [3]. More recently, Mukamel, Jortner and
Ben-Reuven [4] have discussed pressure effects on
time resolved RSL using the Liouville-space approach.
Also Mukamel and Nitzan [5] have utilized the same
approach in the discussion of RSL from a multilevel
System with cross relaxation between intermediate
levels. A similar problem was discussed by Kubo, Toka-
gawara and Hanamura [6] who extended Kubo’s sto-
chastic theory of line shapes to the problem of RSL.
A Bloch-equation study of collisional effects on RSL
has been made by Mukamel, Jortner and Ben-Reuven
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[7] and by Szoke and Courtens [8]. Recently some
experimental data on collisional effects in the presence
of high intensity radiation fields have been published
[9]. General theoretical investigation of such problems,
though still pending, is suggested [10] by a combina-
tion of the description of scattering phenomena in the
density-matrix formalism [11], together with the sepa-
ration approximation discussed below.

The theoretical calculation of pressure-broadened
spectral line shapes in gases is usually made under either
the statistical (or quasistatic) limit or the impact ap-
proximation [12]. These represent the two extreme
limits where the optical process occurs on a time scale
respectively much shorter, or much longer, than the
time scale for the thermal motion of the perturbing
medium around the optically active molecule (the du-
ration of a collision). For this reason the impact ap-
proximation is usually valid near the line centre, where-
as the quasistatic approximation holds in the far wings of
the line. In the impact approximation one treats the
effect of the surrounding medium on the absorbing
molecule as a random succession of complete indepen-
dent collisions. The problem then reduces to the cal-
culation of a set of line-width and line-shift parameters.
In the quasistatic approximation one treats the sur-
rounding medium as an array of static configurations
that inhomogeneously shift the molecular resonance
frequenciesT .

T For footnote see next page.
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In solids one can still identify limits analogous to
the impact and the quasistatic cases. Here the correla-
tion time for the motion of the molecule-solid inter-
action plays sometimes the role of the collision time
in the gas phase. Quite often neither limit is appropri-
ate and certain lattice excitations have to be viewed as
belonging to the “molecular system” rather than to
the perturbing bath.

Extending the technique of the quasistatic approxi-
mation to the calculation of multiphoton transition
rates {or cross sections) involves in principie no addi-
tional complication (besides that of taking a configu-
rational average of a somewhat more complicated ex-
pression). The impact limit, however, (as well as inter-
mediate cases) involves inelastic and quasielastic inter-
actions of the molecule in intermediate states with the
surrounding medium. Mathematically the problem can
be handled by introducing another approximation —
the decoupling of the thermal average (the projecting
out of the medium degrees of freedom) into a product
of independently-averaged terms. Each term represents
an intermediate step of photon absorption or emission,
assimed to occur after the surrounding medium has
reached thermal equilibrium. This separation approxi-
mation is expected to hold under impact conditions
but the criteria for the two approximations are not
identical [13]. It is the aim of this note to establish
the criteria for the separation approximation and to
show that its validity may extend to regions where the
impact approximation has to be modified for memory
effects.

2. The impact approximation

In the theory of pressure broadening, the generally
stated criterion for the impact approximation is that
the time scale for the optical interaction will be much
longer than the duration of a collision. For the case of
a continuous molecule-medium interaction (like for

T The impact approximation can be formally extended to the
far wings by introducing effects of the finite duration of col-
lisions {memory effects) in the form of frequency-dependent
line-width parameters. This, however, requires the much less
manageable task of obtaining off-the-energy-shell scattering
amplitudes, compared to that of the impact-approximation,
where only on-the-energy-shell scattering amplitudes are re-
quired.

solid state systems) the “duration of a collision” is re-
placed by the decay time of the correlation function
of the molecule-medium interaction. It is interesting
to point out that the impact approximation was origi-
nally introduced in order to separate a thermal average
of the time-evolution operator:

(AU(E)) = (U@ + Aty £ — DUEY
= (Lt + At, 1)) - 1)U

in such a way as to obtain a coarse-grained linear
markoffian differential equation for U(¢). Arguments
similar to those used in making this separation approxi-
mation have been used in treatments of stochastic ef-
fects on RSL [1,6]. This may lead to the conclusion
that the separation approximation in multiphoton
processes is identical to the impact approximation used
in the calculation of single-photon absorption line
shapes. The difference between the approximations in-
volved is most easily seen in the Liouville-space (tetra-
dic) Green’s function formalism, [14,15,11] pertaining
to the solution of the Von Neumann equation for the
density operator. To outline this approach we intro-
duce the tetradic Liouville operator (liouvillian} for
the complete system (sample-plus-radiation)

.Q=.QO+CV=BM+.QR+CV, (1a)

where £X =#~ | [H, X], with H being the correspond-
ing hamiltonian. Here 2y is the free-radiation liouvil-
lian, <Y is the interaction between the sample and the
radiation field, and

Ly =L,y +Ly+U, (1b)

where L2, pertains to the optically active subsystem
(which we call the “molecule”), L5 to the rest of the
sample, acting as a thermal bath, and U to the mole-
cule-bath interaction.

The Green’s function for the complete system
{molecule + thermal bath + radiation field) may be ex-
panded in the form (w = W’ +i0)

Gw)=(w~-L)" 1= Go(w) + @o(w) VG p{w)
+ o) V@ o(w) VGplw) + ..., (2)

where @ (w) = (w 21

For low-intensity incident radiations §y(w) contains
the relevant information on the absorption line shape
while the term Qy(w) V@ o(w) VG (w) describes
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light scattering events. Actually, the absorption and
scattering cross-sections are proportional to averages
of rates which, in turn, are given by corresponding ele-
ments of the (tetradic) scattering matrix [11],9 (w =
0) =V + VG (w=0)V. Thus, to lowest order in%y

04 x —ilgg|V (g (01 Vlgg) 3)
for absorption, and

0g = ~ikg'g 1V (€)W G (0} V G (0)VIgeh (4)

for scattering where |g) is the initial state of the mole-
cule-radiation field system and {g') is the final state.
The brackets {...) denote a thermal average. For radia-
tion fields of higher intensity, higher-order terms of
the expansion (2) should be considered. In referring
to the impact approximation, we mean a well-defined
procedure involved in calculating (g ) while the sepa-
ration approximation invokes the decoupling of the
thermal average in the form

(QoV GV Gp ) = GV(GIV(Gp) - (5)

The terms (@ in egs. (3) and (5) are averaged over
the bath thermal distribution and are operators in the
molecular coordinates as well as in the coordinates of
the few radiation modes which actively participate in
the process described. (Radiation modes which act as
radiative sinks belong to the “bath” category.) Since
Y usually involves one-photon raising and lowering
operators, we may anticipate the dependence of the
televant matrix elements of (@ ((0)) on the radiative
energies. Consider

gE)=(F - L, (62)

This is a diagonal tetradic matrix element of @ 0(0)
taken in a dyadic |n'n) of states of the active radia-
tion modes, to which corresponds the energy differ-
ence E = E, - E,.. Thus g(£) is an operator reduced
to the molecule-thermal bath system. The Green’s
functions (§(0)), reexpressed in terms of (g(E)), are
the familiar retarded Green’s functions of linear-
response theory,

(B(EY) = (E - £yy)~) = (E— Ly — (REN)L(6b)

Notice, however, that owing to the effect of <V in prod-
ucts such as eq. (5), the value of £ varies from term to
term, representing different combinations of photon
energies. In eq. (6a), R (£) is the (tetradic) level-shift
operator, related to the molecule-bath interaction U by

RE)=U +U(-OWE-L) 1 Q-OU%, ()

where C is the Zwanzig projection operator represent-
ing bath averaging, defined by

Trp being a trace over bath states and pp its equilib-
rium density operator. We assume here initial separa-
bility of bath and molecule density matrices (though,
in principle, one can incorporate statistical correlations
into the projection-operator formalism [15]).

In this formalism, the impact approximation is
simplifying assumption on (R(E) (and hence does
not involve directly a decoupling of thermal averages).
When the lifetime of the molecular resonance Fal =
[—Im(R(E)] ! (where Ey is equal to the molecu-
lar resonance frequency) is much longer than that re-
quired for the decay of correlations in the molecule-
bath interaction (i.e. a collision time 1n gas-phase spec-
troscopy, under binary-collision conditions), (R(E)
is independent of its energy argument for energies close
to resonance. For such energies, the line shape of a sin-
gle isolated resonance assumes a lorentzian shape. The
mathematical criterion for the validity of this approxi-
mation (and of the lorentzian form of the line shapes)
is [16]
Mo o aE=E-Ey) ©)
N o
where I'j is the width of the resonance and where [‘;1
is the lifetime of correlations in the molecule-bath in-
teraction. The left-hand side of eq. (9) represents the
delay time for the photon scattering off the molecule,
ie., it measures the time scale for the photon-molecule
interaction (or the lifetime of their resonance state).
Exactly on resonance, this is indeed Fal . Eq. (9), be-
yond expressing a general criterion for the validity of
the impact approximation, provides us with a measure
of the value of AE, the off-resonance energy mismatch,
beyond which the impact approximation is not ex-
pected to hold.

3. The separation approximation

The impact approximation has thus been identified
with an assumption made for the sake of a simplified
calculation of (g(E)), eq. (6). The separation appIoxi-
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mation is defined by eq. {5). A criterion for the va-
lidity of the separation approximation may be ob-
tained from the identities

CgC=CE - £, - CRCOYIC, (10)

CRC = CUC + CR(1-CYE- L, - Lg)~ HI-OUC
= CUC+CU(1-OUC(AE' +iT ((E)~L, (1)

Ce(1 - Cy=CgCR( - O)E — 2, —Lp)"1(1-0)
=CeCU(L -OVE- 1-OLy(1-0171. (12)

The right-hand side of eq. (11) approximately repre-
sents (R ) as a simple “memory function”; T'; is iden-
tified with the inverse correlation time of the mole-
cule-bath interaction and AE' is essentially equal to
AE. (In this simplifying description we neglect reso-
nance structures in the memory function that may re-
sult in the appearance of satellite sidebands.)

The separation approximation, eq. (5) may be re-
cast in the form [13]

CgVeV .. C~CgCVCgCVC ... C . (13)
This approximation holds provided
FE)=1(Cg0) 1 Ca(1— O)gC(CgO)H <1 (14)

Neglecting the trivial role of C U C', eqs. (10)—(12)

lead to the estimate

ey~ o[ — ],
|AE +iT(£)]2

For E = £ (1esonance excitation) we have, taking

Ly =Ty(E),

(15)

«u2y o (16)
FEg)~ N

while for a general excitation energy we may write

FE) ~ ah :(%2)/|AE+ iy (£)]
AE? +l‘% |AE+1F1(E)|
o)

B e (17)
(AE* + TN

In eqs. (16) and (17) we have used the fact that Ty(E)

measures the magnitude of (®) which is essentially

given by

(U?) (18)

¢ PO
CREN = {iy iy (E)

The mathematical criterion for the separation approxi-
mation thus becomes

Do)
(AE% + TEND?

Another way of obtaining this criterion is to start
from eq. (6) and take the derivative with respect to £,

<1. (19)

4 ,oEy) - @
ey - (g(E))[—l v Em(E))] oE).  (20)
On the other hand, from eq. (6a) we have

d
15 (BED = —(eE)s(E)) (1)
so that the approximation
(g(E)8(E)) = (g(E)Xg(E) (22)
holds provided

d

15 (REN <1. (23)

Using eq. (18) we obtain

U2 Ty
|AE+iT12 (AE?+T7)
so that the condition (23) is seen to be equivalent to
eq. (19). Of course, the different terms in eq. (5) per-
tain to different molecular resonances, with different
values of £, and therefore this is only a heuristic deri-
vation.

In summary, the criterion for the separation ap-
proximation is given by eq. (19), while that for the
impact approximation has been stated as

Lo(E)Ty(E)

(AE)? + T3(E)
At resonance (AE =~ 0) both criteria reduce to the
better-known single condition

To(E)/T)(E) < 1 (26)

saying that the resonance lifetime must be much longer
than the correlation time for the interaction with the
medium. Far from resonance, however, the impact ap-
proximation breaks down as AF 2 becomes much
larger than [y}, whereas the separation approxima-
tion is still valid for |AE| 3 T'y. It may even be valid
over the whole spectral range, so far as eq. (26) holds.

d
15 (REN = @4

(25)
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4, Validity estimates
4.1. Gas phase

A characteristic term in the expansion of %) for
a given resonance pair |ab» is

1
mﬁ? Au;-) : @7

(R(E) f~s<E Au;
7
where du; i the difference between the interactions
of the molecule and the jth medium particle in the
two levels a and b. An upper-bound estimate of eq.
(27) is given under the binary-collision approximation
by Aul(Rnr3 1 AE + ir | —1 where # is the gas num-
ber density, r is the molecular diameter and Au(r)
‘measures the maximal strength of the pair interaction
at molecular separation. For a pressure of about one
atmosphere at room temperature Au’nr3 ~ 10 cm 2.
Thus, dR/dE ~ 10(AE? + )~} The maximum
value dR/AE is thus < IO/I‘%, which is (for the typi-
cal value 'y &~ 10 cm~1) of the order of 10~1 or less.
We thus expect the separation approximation to hold
over the whole spectral region for pressures up to sev-
eral atmospheres at room temperature. We should par-
ticularly notice that it is expected to hold even far
from resonance, where the impact approximation is
no longer valid.

4.2, Solid phase

For an active molecule imbedded in a solid matrix
a single-molecule treatment equivalent to the impact
approximation is not always valid. The (approximate-
ly) Lorentzian shape of pressure-broadened isolated-
resonance lines in the gas phase (neglecting Doppler
effects) give place to highly asymmetric features char-
acterized by phonon sidebands. The (essentially one-
phonon) excitations giving rise to these sidebands can-
not be taken as bath states but should rather be treated
as belonging to the active molecular system, thus giv-
ing rise to more complex spectral shapes. A compre-
hensive treatment of this problem within the theory
of light scattering (and other multiphoton processes
is still unavailable *. However, it can be anticipated

*
The problem is discussed, for example, by Hizhniyakov and
Tehver {3], but their approach takes thermal relaxation into
account in a rather qualitative fashion.

that contributions to R will mainly come from two
types of terms: (a) terms responsible for level broaden-
ing due to multiphonon thermal relaxation processes,
and (b) terms responsible for level broadening due to
Raman scattering of phonons. Terms of type (a) can

be estimated from theories of multiphonon vibrational
relaxation and their contribution to |d{"R)/dE]| can

be shown to be much smaller than unity (~10-815),
Terms of type (b) are practically independent of the
off-resonance energy mismatch AE provided AL < wp,,
where wry is the lattice Debye frequency. Thus, neither
type violates the separation approximation.

4.3, Temperature effect

As is well known from linear-response theory, ('R}
can be represented as a Fourier transform of a time
correlation function of quantities mainly invelving the
molecular interactions. Using general properties of such
correlation function, it can be shown [5] that some
contributions to (R} often have the property

(R(=1AE|) = (R(IAE|) exp(~-BIAEL) , (28)

where § = (kg 7)~! and AE is measured from a reso-
nance center. Therefore, at low temperature (‘K) be-
comes strongly energy-dependent (for AE < 0) and
the separation approximation may break down. A tem-
perature-dependent criterion for the validity of the
separation approximation is obtained from the general
condition |d(R)/dE| <€ 1 in the form

(R(AE)) |AEV],
———ﬂkBT exp [, kBT]< 1. (29)

This condition may be satisfied even at rather low tem-

peratures, since |(R)] itself may then become quite
small.

4.4. Numerical tests

To provide a numerical test for the separation crite-
rion we have performed computations of the absorp-
tion and scattering cross-sections for a model mole-
cule with one excited state, coupled to a thermal bath
which induces both quasielastic (T,-type) broadening
of the resonance and thermal (T} ) relaxation. The
model was introduced by Huber [1] and the mathe-
matical treatment is described in more detail in ref.
{5]. We have found that the results obtained with the
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Table 1

Test of unitarity in resonance light scattering in the separation approximation. (Exact quantum yields should equal unity), Calcu-
lations were done choosing the ratio of thermal broadening to radiative width I'requal to 3 for AE > 0. The thermal broadening
satisfies eq. (28) for AE < 0. Excitation energies are measured from resonance in units of the radiative width. Temperature 7 is

measured in units of T'y/kp

Excitation energy AL,

-5 -4 -3 -2 -1 o i 2 3 4 5
T =1000
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Cuantum =10
yield 0.93 0.92 0.91 0.90 0.90 0.88 0.89 0.90 0.90 0.90 0.90
T=0.1
bl 1.1 1.2 1.2 1.3 0.64 0.79 0.84 0.87 0.89 0.99

separation approximation are reliable when the crite-
ria obtained in this work are satisfied. For example,

we present in table 1 the computed total quantum
yield (scattering cross-section divided by absorption
cross-section) as a function of the excitation energy.
This quantum yield is obtained by numerically inte-
grating the scattering cross-section over all energies of
the scattered light, including both coherent scattering
and hot luminescence, and should be equal to unity

in the absence of radiationless channels. For the pre-
sent limited purpose we have used a simplified model
where the energy-dependent contribution to () is
taken to be constant for £ >0, and to satisfy eq. (28)
for £<C0. The results show that the expected unitarity
property (which requires the quantum yield to be unj-
ty} is maintained in the separation approximation, pro-
vided the teinperature is not too low.

5. Conclusion

[n this paper we have shown that the separation ap-
proximation within the (tetradic) Green’s function
formalism of multiphoton processes involving thermal
relaxation, is a practical method with a wide range of
validity. Applications in the theory of resonance light
scattering have been recently made. In particular we
note that in a theory which discusses both Raman proc-
esses and fluorescence (hot luminescence) [5] the emit-
ted light may come from levels quite distinct from the
absorbing ones. Hence approximations which are valid
only in the impact region are insufficient and the gen-

eral validity of the separation approximation becomes
crucial. It should be noted that this approximation can
be very useful also in processes mvolving high intensity
radiation fields [13].
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