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We consider light scattering from a multilevel system (e.g., a molecule) interacting with several heat baths.
The Liouville space approach is employed and weak incident radiation intensity is assumed, whereas the
light scattering process is described in the lowest appropriate order in the interaction between the molecule
and the incident and emitted photons. The interaction with other radiation field modes as well as with the
thermal baths is treated more fully, such as to account for the correct damping terms and their
temperature dependence. The formalism is suited for light scattering from an impurity molecule in both gas
and dense phases. The thermal baths induce relaxation within the manifold of excited states as well as
transitions to nonradiative channels. Damping due to such transitions (as well as radiative damping)

corresponds to interactions with zero temperature baths. The physical interpretation of such a bath depends
on the nature of the particular damping process. Thermal relaxation within the excited manifold is induced
by interaction with the environment represented by a bath of temperature T. Part of this interaction which
is diagonal in the molecular space corresponds to the so-called ‘“‘quasielastic collisions” and induces

modulations of the molecular energy levels and broadening of the relaxed emission. The remainder,

nondiagonal part induces actual transitions between the excited molecular energy levels. The formalism

yields in a single calculation expressions for the cross section for both the coherent (Raman) scattering
process and the relaxed luminescence and enables us to discuss the effects of different factors such as
temperature and quenching processes on the relative yields for these processes. The formalism also allows
for interference between different levels of the excited manifold due to coupling of several levels to the
same bath, and makes it possible to study the effect of thermal relaxation on these interference phenomena.

I. INTRODUCTION

Resonance light scattering has been a subject of ac-
tive study for a long time, ! with the research effort
focused both on developing its applications as an ex-
tremely useful spectroscopical tool and on understand-
ing the nature of the phenomenon and the microscopic
processes underlying the observed scattering. Even
after almost half a century of development, the field
is still plagued by controversies and misconceptions,
particularly around the question of distinction between
the so-called resonance Raman scattering and reso-
nance fluorescence. % Actually, this problem of dis-
tinction apart from its purely semantic part has been
settled by various workers, and an excellent discussion
of its present standing has recently been given by
Rousseau and Williams, ' To settle the semantic prob-
lem at least for the present work we shall refer to the
general phenomenon as resonance light scattering
(RLS) and identify different components of the scat-
tered radiation as resonance Raman scattering!® (RRS)
and resonance fluorescence (RF) parts, The identifica-
tion depends on the nature of the experiment, In gen-
eral, one can distinguish between two extreme types of
experiments: long time (energy resolved) experi-
ments> %127 where a monoenergetic beam of infinite
duration (as required by the uncertainty principle)
and energy close to some resonance transition is scat-
tered from the target under steady state conditions,
with the scattered light being energy resolved; and
short time (time resolved) experiments® 283! where a
broad band pulse of short duration is sent towards the
molecule and the molecular response is followed as
a function of time, In short time experiments the light
scattered during the incident pulse lifetime may be
identified as RRS while the rest of the emission which
decays with a characteristic molecular lifetime may
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be called RF.? In a long time experiment the component
of the scattered radiation with energy identical to

the incident energy modulo the energy difference
between the initial and final molecular energy levels
may be identified as the Raman part (in the absence of
inhomogeneous broadening this part is identical in width
and form to the incident beam) while the rest of the
scattered radiation constitutes the RF. It should be
stressed that these definitions, though seemingly im-
portant from the practical point of view, are some-
times misleading as theoretical concepts. For example,
in a long time scattering experiment with an isolated
molecule, energy conservation implies that the scat-
tered radiation cannot differ in energy from the inci-
dent beam, A short time experiment done on the same
system still reveals in principle two components, fast
and slow . ®

In this paper we utilize the formalism of scattering
theory in tetradic (Liouville space) operator language
to describe long time energy resolved resonance light
scattering from a system interacting with thermal baths.
Weak intensity is assumed and the scattering cross
section is obtained in the usual lowest order perturba-
tion theory in the interaction between the molecule
and the incident and emitted photons. The relaxation
processes induced by the baths affect the light scatter-
ing process in several ways. First, interaction with
pure sinks (zero temperature baths) will reduce the
overall yield of the scattered emission. Such zero
temperature baths represent inter- or intramolecular
radiationless continua seated onmolecular levels which
are far below the excited spectral region (by “far
below” we mean an energy spacing much larger than
ks T). Actually, if we neglect stimulated radiative
processes, the radiative continuum may also be repre-
sented by such a zero temperature bath, Secondly,
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within the spectroscopically interesting region interac-
tion with the environment gives rise to thermal popula-
tion and phase relaxation., Phase relaxation, caused by
quasielectric collisions, leads to pressure broadening?®®®
of the transitions, while inelastic processes result both
in broadening and in population relaxation and in emis~
sion from levels other than the originally excited one.
If we take into account the emission originated in all
the levels connected in this way (the “spectroscopically
interesting region” is defined such as to include all the
levels emitting radiation which is monitored by our
detector), these processes do not affect the total quan-
tum yield for emission.

The scattering cross sections for a long time RLS
experiment have been derived previously for the case
of a single intermediate level by Huber, both for a
molecule interacting with a surrounding solid'™!® and
for a molecule colliding with other particles in the gas
phase.!*#® Results similar to those given by Huber
have been obtained by Hizhnyakov and Tehver3® for
resonance scattering from the zero phonon line associ-
ated with an electronic transition in an impurity mole-
cule imbedded in a solid matrix, Essentially the scat-
tering cross section was shown to be composed of two
parts that may be identified as RRS and RF (see Sec. V),
The RF part vanishes for an isolated molecule. Some
attempts to extend the theory to the case of more than
one intermediate state have also been made. Omont,

Smith, and Cooper have considered RLS from a multiplet

of rotational levels, both for the degenerate case®

and for the case where the degeneracy is removed by a
weak magnetic field. 2 The first work reduces es-
sentially to the single intermediate level case by dis-
regarding the radiation emitted following an inelastic
collision, In the second work, Doppler broadening is
assumed to smear both the absorbed and emitted in-
tensity profiles, and resolution of the energy scattered
from different parts of the excited manifold is not con-
sidered. Nitzan and Jortner? have considered RLS
from an isolated molecule where the excited state
manifold contains two coupled states, and studied the
effects of interference between the transitions caused
by the two states being coupled to the same radiative
and radiationless continuua. Very recently Madden
and Wennerstorm?” have attempted to discuss RLS from
a coupled multilevel manifold in terms of a molecular
basis set which is diagonal in the coupling Hamiltonian,
This procedure is clearly not valid in the case where
the coupling is induced by an external thermal bath,
Also, for an isolated molecule it results in expressions
which are hard to interpret physically, Finally, Kubo,
Takagawara, and Hanamura® have employed the
formalism of the stochastic theory of line shapes to
discuss relaxation effects in the one and two intermedi-
ate level problem. Their work has the same objective
as our present work. Our treatment has the advantage
of being totally microscopic. As such, it leads in a
natural way to microscopic expressions for the various
kinetic terms of the theory. This enables us to dis-
cuss specific models for the energy and the temperature
dependence of these kinetic terms. It will be seen
that these dependences play important roles in the
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qualitative and quantitative behavior of the scattering
cross section, In addition, our formalism contains

the possibility of interference between levels of the
excited manifold which results from couplingof different
levels to common baths, It thus becomes possible to
study the effect of (incoherent) thermal relaxation on
such interference effects.

Like other theories of this kind, our approach in-
vokes the impact approximation, which holds only close
enough to resonance. However, we generalize this ap-
proximation in a way that enables us to discuss excited
manifolds extending in energy much further than the
inverse correlation times of the thermal baths. In ad-
dition, two simplifying assumptions are made in this
work. First, we disregard all sources of inhomo-
geneous broadening such as Doppler broadening in the
gas phase and different impurity sites in solid matrices,
Secondly, we consider nonpolarized incident radiation
and sum over all polarizations of the scattered beam
so that polarization effects and in particular depolariza-
tion ratios of the different components of the scattered
radiation are not considered. Both assumptions may be
relaxed as is done in the single intermediate level
case,® It should be added that as our prime interest
here lies in relative yields of RSL in different spectral
regions, inhomogeneous broadening is relevant only to
determine the feasibility of an experiment with the de-
sired energy resolution,

As is well known, RRS often yields spectra of the
scattered light much more structured and much better
resolved than absorption or fluorescence spectra. 3%
Care has to be taken to monitor only that part of the
emission which corresponds to RRS, and different
techniques have been devised for this purpose. Re-
cently, Friedman and Hochstrasser?® suggested that a
controlled use of fluorescence quenchers may increase
the quality of the RRS. Our formalism, which leads in
the same calculation to cross sections for all relevant
scattering and emission processes, enables us to dis-
cuss this point in a fully quantum mechanical way. It
will be seen that the effect of a fluorescence quencher
depends on whether the smearing in the spectrum is
caused primarily by inelastic or quasielastic processes.

In Sec. II we describe the microscopic model used to
discuss the scattering process. Section III contains an
outline of the theory of light scattering in the tetradic
7 matrix formalism. In Sec. IV we derive the general
formal expressions for the absorption and scattering
cross sections in a thermally relaxing multilevel sys-
tem, and in Sec. V we apply these results to the case
of two intermediate levels in different conditions. The
results are summarized and discussed in Sec. VI.

il. MODEL

A typical light scattering process from a nonisolated
molecule should be described theoretically in terms of
three elements; the incoming and outgoing photons,
the molecular system, and the reservoirs coupled to the
molecular system. These elements are represented by
the energy level diagram of Fig. 1. The molecular sys-
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FIG. 1. Energy level model used in this paper. The continuum
T denotes a thermal bath of temperature 7. The continuum
seated on the level j is one of several zero temperature baths
which represents channels for irreversible damping. (a) is

the manifold of optically active levels interacting with the
baths. g and g’ are the initial and final states of the scatter-
ing process.

tem is represented by a set of relevant energy levels;
the initial (g) and final (g’) levels, ** and intermediate
excited levels {a} -{a} represent this set of excited
molecular states which are seated in the spectral re-
gion of interest and which are coupled radiatively to

at least one of {g, g’}. We are interested in a reso-
nance scattering process from discrete molecular
levels, and therefore the relevant spectral region is
well defined and the states in the set {a} can be chosen
to consist of a manifold of vibrational levels, which are
interconnected by thermal relaxation within the excited
molecular electronic state, or it can be a manifold of
rotational levels or of Zeeman levels, which may be
close enough to overlap within their radiative and non-
radiative widths, In this latter case, we shall be able
to study the effect on quantum mechanical interference
phenomena of thermal relaxation between the closely
spaced levels,

The reservoirs appearing in our model are repre-
sented by continua of levels and may be divided into
two classes. The thermal bath denoted by the letter
T in Fig, 1 is the reservoir which induces thermal re~
laxation between the levels of the manifold {a}. The
other baths, seated on lower molecular levels j (j=1,
2-..), represent radiative and nonradiative channels
for the decay of the levels {a} and to all practical pur-
poses may be viewed as zero temperature baths,

The Hamiltonian for our model system may be writ-
ten in the form

H=Hy+ U+ V=H+ V, (Ir.1)
where
Hy=3"¢,|a)al + €, |@)(g] + €| &)(&|
(11.2)

+;e,lj)(j|+§HB.
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7 p is the sum over all baths, including the radiation
field. Also,

U= U1+ Ug+ U3 s

U= 2, Z Fela@{a'| (sums over {a}),

ata

(I1. 3)

(1. 4)

U= 2.2 W sl iV a] +d yl@) G (L. 5)
as f

(a goes over {a}, and j goes over lower molecular
states), and

=2 KNG (={d}, {7}, g ¢ . (Ir. 6)

A

F, J, and K are interaction Hamiltonians between the
relevant molecular states and the baths. F, ., J,,,
and K, = K,, are the matrix elements of these interac-
tion operators between the corresponding molecular
states, and are still operators in the baths coordinates,

The different baths are assumed to be uncorrelated,
that is,

(FJ>:<KJ) :<KF):0,
Taid 55)= TajTng) 04y
<Ja£Jjb>:<Ja]J!b>6¢j ]

where { ) denote averages over the bath distributions,
Physically the operators J are responsible for the de-
cay of the states {a} into radiative channels as well as
into nonradiative channels seated on lower molecular
states j, The corresponding baths consist of photon
states in the case of radiative channels or any other
continuous manifolds which may belong to the molecule
itself and play the role of radiationless sinks, Thus,
a particular j may represent a lower electronic state
with the corresponding “bath” consisting of the quasi-
continuous vibrational manifold seated on this state,
All the j baths are taken as zero temperature baths
representing irreversible damping, but this feature of
the model is not necessary and can be relaxed without
additional complication,

(IL.7)

The operators F and K represent interactions between
the molecule and its surroundings which cause thermal
relaxation (corresponding to the temperature T of the
surroundings) within the manifold {a}. F represents
this part of the interaction which leads to actual transi-
tions (¢, processes) within {a}, while K stands for the
part which corresponds to “elastic collisions” which
do not change the molecular state (f, processes).
Strictly speaking, F and K correspond to the same
thermal bath and the relation (FK)=0 does not neces-
sarily hold, The rationale behind disregarding this
term is that within the rotating wave approximation ¥
and K contain different Fourier components of the in-
teraction and are therefore only weakly, if at all,
correlated,

Finally, the operator V in Eq. (II, 1) represents the
interaction of the molecule with the incoming and the
outgoing photons. The interaction with those modes of
the radiation field which do not participate in the light
scattering process is not included in V., Later in the
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calculation, we apply a low order expansion in V, but
interaction with the nonparticipating modes, which
contribute to the radiative damping is taken to all or-
ders, These radiative continua are considered to be
among the zero temperature baths ¢ displayed in Fig. 1.

In the dipole approximation V takes the form

Ve 33 Tu_— (@po+ Gh) €40 e | D], (1.8)
1,17 ko
where [, I’ are molecular states; €;;,=€;—€s; W, is

the frequency of a photon of wave vector k; o is the po-
larization state of the photon; e, is a unit vector in the
direction of polarization; and y,;, is the molecular di-
pole matrix element.

In this paper we shall not be interested in polariza-
tion studies. The incident beam will be taken to be
nonpolarized, and we shall average over the statistical
mixture of incident beam polarizations and sum over
the states of polarization of the scattered photon.

Equations (II. 1)—(II. 8) constitute the model in terms
of which we discuss absorption line shapes and Raman
scattering from molecules interacting with dissipative
baths. In the next section we describe the formalism
by which we approach this problem.

ll. THEORETICAL APPROACH

In this section we present those aspects of the Liou-
ville space approach to scattering and relaxation which
will be useful for our discussion of Raman scattering
from thermally reacting multilevel systems. Further
details are found in the references, **-**

We consider light absorption and scattering in a sys-
tem with ground state g and final state g'. In the diadic
formalism the absorption cross section is given by

2Q

Op==—— ImT,,

e (L. 1)

where Q is the normalization volume of the system
(which is taken to infinity and is cancelled at the end

of any calculation), ¢ is the speed of light, and T is the
diadic 7 operator defined in terms of the Green’s
operator G(E)=(E - H +in)™! (n—~04+) by

T(E)=V+ VG(E)V . (1. 2)

The scattering cross section between states g and g’
is given by

21 Q
Oper=F = | Teee|26(E,— E,.) . (11. 3)
It should be noted that by g(g’) we denote here the
molecular initial (final) state plus the incoming (out-

going) photon.

Turning now to the Liouville space formalism, we
consider matrix elements of the tetradic 7 operator
defined in terms of the tetradic equivalents of the inter-
action V (to be denoted V) and the Green’s function G

(to be denoted Q),
7{w)=V+ US(w)? . (1. 4)

Matrix elements of U are given by
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Cetsar=VeaOap= %caVas » (m1. 5)
while the tetradic Green’s function is defined by
S()=(w=Lriny  (n-0%), (I11. 6)
with the Liouville operator £ satisfying
Lotyan=Hog 84y BeqHgy - (L 7)

The starting point for discussing line shapes and
scattering profiles in the Liouville space formalism is
the following equation satisfied by elements of the 7
matrix on the zero frequency shell 3

T os10a(0) = 20 Im T, (E )b, + 210 | T (E,) | 36 (E,~ E,) .
(I, 8)
For g#g' we obtain by comparison to Eq. (III. 3)
i Q
Opeer==% = Teerie0) (1. 9)

For g=g' we have

(0) = 20 Im T, (E,) + 27i(| Tpe (E

== 2m Z |
£'#

where we have used the optical theorem for the diadic
T matrix

xg &g g)lzﬁ(E!.—E‘,)',_,‘

Tore(E,)|20(E,. ~ E,), (Il 10)

7 Z | Tyos(B)|26(E,. - E,) = ~ImT,(E,) . (I 11)
&

From Eq, (I, 1), the first equality of Eq. (III, 10) can

be recast in the form

7'“’“(0) = ':(E:) I 2 5(E:' - E:))x’-

% o+ 2mi(| T, - (I.12)

Evidently, the fully diagonal matrix element 7, .(0)
is singular (see also Appendix A), However, the
singular term is of order O(V?) in the interaction with
the incoming and outgoing photons. Therefore, as
long as we limit ourselves to terms which are second
order in this interaction, we can write
_e

%" e

Equations (III. 9) and (III. 13) provide the desired ex-
pressions for the line shape and scattering cross sec-
tion within the Liouville space formalism, In what
follows we shall limit ourselves to weak exciting fields,
for which it is enough to evaluate Eq. (III, 9) to the
fourth order and Eq. (I1I. 13) to the second order in V.

Teree0)  [to O(VH)] . (111, 13)

The Liouville space formalism is specifically suited
to evaluate cross sections averaged on a given initial
distribution of a bath (or baths) interacting with the
relevant system. We proceed to evaluate explicit ex-
pressions for (s,) and {o,_,,), where () donates averages
over bath distributions,

Line shape. Starting from the identity [obtained from
Eqs, (III.8) and (III. 11)]

; ; (g'8; &'8|7| ga; ga)=0,

where g and g’ denote, as before, the states of the rele-
vant system, while @ and g are bath initial and final
states, we obtain

(I11. 14)
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;:gg:«g’ﬁ; 28| 7| go; gay)

=- };«ga; &B| T|ge, ga)) . (1. 15)
The operator 7 will be understood to be on the zero fre-
quency shell [7 = 7(0)]. Taking thermal average on the

initial bath states we obtain

Ype 2 ZB: (g'8; g'8| T|ge; ga))

g'te

== 2 Pa ;«gs; 2817 |ge; ga)) . (IIL. 16)
For a single thermal bath of temperature 7, p,

=exp(~ E,/kgT)/3 uexp(~ E, /b T). In our model we
have one such bath and also several baths of zero tem-
perature and p, will be a product of the corresponding
distributions. Now, the lhs of Eq. (III.16) is just
proportional to the averaged line shape function, ** and
we obtain

©g= % (Deeres - (I, 17)
The averaged tetradic 7 operator is
(1= pa ZB: (88l 7| aay) (1L 18)
and is an operator in the molecular subspace, Introduc-
ing the Zwanzig projector*®
(I11. 19)

C=psTrs=3 3 pulaad (8] ,

where Trp denotes trace over the irrelevant (baths)
subspaces, and pp is the baths density operator, we
can recast Eq. (ITI. 18) in the form

(T)=TryCTCpyp . (I1I. 20)

It should be ketp in mind that Trg also includes trace
over the states of the radiation field (corresponding to
a zero temperature bath), excluding the incoming and
the outgoing photons. In Eq, (II.4) the single U term
on the rhs does not contribute to the relevant matrix
elements as it does not couple states with equal num-
bers of photons, Restricting ourselves to the weak
coupling limit, the absorption profile can be adequately
discussed in the lowest (second) order in U, and using
a well known expression for the projected tetradic
Green’s function, the absorption line shape function

is obtained in the form

Oo= Zc% ({gg| V(S @) V| gg Miuo » (111, 21)
with
Sw)=(w=8&+iny! (n=0%), (11, 22)
(S(W)=TryC3Hw)Cpg= (w= L§F*~ R ()N, (1. 23)
Rw)=U+ UL = C)w - Lo+ in)" (1= Clu, (I11. 24)
R(w))=(Tr5 | R(w) | ps)
=3 ZB: pa{{BB|R(w)| aa)) . (I11. 25)

£, £,, and Uare the tetradic operators corresponding
to H, H,, and Uof Eq. (II.1), £§ corresponds to the
operator Hy, Eq. (II.2), without the bath Hamiltonians
but with this part of the radiation field Hamiltonian
corresponding to the incoming and outgoing photons.

In the notation where g and g’ include these photon
states, H§=Hy—-3 zHy-{(R(w)) is the bath averaged
level shift (tetradic) operator which is an operator in
the molecular coordinates. Note that Eq. (III. 24) is
approximate: the correct expression should contain
£=L4+U, instead of £, in the denominator of the rhs.
The approximation involved is the usual weak system-—
bath coupling involved in most calculations of this kind.

Scattering. The baths-averaged scattering cross
section is given in the form

.SZ I3 ’
Opegr== 5 ;;pa«g B; &'8|T| g; ga))

- % Wg'e'|(7) |g2)) . (IIL. 26)

Here the lowest contributing order in U is O(U*), and
we may take
()= (VS ()G (@)US (W) T)) yep -

In what follows we invoke the following ansatz concern-
ing the average in Eq. (III, 27):

(1L, 27)

(1) = (UG (@)HV(G(@)) TG (@) V) o - (111. 28)
This separation ansatz is usually applied very close to
resonance, within the impact approximation. 72 How-
ever, it can be shown!™ that its range of validity is far
wider than that of the impact approximation. Indeed
Eq. (IIL. 28) turns out to hold provided d(®(w))/dw < 1,
with correction terms of this order, This condition
may be satisfied, in principle in the entire spectral
range of interest, This point is of great importance in
the present model where the set of states {a} may in-
clude states which are far from resonance for any
exciting energy.

Equation (III. 26), together with Eqs, (III. 28) and
(IT1. 23)~ (T11. 25), constitute our final formal result for
the Raman scattering cross section within the weak
coupling approximation,

It is seen now that within the approximation em-
ployed, both g, and o,_,, are given in terms of 1O
which in turn is obtained once (® (w)) is found. We next
derive a general expression for (] (w))=® (w). This is
a tetradic operator in the molecular space with matrix
elements given by

Ka, b|®(w)]c, d)

= EZB: palaB; bB|RW)]|ca; da))

= EZpa((aB; b3 | U(w - Lotulce, dayy . (111, 29)
o B
If

U= Z Uy (sum over baths) . (I11. 30)

B
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Then

Rw) =Y RHw) , (rir. 31)
B

where

(ab|®B(w)| cd))

= 320 0Bap, b8|WB(w - £o)UB | ca,da)) . (L. 32)
a B

Here &, g correspond in each case to the states of the
particular bath involved,

Let us focus now on a particular bath and omit the
index B during the rest of the discussion. The tetradic
operator U corresponds to a diadic of the general form

(ab|R(w)|cd) =3 pa{ Z U
- }; UE U (w-¢,

Wagt+ M) = !

(w'—ekb—wﬁa*’rn) +90, Z U

ZU

Resonance Raman scattering 2467

U= U¥|pal, (1. 33)
]

where U*' are operators in the bath coordinates (U*

=(U™)?'), and where k, I go over all the molecular

levels, Using the general properties of U as a Liou-

ville operator, we obtain the following relations:

U|ce; da))= Z (U | k8; da)y— UR|ca; kB)))

(aB; b|u =Y (U (kS; bg| - U (as; kS|), (uI.34)
26
where
usl=(BlU*|e) . (I11. 35)

Equations (III, 32) and (III, 34) now lead to the result

U@ = €4~ wqp+ i)

fa(w = €py= oo+ in)'l} , (I11. 36)

where €,=¢€,— €, and wy, = ws— W, are energy differences between energy levels of the molecule and the bath, re-

spectively,

It will prove convenient to express the sums appearing in Eq. (III. 36) as bath correlation functions.

To this end

we convert the energy denominators in Eq. (III. 36) to exponentials using the relation

(Aving)yt=—q j dt exp (i At)
0

and then replace w, and w, by H operating on the corresponding bath states,

also w=0)

(111. 37)

Then the 6 summation yields (taking

(ab|®(w=0)|cd)) =~ i f: dt {% Zk: exp(= i€, (U () U*(0)) + 6“; exp (= i€ 1) (UTH(0) UM(2))

~ exp(— 1€, XU (0) U (t)) ~ exp (= i€ 1 U*(¢) U"°(0)>} .

To end this section, we note that the operators U*
appearing in Eq. (11, 38) are given explicitly in the
model introduced in Eqs, (II.1)-(Il. 6).

Thus,
v =F,,, (I11. 39a)
v=dJ,, (I11, 39b)
and :
UK, (n=1d}, g, g") (ITI. 39¢)
This concludes our formal discussion, The absorp-

tion line shape g,, Eq. (IIL. 21), and the scattering
cross section o,.,., Eqs. (III. 26) and (III. 28), can be
calculated using Eqs, (III. 23)and (III, 38). Inthenextsec-
tion we present the general results from this calculation.

1V. GENERAL RESULTS

The formalism presented in the previous section is
now applied to yield general expressions for the ab-
sorption and scattering cross sections within the model
described in Sec. II.

Absorption line shape. Equations (III. 21), (III. 23),

(I11. 38)

f
and (II. 8), together with the resolution of the identity
in the molecular space } ,, | &I)) ((kl| =1, yield

i

0p= o5 @' Ma, av.1)
where
(a1 g 0] gg Varo
(azg|v]ggh Vye
(ang|v]g)) Vor
25 = v, 2
(gar|v|ge) Ve, ;  (IV.2a)
(gaz| V)88 ~Veay
(ga, Vg ~Vea,
=Veay Vears =Vaie = Vo) - (Iv. 2b)
Here ay - - - a,=1{a} is the set of optically active molecular

levels in the spectral region of interest, Also, the
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matrix M is given as the inverse of

€apet Rigae R

ayg0 a8 * INTIR
Roperase €opgt Ropeape
M= . : ,
Rea,,, a8 - €gq,t —ﬁgan. €a,,
(Iv.3)
with
Ry, eq= (@b 1R (=0 lcd)) , (tv.4)

which is given in a general form by Eqs. (III, 38) and
(I11. 39), and explicitly in Appendix B, It should be
noted that the input necessary for the calculation of an
absorption profile according to this scheme includes

'Ualalgalg Ualalﬁnze T Dalalsa"g

\
Lalali £

axayia1g
azans 212

Uanalidlt

Danﬂ,,i ai£

A, is a matrix with #* columns and 2z rows given by
Ualg’; ajay

Vaye' 3040, Vaye' 0,0,

Uazg' ja1ay

Ua,,!' jayay
Al =

Ux'al:alal

Vs*ansata;

Vayasiea °

..................

S. Mukamel and A. Nitzan: Resonance Raman scattering

the molecular energy level diagram, the radiative
couplings V, . ({=1...n) and time correlation functions
of the molecular interactions with the different baths.

Scattering. Equations (III. 26), (III.28), (III,23),
and (II. 8) lead to

Ogugr == U (g'g! |'U(S’(w =0))
ch

X V(G (w = 0)YU{(G(w = 0))V | gg ))

i)

pe= (Iv.5)

b'N(AK,B,+AK,B,) Ma .
b is of the same form as a, Eq. (IV.2b), with g’ re-
placing g, Similarly, the matrix N is identical in form
to M given by Eq. (IV.3), only g’ replaces g here. B,
is a matrix of 2n columns and #?% rows {1 is the num-
ber of states in {a}) given by

Vayagiea
(Iv.6)
Uana,,;:a"
'Ualg’ H
1.7
c v Usoiane

K, is an 7#xn? square matrix of the operator (G(w = 0)) within the set{a}. Using the notation § ={g (w=0)), the ma-

trix K, takes the form
Satariatey g“l“l‘“l“n 9“1“1?“"“1
g“l“n ia1a1

§anal;alal

g"n"n ie181

oooooooooooooooooooo

galdl :an ay

g“n“n $andy
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The matrix B, has two rows and 2» columns and is

given by
B Uee’ 302 Veg’ 0,6 Vig'sea; 'Uu‘;:a,,>
27 .
Ig'x;ulx Uz'x:ang Ugr #3801 Ux‘e;ean
) . i (1v.9)
A, is a 27 x 2 matrix having the form
Ll
Ty 18° 388 Ualz' ‘e
Cang* 28 Ua,,e' H 4 4
A= (Iv.10)
Ux'al;zx' Ug'al;x'g
Vg o 388" vg'a,. H 44

Finally, K, is a square matrix of order 2 given by

gu' H{d gge';z'x
Ky=| — — .
gg’e;eg’ ge’t;g'x

The explicit forms of the matrices A, B}, K, and A;, B,,
K, can be obtained from the definition of v [Eq. (II1.5)]

and from Eq. (III.23). Contributions to the matrix B,
J

(Iv.11)

ayay5a1ay G{dwﬁﬂxaz R“l"l;alan
6{41"23“1“1 €alaz+aalaz;a1a2
1 ajomsagay "0 "7 © 0 Cagay *®ayagiaga,
K'=-
apagiagay T Tt C s s o o 0 4 e

Bpapididy

where again €, ,, =€, ~ €,,. Finally, the matrix K, is the
diagonal square matrix

K (Ex' - €I_Rﬂ"; r')-l 0
2= N
0 (€l_ € —(ﬁ,«,“’,) !

(Iv.17)
The necessary elements of & are given in Appendix B.

Equation (IV.5), together with Eqs. (IV.86), (IV.7),
and (IV.14)-(Iv.17), provide an explicit result for the
scattering cross section in terms of the radiative inter-
actions V,,, (# =1:.-n) and the correlation functions of
the interactions between the molecule and the baths.

V. SIMPLE MODEL RESULTS

In this section w e apply the general results obtained
in the previous section to particular cases. After

Resonance Raman scattering 2469

are obtained from

Vabyos = 6ac Vlb y (IV 12)

Uabysa = Ova Var
Similarly, the terms of A, are given by
v == 6ac Vd( ’

agscd (IV. 13)
Vev,ca = Ona Ve -
The matrices B, and A, become

~V,

ag’

0 0 NP (A
B,= “"‘>.(Iv.14)
vg,al V:’a,, 0 0

0

a1&

=
3 “ .
™
o

(IvV.15)

gay
0 =V,

The matrix K, is obtained as the inverse of

(ﬁ’alal ianay ajeyia,a,

(Iv.16)

(Ba”a,,;a,.,a"

o o o o

briefly outlining the results obtained when the manifold
{a} consists of a single level, we shall focus attention
on the two level model (two levels in {a}), which is the
simplest model with both #, and ¢, processes occurring
within the manifold of intermediate states. We shall
discuss in terms of this model the temperature effect
and the effect of quenching on the yields of the different
emission modes in the resonance light scattering pro-
cess. Also, this model can be utilized to discuss the
effect of thermal relaxation on intramolecular interfer-
ence effects.

A summary of some notations used in-this section is
provided in Appendices C and D.

Single intermediate level, This case was formerly
studied by Huber.!"2® Recently, Mukamel, Jortner,
and Ben-Reuven®® have studied the same problem within
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the Liouville space framework. From the general re-
sults of Sec. IV, we obtain the absorption line shape
with a single intermediate level [s) by putting in Eq.
(Iv.1), cf. Eqs. (IV.2)-(IV.4),

V,
az( ; 4 a‘z(V:s’ - Vsl) ) (V'l)
- Vs’s
and
€, +&,,. 0 -1
M= < & sEisE g (V.Z)
0 — € +(R:s;xs

D, = Imf-o dtiz exp(— i€, ; ) (J;,(0) J,, ()
0 i

+expli€, [ (K,(0) K, () +( K, (1) K,(0)) — ( K,(0) K, (1)) — { K,(t) K, (0))]}

is the total energy shift, and
(V.6)

is the total width associated with the g — s transition,
where the shorthand notation

PJ'EZFSJ'
i

-3 [ explicg; (4,0 7,4(0)

I'=T;+«

V.7

stands for the contribution to the width of the level s
related to its decay to continuous channels associated
with lower molecular levels j. Finally,

k=g [ emlic, DL (KO K, 0) +(K,() K ()

- (K,0) K, () - (K, (D K, (0))] (V.8

is the contribution to the width of the g— s transition
associated with #,-type modulation of the energy levels
s and g. In the classical limit where K, and K, com-
mute with each other, Eq. (V.8) takes the form

k= [ emplic, (1) (K,(0) - K, (O) (K, ~ K, (0, (V.8

which has an obvious physical interpretation. In many
discussions of 7, contributions to line broadening, K, is
disregarded. In the classical limit this can be under-
stood as redefining the operator K.

The scattering cross section associated with the
single intermediate level |s) is obtained from Eq. (IV.5)
using Eqs. (V.1) and (V.2) (and their g—~g' equivalents)

and in addition
- Voo
Al =< ) ’
V:‘s

Kl = '—R;i:ss = (zirj)-l ’

0 - Y& V
B,= ’ A= *
Vies 0 0

Bl=(-V,, V), (v.9)

(v.10)

0
), (V.11)
- Vls

S. Mukamel and A. Nitzan:

Resonance Raman scattering

The necessary matrix elements of ® are obtained
from Appendix B. The final result for the absorption
cross section is

20 r
0= | sg|2w , (v.3)
where
€,=€—€+D,, (v.4)
is the shifted energy difference,
(v.5)
r
(€., +ik,)? 0
K2=( il ¢ _ , (v.12)
0 (€ger +iK,)!
with
Epr =€~ €, +Im[ dtexp(—i€,. I, , (v.12")

[}

- 1=
Kg=Ref0 dt exp(— i€ t) I, =§f dtexp(~ i€ 1)1, |

(v.12")
I =(K, (1) K, (0)) +{K,.(0) K, (£))

= (K (0) K (1)) — (K, () K,(0)) . (v.12""9

The final result for the scattering cross section is ob-
tained in the form

2Q 1 T?i¢, € K
= . 2:——_ - S, 3 =
% = g | Voe Ve | €§,+I‘2[ Tan iR
I%/T, +T€,,. (€, — €, )/ (€, +K>
RpAZEVE 25:,(5152 w)/(Ge 1D}y 1)
8

In most cases «, is very small so that the first term
in the squarebrackets is sharply peaked at €,=¢,.. In
the second term we can take €, (€, - €,.)/(&,. +«%)

=~1, In this approximation we get
_2Q 1V Vo 12 K K r }
R s e R e SIS
For «,—0 we obtain
20 |V, V, !2< k T ,
%-e =T €&+ o€ — &)+ T, €. +T%)" (v.14)

This result was originally obtained by Huber. Note that
multiplying by the density of final state p(e,.) and inte-
grating over €, we obtain (using 71V,,. {2 p(¢,,) =T

= radiative width for the transition to the final state)
[de€,p(€.) Opu e =THT/T )1V, 12(€&, + %)™, whereas the
total quantum yield

[de,. ple,.) o, r rf
= = —=
y ———-‘————‘——‘—‘1% T, 3,T, (v.15)

is just the energy independent ratio of the radiative
width to the total damping width of the level s, and is
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not affected by the interaction which gives rise to «.

Two inteymediate levels. The application of the gen-
eral formulas of Sec. IV to the case of two intermediate

The parameters appearing in Eqs. (V.17)-(V.20) are
defined in terms of time correlation functions of the in-
teractions between the molecule and the different baths
(including intramolecular baths), as obtained from Ap-
pendix B. A summary of all the relevant correlation
functions and their properties is provided in Appendix
C. As shown there, it turns out that the decay con-

Resonance Raman scattering 24N

€, > €. Utilizing the results of Sec. IV, we obtain the
following expressions for the vectors and matrices ap-
pearing in Eqs. (IV.1) and (IV.5):

levels is as straightforward as in the case of single in- -m* O
termediate level but naturally more cumbersome. In M = < o m> ’ (v.16)
Appendix C we summarize the notations used for the dif-
ferent kinetic coefficients and energy shift terms en- €, +il,  dj+iv; \!
countered in this calculation. For simplicity we take m= d. +iv, ¢ +iT ’ (v.17)
K,=K,. =0 so that the result is the two level generaliza- imen s
tion of Eq. (V.15). T, =T,,(&,) + T, ;(€,) +&,(€,) (v.18)
The intermediate levels are denoted |s) and [#) with T, =T, (€,) + Ty;(€,) +k,(g,) (V.19)
}
2i(T,, +T,,) iy+d, iv;-d, - 2iT, exp(- Be) \
K, - iv; +d; i{T,;+ T +K) - € 0 ) ;- d, ’ v.20)
iv;—d; 0 iT,; + Ty +K) +€ iv; +d;
- 2iT,, iy; —d; iy; +d; 2i(T,, exp(- pe) + T,;)
|
<(_ € +17) 0 stants I'? and k® can be expressed in terms of I'' and «',
K, = ' ) (v.21)  while ¥* and ? do not appear in the calculation. In Egs.
0 (e ”'77)_1) (V.17)-(V. 20) we omitted the upper index 1 on all the
Vg = Vi 0 0 quantities I, ¥, and d. The same is true for «, (=«,,
of Appendix C) and «, (=k,,) appearing in Eqs. (V.18)-
A= 0 0 Ve =V} (vo2o) (v.19), while « =x(¢) appearing in Eq. (V. 20) is defined
Ve, 0 Voo 0 by Eq. (C2la) with w=€. Next, the energy dependence
of these parameters should be noted. The energy argu-
0 Ver 0 Vers ments of the parameters I' and x appearing in M are
-V, 0 vV, O explicitly written in Eqs. (V.18)-(V.19). It is seen
that T',; and I'y; can be taken as constants because their
B, - Vs O 0 Ve (V.23)  2rgument ¢, changes little when the energy of the in-
0 ~ V., Ve 0 ! coming photon (included in ¢,) is swept through the spec-
troscopically interesting region. (This statement is
0 Ve 0 Vg based on the assumption that €,;, €;>¢€,.) On the
Ve 0 other han.d, €, and €,, vary strongly as a function of
€, in the spectroscopically interesting region because
A,= Ve 0 , (V.24) €, is of the same order as ¢, or €, . Thus the energy
0o -V, dependence in T,,(¢,,), T,,(¢,), k,(€,), and k(¢,,) has
to be considered. d; and ¥; appearing in Eq. (V.17)
0 = Ves have €,; as their energy argument and may be taken
0 0 =V =V as constants. In K we have I',, =T, (€} (e=¢,,=€,— ¢,),
B,= < ) , (V.25) T,;=T.;(&;) (@=7, s), k=«(e), and 7, and d, have either
Verr Vi 0 0 €; OT €,; as their arguments. All these parameters
Vie do not depend on ¢, or ¢,.. Moreover, in the same ap-
v proximation in which ¥(¢,;) and (¢, ;) are taken to be
a-= ¢ (V. 26) independent on ¢, in the spectral region of interest, we
-V, . also have ¥(g,;) =¥(¢,;) and d(¢,;) =d(¢,;). Finally, the
v shifted energies appearing in Eqs. (V.17) and (V.19) are
e €, = €, +D,,(€,) +D,,(€,) +1,,(€,) , (v.27)
b and N are obtained from a, Eq. (V.26), and M, Egs. -
(v.16)-(v.19), respectively, by replacing g by g €or = €ap + Dps(€,) + Dy (&) e (&) (v.28)
everywhere. €=¢€,,=¢,+D,;(¢,;) - D,;(¢,;) +nle) . (v.29)

Here also functions of €,;, €,;, and €,; may be regarded
as constants [e.g., D,;(¢,;)~D,,(¢,,)] while the energy
dependence of functions of €, and ¢, must be taken into
account,

Utilizing Eqs. (V.16), (V.17), (V.25), (V.26) with
Eq. (IV.1) we obtain an explicit expression for the ab-
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sorption cross section,

20 - . - . . -
== o Im{[(&, - iT,) (&, - il,) - (d, —iv,)?]"}
- ¢, +il, d,—iv; v,
%X (Ver, Ves) e "
d; -1y, - €, +iI' J\V,,

(V. 30)
We note in passing that this result [like the result
(v.3)] does not rely on the separation approximation,
Eq. (If,28), and is not subjected to the restriction
d{R(w)) /dw<1,

Turning now to the calculation of the scattering cross
section, it is convenient to separate the contribution
from the term involving K, in Eq., (IV.5) into two parts.
Inserting the relation

: Resonance Raman scattering

while the resonance fluorescence term is

Rp =Rp{ +Rpy , (V.34)
with

Rp =b'NAK,B,Ma (v.35)
and

R”:b'NAz(_Ol 2) BZMaPP% (V.36)

It can be shown that the coefficient of the principal part
term in Eq. (V.36) vanishes for €,=¢,., so that PP(1/

€,¢+) May be replaced simply by 1/(e, - €,.).

Equations (V. 32)-(V. 36) can be utilized for numerical

computation of the different contributions to the scat-
tering cross section, using Eqs. (V.16)=(V.29). Re-

1 -1 0 . 1 0 sults of such computations will be given and discussed
K, = —_— -
2= PP €opr < 0 1) MG(G“')(O 1) (v.3D) in a future publication. In what follows we shall con~
into Eq. (IV.5), we obtain ‘sider‘the ana.'lytical result obtained for a simplex: quel
’ in which the interference terms d, and ¥, appearing in
_ i _ " the expressions for the matrices K;, M, and N are as-
Kl (Re +Re) =00 + 0, (V.82)  Sumed to vanish. For simplicity we also take V=V,
= V.=V, V =V =V ,=V, =V, and I ,=T
H sg’ g's s 78 er 8 e'r T sf rf
where the resonance Raman term is =I',. Then a straightforward application of Eqgs,
Rp=-imb'NA,B,Ma b(¢, - €,.) , (V.33)  (V.16)=(V.29) and (V, 32)-(V, 36) yields
|
2 - I(my I(m}
25, = 22 4ve |27t o)+ S v 2y 40 )« L2222
ckt €g—€pr €g— €pgr
* * * *
- - - I
+VEV2 [zrist(nzmmm 2T, I(n)) I0my) + 1 ((”2 1 Yoy = tmy) ) » Moty ’”2"1’] , (v.37)
e+ 20, €= €gr
|
where 11: €rgt s 7{ = I‘rs(ﬁg's) + r1+ K,,(Eg:,.) ’ (V. 404)
A - - -

’_ _——_——Z(yfz I T ) A=y, ¥, r,, Frs) s (v.38) Eé‘ €se* > Vlz—rrs(ig'r)'*' Fj+ Ks(Eg’s) ’ (V. 40e)
- e and where I(x) stands for Im(x). In these results and
L, =T, exp(~ ge), (V. 39) henceforth we omit the tilde sign denoting shifted ener-
y=T,+T,, (v.30p) o levels.
y=T,+ r,, (v.39c) The result for the scattering cross section takes
= 1 particularly simple forms in the two extreme tempera-
Ty=Lyrze, (V.39d)  {ire limits BT << ¢ and BT > c.

—( . -1 = (=~ E' 1 7 -1 - ! - -
my= (- Eprivy)?,  m=( BT, 1=1,2,(V.402) Low temperature limit. Here I' =T =0, =T,
E, = € s 71= rrs(ies)"’ rl+ Kr(ejr) » (V. 40b) ¥ = 1/27’ V= 1/21—'“ and FIﬁr: Frs /2‘)/1—" .
Ey=€g,, vo=T )+ T +k4(es), (V. 40c) Equation (V. 37) then yields
|
okF, - 20 vt [I(n1) I(m,) + I(Wl'fnl)]
o |7 y € €gr

o )

[I(nz) I(m,) .\ I(myn,
r,

6’— €gr

]+ vive [%:— I0ny) I(my) + 1 ((n2

= ”:)(mz" m’:)

*
. I(m’fn2+ Myny
€+ 2iT,

(v.41)

) )

€g—€ge

Utilizing Eqs. (V.40a)-(V.40e), we obtain the explicit forms for the coefficients of V} and V; in this expression:

I(ny) I(m;) . I(min;) _ Yivpe | 71 E;

1
a €,—€p  (E¥s ‘}'f)(E';2+Y§2)< a

4
—)’;E;) , 1=1,2. (V.42)

€p— €4
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Here a=v, I, for I=1, 2, respectively. If v;, 7} are I(n) I{m,) . I(min,) ) 1 2 )
not too large, this expression will contribute mainly in Y € €gr T(ﬁrﬁ 7,';{)«31“r )y
the region E,~ Ej;~0. Thus we get contribution to the
coefficient of Vi for E,~E!~¢,. Putting this into the 4 (V.43)
expressions (V,40b) and (V.40d) for y,, ¥}, we obtain Similarly, the coefficient of V is appreciable only for
7127120, + T4k, (0)=v+x,0). Also for y,~v] we €€, ~¢,. For this energy y,~v;~L (-¢)+ T,
have (Y1 E; - v, E{)/(€,— €)=~ v;. Equation (V.42) +x4(0). By Egq. (C14), T, (=€) (=T} (- ¢€) of Appendix
then leads to C) is zero at kg T<<¢ and ¥, ~v;~T 1 «,(0). Then
1
I{n)I(m,) . I(m¥n,) - 1 Y2 4(0)
T, €o—€pr (et ¥)Zp+vd) T, (V.44)
The expression for the low temperature resonance fluorescence cross section then becomes
oFF _2Q v, h,{+_7__2__;2__z_v4 Y,
8Tl | (err YN+ 7D v T (€, Yol vs) Ty 78
r {n, =~ n¥)omy— m*)) Hmdn, + ming)
2y2| _rg I 2 1 72 1 1722 271 V. 45)
+stf[y1", Tlngl ) + ( €+2(I, * €gm €po ! (
with
71=F'rs+rj+’<r:y'*"€r7 (Vn46)
v2=T+%g, (v.47)
and, from Appendix C,
Kazxd(m:é j dt (K0K,0)), a=7, s . (V. 48)

High temperature limit. Here T, =T  y=%, ¥ =¥ =37/(/*~T}%)and T} ,=T/,=3T, /(*-T2)

2). Equation (V,37)
now leads to

20 y Imtn )] [ y Iimyn )]
RF _ 220 4 ¥{ el Nl B V4 4 I ) Sl LT
Cgugp pr= {Vr [—z—'z'y _TZ I (my) + < +V, —2-——-2-}, _TT, (n,) {my)+ -

[T o € [

* * *
 VaVE| 2 W)+ Lt ony)) o 1= 200000 D)) | Llning: f”z”l’]} . (v.49)

Approximations similar to those made above now lead to

Iminy) __ I(ny)Im,)

’ (v.50a)
€p— €pe Y+K,
I(myn,) - _ Imp)I(my) {V.50Db)
6!— Egl Y+ KS

If we make the additional assumption that T, (w) and «,(w) (a=7, s) do not depend on their energy arguments
throughout all the interesting spectral region (such an assumption can be consistent of course only in the high
temperature limit) and that «,=«,=% (so that y,=7,=9{=7,=7+R), it can be shown by straightforward algebraic
manijpulations that

Itminy+ min) _ [(mz— my)(n,— nf)]
€g— €4t =1 €+2(r+R)i (v.51)
With these approximations made, Eq. (V.49) yields
2Q g/v+ (T ¢
o= G It Vit s ot
2,2 r,./y (my = mI)ny~ni)
+ Vs V, [[I(nl)I(th) +1(n3)l(m1)] v (rn /7) ] + 2(rn+ er) Re (( N Zf,i)(i N 2(‘)/+ E)i)] . (V. 52)

The last term in Eq. (V.52) obtained by using f‘,:I‘,Hc, y=T,+T,,, and k=2 (k- «,,) as given by Eq. (C21a).
The following comments should be made at this point.

(a) Equation (V. 37) with Eq. (V.45) for the low temperature limit and Eq. (V.52) in the high temperature limit
constitute our final results for the cross section for resonance fluorescence {(or the “redistributed emission”) oRr.
for the case d;=y,=0 (interstate coupling caused by interaction of the two states with the same bath is disre-
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garded). Also the assumptions mentioned before, Eq. (V.37) and those following Eq. (V. 50), were made for sim-

plicity.

(b) In many applications the last term of Eg. (V.52) can be neglected relative to the other terms. For ¢ > T

?

y+ & this term is of order I'/e? (T denotes here the order of a width) while the other terms are 0(1/T) and are

much larger,

In this case the high temperature RF cross section becomes

_ 20 B/y+ Ly /7P r,/
= pr= (Vi) I(my)+ VEI(na)(my) NI CE S VEVEI(n)I(my)+ Han)[(my)) 7[_1——??:/—7)2_] (V.53)
I

{c) Both the low temperature result, Eq. (V.45), and
the high temperature result, Eqs. (V.52) and (V. 53),
contain “direct” terms, proportional to Vi and V! and
corresponding to excitation and emission in the vicinity
of the same spectral line, and “transfer” terms propor-
tional to (V, V,,)‘2 and corresponding to absorption near
one spectral line and emission near another, It is seen
that the transfer term proportional to I(mm,) I(n,), which
corresponds to excitation near the lower level s and
emission near the higher level #, is missing, as ex-
pected, in the low temperature expression.

{d) The most serious approximation involved in ob-
taining these results is the factorization invoked in Eq.
(111, 28). In choosing parameters to enter in Eq, (V. 37),
it is important to remember that these results hold
provided d®(w)/dw<< 1. Therefore, for example, a
model in which ', (E) and x(E) do not vanish at T-0,
the limit E -0 cannot be applied in the low temperature
case because of the discontinuity in the widths implied
by Egs. (C14) and (C18). Another drawback involved in
the factorization ansatz is that it leads to an expres-
sion for the scattering cross section which is no longer
positive definite as the original expression (III. 3) was.
Actually computed values may become negative (in the
low T limit) in regions of very small cross section, and
of course have to be discarded. In the high 7' limit the
factorization ansatz may become exact and under these
conditions no negative results are encountered.

(e) For V,=T, =0, both Eqs, (V.45) and (V. 52) lead
to

RF _ _2_9_ Vi(rl*‘ Ks)(Ks/PI)

= o (€24 T+ k) [+ (T +)7]
where «, should be calculated for the corresponding
temperature, This result is identical to the RF term in
Eq. (V. 14) for the single excited level case (where I
=T,+K,).

o (v.54)

(f) In calculating matrix elements of ®, we took the
molecule-bath interaction up to second order, This,
together with the assumption of weak dependence of
®R(E) on E, leads to the characteristic Lorentzian forms
appearing in the expressions for the absorption line
shape and the scattering cross section. This, however,
has a serious deficiency as it predicts nonzero emis-
sion in energies larger than the incident energy even in
the zero temperature limit.

(g) As is well known, a nonperturbative treatment of
terms of the kind (II. 6) with K, being of first order
in the phonon coordinates leads to the typical asym-
metric line shapes with phonon sidebands associated
with impurity states in solids, If we disregard such

terms and take for K, only terms nonlinear in the bath
coordinates the results can be interpreted as contri-
butions from zero phonon lines only.* Also, the low
temperature result is probably appropriate for dis-
cussing ratios between emission intensities in direct
and transfer lines and between RR and RF processes,
This point needs further justification, however,

(h) 1t is important to note that keeping the energy
arguments of k (v) (a=7, s) and I' (w) was essential for
obtaining the results at the low temperature limit.
Assigning an energy independent /,-type width to each
level as is often done in stochastic theories is funda-
mentally wrong for low temperatures where relations
like Eqs, (C14) and (C18) imply considerable energy
dependence of these widths. One should keep in mind
that such relations also impose a lower bound on the
temperature range for which the theory is valid as the
condition d®{w)/dw < 1 implies that

o(- lwl «1
- 7

has to be satisfied for all E<0, This however, is not
a very restrictive condition as in most cases ®(E)~0
for E, T—0.

@(loDl
kpT

(V.55)

In order to obtain the total cross section for the
resonance light scattering, we have to add to o}, also
the Raman scattering cross section 0¥, . Under the
same assumptions which lead to Eqs. (V.37), (V.41),
and (V.49), Egs. (V,32)-(V,33) yield

20
of_i,,:c—ﬁ (e, — €g0) |y V2 my V2|2 . (V. 56)
The temperature dependence of this expression comes
only through the temperature dependence of the relaxa-

tion widths appearing in mw, and m,.

Finally, to have a complete picture we write the line

shape function under the same assumptions. Equation
(Iv.1) leads to
2Q
0r== (VEI(my) + VEI(m,)) , (v.57)

which is, as should be expected in the absence of inter-
ference terms, a sum of two simple Lorentzian terms.

Expressions (V.32), (V.37) [with its extreme tem-
perature limits, Eqs, (V.41) and (V.49)], and (V,56)
constitute our final result for the RLS cross section in
a two intermediate level system without interstate
coupling. Equation (V, 57) is the absorption cross sec-
tion for the same case.

We are now in a position to discuss the effect of
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radiationless damping contributions to I'; on the rela-
tive magnitude of terms in the absorption and scattering
eross section. We shall limit this discussion here to
the simplest case, delaying detailed numerical investi-
gation to later work. We thus focus attention on the
approximate high temperature expression with x, =«,

=% and with V2= V2=V?a T, (TL,, is the radiative width
associated w1th emission to the initial state and we as-

J

1 f
S rrg,grrgg (
m

Ug-g' p(€gl

&/v+ (L, /7P
Yy m/NA- (T, /)

and

0, o~ I‘iad(f(ml)+ I(my)) = | I (e 7’)(] my ] 2, ‘”’12\ %)

with the same proportionality coefficient in Eqs, (V.58) and (V.59),
The first corresponds to coherent scattering, The next two can be interpreted as

section contains five terms.

2) (I(nl)l("71) + I(ng)[(mz)

Resonance Raman scattering 2475

sume the state s and 7 to be close enough in energy to
correspond to the same density of photon states for
transitions to the ground state). We also note that
when comparing the absorption and scattering cross
section, «,_,, should be multiplied by the density of
final states p(g’). Denoting V¥ (g')= (1/mT%,, (where
T'f,, is the radiative width associated with emission to
the final state), we finally obtain

—(IT(’;Q/‘—)Z' (I(nl)I(m2)+I(n2)I(ml))> (V. 58)
(v.59)

The expression (V, 58) for the scattering cross

describing emission from the level (r or $) which is originally excited, while the last two describe absorption to

one level and emission from the other,
+¥)lm, 1% we obtain from Eq. (V.58)
/7)?

J' degr Oy go p(€ge) T g TLou |y my |24

Cousider now excitation in the vicinity of the level 7,
whereas the m, terms in Eq. (V,60) and (V.59) can be
neglected, [The error involved in neglecting Im,l? is
of the same order of the term disregarded in going
from (V.52) to (V.53)]. The integrated scattering
cross section then becomes

s Y4+K
J d€goOpugr PlEg) = | Fimlmlla r, -
i

(V.61)

Dividing by 0, =T! (% +7)Im, 1% we obtain the quantum
yield
- V.62

Yy rl ( )
The same result is obtained for excitation near level s,
Numerical calculations based on our more general ex-
pressions show that the quantum yield is indeed inde-
pendent on the incident photon energy through all the
spectral region in a model where the decay rates as-
sociated with levels s and » are taken to be equal and
providing interference terms are absent. % This result
is a generalization of the similar result obtained for a
single molecular resonance [Eq. (V,15)].

More interesting predictions are obtained by com~
paring the magnitudes of the different terms in Eq.
{v.60), The following features are readily observed:
{a) The two direct terms are equal in magnitude, and
the same is true for the two transfer terms. This re-
sult corresponds to the high temperature limit, and is
due to the fact that we took V,=V,. (b} The relative in-
tensity of transfer terms and direct terms is

Tirans _ &/v+ DT /7)
Iy W (v.83)

Note that I, was taken to contain only redistributed
radiation, If we include the coherent scattering also,

Integrating over €, and noting that fde,, I(n,) =7 (I=1,

K/7+
— (T, /77

2), while Itm,)= (K

®&/v+ )T, /7)

(Imllz+ |m212 1_(11’-3/7)3_ (|”72‘2+lm1|2] (V.GO)
I
we obtain for {my+mgl?=m %+ lm,|? (nonoverlapping
resonances)
B~ Toa (v.64)
I Y

dir
I, denotes the sum of the coherent and the “direct”
redistributed scattering terms. (¢) The relative yield
between the coherent and the redistributed radiation is

given, again for Im +myl%=~ lm 1%y Im,|%, by
Toon 1=, /)
== = V.65
Ina  (1+ T, /YN&/y+T,s/v) (v.65)

Three kinetic coefficients are involved in these
ratios: I,., the rate of thermal relaxation within the
excited state manifold due to inelastic transitions; ¥,
level modulation and broadening due to quasielastic in-
teractions with the surrounding medium; and y=1I,,
+};T;, where },, I'; is the rate of damping of the ex-
cited state manifold caused by interaction with radiative
and radiationless channels, including collision induced
damping.

In the limit I';~ = (T,
(V.65) lead to

/v, ®/y~0), Egs. (V.63)-

Itrans T, = Izg
—Id“ 7 {v.66)
1 o I
S T3S (v.67)
Idir
and
ICOh T ~w r
Ty —1——“ T, - {v.68)

In the limit I";- 0 (¥~ I,,), which can only approximately
hold since a small radiative width must persist, we ob-
tain
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Ttrana 71;-04 , (v.69)
Idir
Ltrans rj-0 (v.70)
ldir

and
Lon r-0 _Ti (v.71)

Ired - rrs+K

Finally, in the absence of any interaction with the sur-
rounding medium I',;=%=0 and Eq. (V.65) implies I,/
Lrga=> (i.e. 5 [red= 0).

These results, obtained under highly simplifying as-
sumptions, contain all the qualitative features of the
effect of medium induced relaxation on the resonance
light scattering in the absence of interference phenomena:

(1) For an isolated molecule, only coherent scattering
exists and the cross section for redistributed emission
is zero. Note that the presence of collision induced
damping does not change this conclusion. (By damping
we refer to irreversible transitions out of the manifold

{a}.)

(2) When the interaction with ;che surrounding medium
increases this may affect k¥ and I',; and also I, through
collision induced damping.

(3) For a weak medium molecule interaction we
usually have ¥ > I, > (collision induced damping). If
no intramolecular damping channels exist, T’ ;~0and
Egs. (V.69)—(V. 71) account for the relative intensities.

{4) When T, increases, Egs. (V.66)=(V.68) imply
that the intensity of the transfer lines is reduced rela-
tive to that of the direct lines (for ¥> I, this holds
both for Iirans/Igse and Lipens /I41). For a many level
system, such effect practically reduces the number of
observed lines in the scattered light spectrum and may
effectively bring structure to a previously structureless
spectrum. {Note that in a multilevel system the num-
ber of transfer lines is much larger than that of direct
lines,) This m'ay be the effect seen by Friedman and
Hochstrasser,

It is interesting to note that for K<« I, (such that
molecule-medium interaction is more effective in in-
ducing inelastic transitions) [ g4, /14 increases when
I'j~. This is in contrast to whay may be anticipated
from simple kinetic arguments. Consider the model

G R,

13
RZ1s,
Ry

R'&Fl’

S&F, . (v.72)
Here B’ corresponds to the rate of populating the state
R, ky, and &, are rates for relaxation between S and R
and % is the rate of damping of the {S, R} manifold.

This model yields the steady state populations

S. Mukamel and A. Nitzan: Resonance Raman scattering

e kG
T kgt byl [y +R)
S=——§1—R (v.73)
y+k 77

so that S/R=Fk; /{k,+k). For k=0, S/R—Fk,/k,, while
for k—, S/R-k,/k-0, so that fast damping rate
supresses the transfer of population from R to S, This
is contrary to the result {V.66) (for K<< I',,) but agrees
with (V. 64). The somewhat surprising result implied
by Eq. (V.66) is caused by the fact that for ¥=0 both
Iirans and I, depend on I, and actually Iy, is of higher
order in the interaction which leads to I,  than [y .
It should be added that in principle both I, /I4;r and
Iirans /Lair are measurable quantities.

VI. CONCLUSION

In this paper we have presented the solution for a
model for nonpolarized resonance light scattering from
a thermally relaxing multilevel system in the absence
of inhomogeneous broadening, This model takes into
account both thermal relaxation within the excited state
manifold and damping into channels outside this mani~
fold and can be used to discuss interference between
levels of the excited manifold.

The main general results for the absorption line shape
and the scattering cross section are given in Sec. IV,
with the necessary R matrix elements given in Appendix
B. General results for the one and two intermediate
states models are given in Egs, (V.3), (V.13), and
(V.14) (single intermediate level) and Eqgs. (V.16)-
(v.30) and (V. 32)={V. 36) {two intermediate levels).

The particular case where cross coupling terms arising
from interaction of different excited levels with the
same baths are disregarded is further discussed in
Egs. (V.37)~(V.57). In particular, analytic results
displaying the effect of damping on the relative yields

of different emission modes are given and discussed at
the end of Sec. V. The more general results are of
course amenable to numerical computations which will
be presented in a future publication.

The results (V. 63)=(V.71) which show the effect of
damping on the relative yields were obtained in a model
where interference terms are disregarded and there-
fore should correspond in a sense to a classical kinetic
scheme. The agreement between Egs. (V.73) and (V. 64)
shows that this is indeed the case. It should be realized
though that the present quantum mechanical approach
is useful even for this simple case as it gives informa-
tion about the energy distribution of the scattered
radiation and shows the way in which quasielastic inter-
actions affect the scattering process.

The simple model results presented in Sec. V clearly
show that RLS cross sections and relative yields contain
a large amount of information concerning the rates of the
different relaxation processes involving the excited
state manifold. Indeed, it has been demonstrated?*%:3
that such relative yields can be used to estimate the
rates of extremely fast radiationless transitions from
excited electronic states of large molecules. More
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information can be obtained in systems where relative
yields of coherent and relaxed emission are obtained.
The model presented here should be very useful in
analyzing such data.

ACKNOWLEDGMENT

We are grateful to Professor A. Ben Reuven and
Professor J. Jortner for stimulating discussions, and
to Dr. J. Friedman for reading the manuscript and for
useful comments.

APPENDIX A: ON THE SINGULARITY OF FULLY
DIAGONAL TERMS OF THE TETRADIC r MATRIX

The line shape function ¢,(E,), being a physically ob-

servable quantity, is of course analytic and well be-
haved., From Eqs. (III, 10) and (IfI, 11) we have

-3; Ingg(Eg):— Z: ‘ Tg'g(E£)|25(Eg_ E!') ’ (Al)
L Tu 33(0) == Z l T:‘g(Ee) l 2 G(Eg' - Eg) . (A2)
217 ’ Prrys

The quantities on the lhs of Eqs. (Al) and (A2) differ
from each other by a singular term, and therefore at
least one of them has to be singular, Since the absorp-
tion line shape is related to the depletion of radiation

N

APPENDIX B: THE MATRIX®

: Resonance Raman scattering

2477

intensity in the forward direction due to the presence

of the absorber, it may be thought that T, . (0) given
by Eq. (A2) is the experimentally measured and there-
fore nonsingular quantity (remember that g stands for
both the molecular and the photon states), The follow-
ing consideration shows that it is actually Im T, (E,)
which is the nonsingular quantity., If 6¢ is a solid angle
in the forwarded direction, the absorbed intensity may
be defined by

L psorbea = 1imM Z | Tz':' 2 G(E:' - EA’)

600 g'#80
slim | 2. |7y, |26(E,. - E,)
600 Il
(all1e?’)
- 2 |72, ~-E)
g’cbo

=1imo (-ImT,, - | T, |20(E,) 5)
60

——ImT,, .

Here g’ #5¢ means that the wave vector of the emitted
photon is not in the solid angle 6¢., We see that it is
Im7T,, which is related to the proper definition of the
measurable absorbed intensity and it is therefore the
nonsingular quantity.

For the absorption and scattering problems we need matrix elements of ® of three kinds: (1) those within the
subset {a}; (2) those within the subset {g, g'}; and (3) elements between mixed pairs ag and a'g or ag’ and o'g’.
Explicit expressions for these elements can be obtained from Eqs. (TII. 38) and (III. 39):

{ay a, | (ﬁ(w =0) ‘ asay) = aalaa;ayu

=—i J'o°° dt{éazq( p: exp(~ iea.azt)(Fala,(t)Fa:a3(0)>+Zl: exp (= 1€ 5, IS, 4 (8) 14, (O))
a'Fajrag

+ Oagag €XP(~ iidlaz ) (K'q(t) Kal(O))) * 5alas <

a’#agsay

)

- expl=ie,,,

eeriots= Oegreiger =0,

=l

ersie0g = SAme with g and g’ interchanged,

2

+ B4y, €XD(= 1€ 1)K, (DK, (0)) + (K, (0) K, (¢)) = (i, (0) K, (£)) - (K,(t)K,,I(O))]} )

Riyetsager = (same for g’ replacing g) ,

a eieay = Vtgagiaze = (Ralx'::'az =O%ar5a00 = 0,

rerige=— j dt €xp (= e ggo DU ((0) Ky (0)) + U (0) Koo (1)) = (Kos (0) Ky (1)) = (B (8) K, OD]

D expliey g0 t) (Fyol0) Fpup, )

e 3 D= 603 ) U 01T+ 1, XD 0,1 (K, O) Ky 0)
1) (F 440, (0) F o g (0))(1 = 8,0 J(1 = 8y .) — €XD(= i€ 4., ) (Fyy8) F g0y (O))

X (1= 0,10 (1= By00) = €XP (= €410, (K, 0) Ko ()4 (K (6) Ky (OD] S, 5%} ,

(B1)

(B2a)

(B2b)

als’;a2:=_i j’oa dt { a'#a;az exp(_ iia':t)<Fa1a'(t)Fa'a2(0)>+ zj: EXp(-— iej;tx‘]all(t) Jfﬂa(o»

(B3)

(B4)
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Fresseer= =1 [ dt{ 2 el g DN (0) Forgy )+ 30 XDl iy 1)U 1y O 1y (1)

a’#aqe a2

+ 50162

XD i€ (K4, 0) K, 0+ ) KO = (2, O, 0) = (K, K, 001} (85)

These results include all the ® matrix elements necessary for the calculation in Secs. IV and V, It should be
noted that the different correlation functions entered in these results may correspond to different baths, Thus,
correlation functions involving the operators F and K are calculated as thermal averages over states of baths of
temperature 7, while correlation functions involving J correspond to zero temperature baths,

APPENDIX C: SUMMARY OF RELEVANT TIME
CORRELATION FUNCTIONS

Here we list the relevant time correlation functions
encountered in the two intermediate levels problem and
introduce a shorthand notation for their real and imagi-
nary parts:

J i dt exp(iwt)(F,s(t)Fs,(O» = r:‘s(w) + iDrl‘s(w) ’ (c1)
0
J’ ) dt exp(iwt)(F ., (0)F,(t)) = T2 (w) + iD% () , (C2)
0
[ dtexp(tot) U, 07, @) =Ty )+ DY), (C3)

I ) dt exp(iwt) {J,(0)J,, (1)) = Fij(w)+ iDi,(w) s (c4)
)

Lw dt exp Gwt XK, (t)K4(0)) = kly(w) + inky(w) , (C5)
L“’ dt exp ot KK, (0K, (1)) = k2(w) + iny(w) , (ce)
f 0” dt exp Gty (), 0)) = Yj(w) + id}w) , (cn
jo” dt expliwt) (7, 0)7,,0)) = ¥3(w) + id3(w) , (c8)
L " at exp(iwt) (T, (1) 7,400 = YH(w) + id}w) , (c9)

J’ " dtexpliwt) J,,(0)d,, 1) = Viw)+ id3w) . (C10)
0

In these expressions a and b stand for » or s, and the
functions I', D, ¥, d, «, and 7 are real.

Next we utilize the following general relations involv-
ing time correlation functions of any two operators

(1):

j' ) dt exp (fwt)(B(t) A{0))

= exp(Bw) j ) dt exp(iwt)}{A(0) B{)) , (C11)

where 8= l/k,3 T, and T is the temperature characteriz-
ing the distribution to which the average () is related;
2):
(B(t) A(0))=(A"(0) B'(t))* ;
3):

for real operators A and B,

(C12)

-

(B(0) A1) =(A'(0) B'(t)) . (C13)

We actually used Eq. (C13) when we took the rhs of
(C7) and (C9) as well as (C8) and (C10) to be equal.
These identities further lead to the following relations
between the different correlation functions:

[Z (w) =T} (~ w) =T (w)exp(- Bw) , (C14)
D% (w)==Di(- w), (C15)
IZ (@) =T~ w) =T} (w)exp(- gw) , (C186)
D%(@) == Dy~ w), ' (c17)
K2y (w) = kL= w) = k(@) exp (- w) (C18)
Tog(@) = = Niy(= w) . (C19)

For the “baths” seated on the molecular states j (radia-
tive and intramolecular radiationless continua), the
model employed in this paper takes T,=0 (By==°),
Therefore T'2,(w)=0.

Relations between 7 and ¥}, d5 and d; can also be
written but turn out to be uninteresting for our purpose
as only 7} and df, are encountered in the calculation.

To complete the definition of terms encountered in
the calculation of Sec. V we introduce

K (W) +in(w)
- [T arep- iwnl (05,0~ K0)
0

- (K, (1) - K, () K,(O))]

= Kast Koy = Kip= Koyt i(Mge+ o= M~ M3,)  (C202)
and its complex conjugate
K (w) = in(w)
= [ drexpunl 00 - £,0)
- (K, () - (1)) K (ON)] (C20Db)
with
k(@) = 1 b (@) 4 15 (0) = K3,(w) = k5, (@) (C21a)
and
(W) = (@) + P2y (w) = Nip(w) = T w) (C21b)

These are the {,-type contributions to the shift and
broadening of the »s line, and contribute to the matrix
elements ®,,, , and (ﬁsns,. In the classical limit where
the operators K commute, these functions take the sug-
gestive form
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k{w)+in(w) = j‘: dt exp (=~ iwt)

X ((K,(0) - KON (K, ()~ K, (1)) )~ (C22)

appearing as originated from the modulation of the
energy difference ¢,,=¢,— ¢, arising from elastic col-
lisions,

APPENDIX D: SUMMARY OF NOTATIONS FOR
WIDTHS EMPLOYED IN SEC. V

1. T,(=y,T,)and ', (=3 ,T,,) are shorthand nota-
tions for the total widths of level s and » caused
by interaction with all the zero temperature baths,
When we assume I',=T",,, T, stands for both.

2. Frs:rrseXp(" B(), le/kBT,

7ers+rj ’

r=,+Ty,
1",-——1-‘1+§K .

3. A :A[Z(Y?" rrs i-‘rs)]-l

, A=v, % T, Ty
4. 7,=T (e + T +k,(c,,),
Vo= T pgleg)+ Ty rgles)
Y1=Ts(€pe) + Tyt k€ e,)
Yo=Trlege) + Tyt kolege)
5. Functions without energy arguments,
r,=r,_(e),

K,=Kk,(0) (a=7, s),

rsjzrsj(esj) ’
ri‘jEFr](Er]) .

6. When we assume k,=«,, K denotes both,

tSupported in part by the Commission for Basic Research of
The Israel Academy of Sciences.

*Present Address: Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, MA 02139,

IFor recent reviews, see P. P. Shorygin, Sov. Phys. Usp.
16, 99 (1973); Light Scattering in Solids, edited by M. Bal-
kanski (Flammarion Sciences, Paris, 1971), W. Kiefer, Appi.
Spectrosc. 28, 115 (1974); J. Behringer, in Molecular
Spectroscopy, edited by R. F. Barrow, D. A. Long, and J.
J. Miller (The Chemical Society, London, 1974), Vol. 2.

’D. G. Fouche and R. K. Chang, Phys. Rev. Lett. 29, 536
(1972),

SR. L. St. Peters and §. D. Silverstein, Opt. Commun. 7,
193 (1973).

4R. L. St. Peters, S. D. Silverstein, M. Lapp, and C. M.
Penney, Phys. Rev. Lett. 30, 191 (1973).

’S. D. silverstein and R. L. St. Peters, Phys. Rev, A 9,
2720 (1974).

M. V. Klein, Phys, Rev. B 8, 919 (1973).

Y. R. Shen, Phys. Rev. B 9, 622 (1974).

®p. F.williams, D. L. Rousseau, and S. H. Dworetsky,
Phys. Rev. Lett. 32, 196 (1974).

’D. L. Rousseau, G. D. Patterson, and P. F. Williams, Phys.
Rev. Lett. 34, 1306 (1975).

1p. 1. Rousseau and P. F. Williams, J. Chem, Phys. 64,
3519 (1976).

2479

115, R. Solin and H. Merkelo, Phys. Rev. B 12, 624 (1975),

23, E. Schwartz, Phys. Rev. A 11, 1121 (1975).

33, Behringer, J. Raman Spectrosc. 2, 275 (1974).

Y41.. s. Ditman, R. W. Gammon, and T. D. Wilkerson, Opt.
Commun, 13, 154 (1975).

By, Toyozawa (Tokyo preprint).

8No distinction between Raman and Rayleigh scattering is
made and the discussion assumes a given initial molecular
level and a given (same or different) final molecular level.

D, L. Huber, Phys. Rev. 158, 843 (1967).

15D, L. Huber, Phys. Rev. 170, 418 (1968).

8D, L. Huber, Phys. Rev. 178, 93 (1969).

D, L. Huber, Phys. Rev. 187, 392 (1969).

1A, Omont, E. W. Smith, and J. Cooper, Astrophys. J. 175,
185 (1972).

22A. Omont, E. W. Smith, and J. Cooper, Astrophys. J. 182,
283 (1973).

BA. Nitzan and J. Jortner, J. Chem. Phys. 57, 2870 (1972),

UChr. V. Grundherr and M. Stockburger, Chem. Phys. Lett.
22, 253 (1973).

%A. Ranade and M. Stockburger, Chem. Phys. Lett, 22, 257
(1973).

28], Friedman and R. M. Hochstrasser, Chem. Phys. Lett.
32, 414 (1975).

273, Jacon, M. Berjot, and L. Bernard, C. R. Acad. Sci.
(Paris) 273, 956 (1971).

%D, L. Huber, Phys. Rev. B 1, 3409 (1970).

g Mukamel and J. Jortner, J. Chem. Phys. 62, 3609 (1975).

305, Mukamel, A. Ben Reuven, and J. Jortner, Phys. Rev. A
12, 947 (1975); J. Chem. Phys. 64, 3971 (1976).

3. Friedman and R. M. Hochstrasser, Chem. Phys., 6, 155
(1974).

32J. O. Berg, C. A. Langhoff, and G. W. Robinson, Chem.
Phys. Lett. 32, 76 (1975).

By, Metiu, J. Ross, and A. Nitzan, J. Chem. Phys. 63, 1289
(1975).

3H. J. Kimble and L. Mandel, Opt. Commun, 14, 167 (1975).

35(a) For a recent review of this approach, see Ref. 43; (b)
The terms “collisions” and “pressure broadening” are used
here in a broad sense and include also the analogous phenom-
ena in liquids and solids.

3%y, Hizhnyakov and I. Tehver, Phys. Status Solidi 21, 755

(1967).

3p. A. Madden and H. Wennerstrom, Mol, Phys. 31, 1103
(1976).

3R, Kubo, T. Tokagawara, and E. Hanamura, OJI Seminar on
Physics of Highly Excited States in Solids, Tomakomai,
Japan, 1975,

¥W. Kiefer in Ref. 1.

493, M. Friedman and R. M. Hochstrasser, Chem. Phys.
Leit, 33, 225 (1975).

41y later sections sometimes £ and g’ are used to denote the
molecular initial and final states plus the incoming and out-
going photons.

2y, Fano, Phys. Rev. 131, 259 (1963).

*A. Ben Reuven, Adv. Chem. Phys. 33, 235 (1975).

#A. Ben-Reuven and 8. Mukamel, J. Phys. A 8, 1313 (1975).

5The singularity discussed in Appendix A is no longer present
owing to the sum over the bath 8 states.

4R, Zwanzig, Physica (Utrecht) 30, 1109 (1964),

4"(a) A. Ben-Reuven and L. Klein, Phys. Rev. A 4, 753 (1971);
(b) A. Ben-Reuven, S. Mukamel, and A. Nitzan (to be pub-
lished).

85, Mukamel, A. Ben-Reuven, and J. Jortner (to be published),

‘“’By absence of interference terms we mean, in addition to
taking v;=d,;=0 in the general experessions, also assuming
fm+my1%= Imy 1%+ Im,| 7, that is, that the two resonances
are far away from each other. This, however, does not cor-
respond to the isolated resonance case because the two reso-
nances are interconnected by thermal relaxation.

J. Chem. Phys., Vol. 66, No. 6, 15 March 1977

Downloaded 03 Feb 2004 to 132.66.16.34. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



