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Cooperative instability phenomena are shown to arise in arrays of localized catalytic sites immersed in a
bulk system. Nonlinear reaction mechanisms may occur on the catalytic sites; the reactions in the bulk are
stable. From the partial differential reaction-diffusion equations for the total system we derive ordinary
integral equations and obtain from these, by linearization, stability conditions as a function of catalytic site
density. The theory is applied to one-dimensional lattices of catalytic sites with several model reaction
mechanisms. For a product activated enzyme mechanism occurring on each catalytic site we show that
there exist cooperative effects among sites due to the intersite coupling via the bulk reactions and diffusion.
For given constraints, the number of stationary states available (one or three) depends on the density of
catalytic sites, such that as the density increases, first three, then one, then three stationary states exist. For
the Prigogine-Lefever mechanism critical concentrations necessary to produce chemical oscillations are
shown to depend on the catalytic site density; the functional dependence has a maximum due to
cooperative interactions among the sites. We study next a linear array of two types of alternating catalytic
sites on which occur reactions of mutual activation of two species (a generalization of a model of Shymko
and Glass). Multiple stationary states are found, and again the number of such states available depends on

the site density.

. INTRODUCTION

Many studies have been reported recently on instabili-
ties in systems in which coupled nonlinear chemical re-
actions and transport processes occur simultaneously.!
Less is known about the behavior of systems with local-
ly bound reactions, Most of the research in this direc-
tion has been concentrated on problems involving trans-
port in membranes.? Some studies on the role played
by heterogeneous catalysis in potentially unstable sys-
tems have also been reported, 3™

In an earlier paper® we discussed various instability
phenomena which can occur in a system in which cer-
tain classes of reactions, localized to a wall or mem-
brane site, interact by diffusion with bulk reactions.
From the reaction—diffusion equations we derived inte-
gral equations and applied them to simple model kinetic
schemes to show the occurrence of multiple steady
states, local oscillations, and waves localized to the
membrane surface. In the present work we generalize
our considerations to systems with many centers of re-
actions. We focus our attention on systems in which
relatively simple bulk reactions are coupled to locally
bound nonlinear reactions which may lead to instability
phenomena, such as transitions to new steady states or
to limit cycle oscillations, In living organisms this may
come about due to the presence of membrane bound en-
zymes, Alternatively, it may happen in chemical re-
actors with heterogeneous catalysis. For example,
Hlavacek and Votruba® have shown that the transition
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between different stable steady states in a heteroge-
neously catalyzed oxidation of CO depends significantly
on the geometry of packing of the catalyst.

In the present work we investigate several models
with localized sources of nonlinearity, We pay particu-
lar attention to cooperative behavior such as mutual in-
teraction between sites and its dependence on distance
between sites, as well as effects of the coupling effi-
ciency (diffusion rate in the bulk) between the sites and
of possible bulk reactions. In principle two main cases
can be distinguished: (a) a regular distribution of sites,
and (b) a random distribution of sites. Here we focus
attention on the first case and study two possible mod-
els: a case where all the sites are taken to be equiva-
lent, which we call the AA lattice, and a case where
two different sites alternate in the regular array, the
AB lattice, Using Fourier and Laplace transform tech-
niques we investigate the stability of steady states and
obtain conditions for stability as functions of the site
and bulk reactions, of the intersite distance, and the
reaction-diffusional coupling between the sites.

The general results are applied to some model sys-
tems. First we treat a system consisting of a periodic
lattice with a product activated enzyme. We show that
the number of steady states and the points of marginal
stability depend on the rate and transport coefficients
and on the density of catalytic sites. Our results on the
lattice yield the expected behavior in the two known lim-
iting cases: the continuum limit of homogeneous kinet-
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ics!® and the limit of infinite separation between the lo-
cal site which corresponds to the single site problem.?®
In a second application we use the model scheme intro-
duced by Prigogine and Lefever’ and study the site den-
sity dependence of the marginal stability point. In both
systems cooperativity among the sites at intermediate
site densities leads to unexpected behavior. Finally we
apply the general equations to the model used by Shymko
and Glass! in their treatment of a system with two reac-
tion sites. For a model involving mutual activation of
species on the two types of sites an exponential site den-
sity dependence of the steady state concentrations is found.
The number of available stationary states depends
strongly on the density of catalytic sites.

Il. GENERAL THEORY

Consider a one-dimensional array of localized cata-
Iytic sites. Physicallythis canbe realized for a system
of parallel planar membranes (or catalytic sheets or
screens) located at points x, along the x axis. The sites
are taken to be infinitely thin and porous, and provide
local sites of chemical reaction. For the purposes of
formal development we start with the d-dimensional
problem and specialize later to the one-dimensional
case,

A. Derivation of integral equations

The dynamic equations describing kinetics and trans-
port in our system are taken to be 3¢

Y

=DV y+F[y]+) G, lylor-r,) . (IL.1)

9
:12
Here ¥ (r, t) represents a column vector of concentra-
tions, D a matrix of transport coefficients, F[y] the
rates of the bulk reactions, and G, [¢] the rate terms
due to reactions localized to the site at r,. We note that
in systems of spatial dimensions greater than one, one
encounters infinite concentrations using the formulation
(II.1). Proper account of the finite size of the catalyst
particles removes this problem (see Ref, 8 for details).
We assume that in the absence of the local sites the sys-
tem attains a stable homogeneous steady state. We also
take the system to be isothermal and with no convective
transport. Further we shall linearize the bulk system
about the homogeneous steady state g, defined by F[g,]
=0 but retain the full nonlinearity of the kinetics at the
local sites G,,. Maintaining the bulk kinetics in a homo-
geneous nonequilibrium state may be experimentally
realized by either the presence of a chain of feeder bulk
reactions, as in the Belousov—Zaikin—Zhabotingky reac-
tion for a transient experiment or by the imposition of
light [see Ref, 1(j}].

The set of partial differential equations (II.1) can be
transformed into a set of ordinary nonlinear integral
equations?®:

¥, {oah, 0=t [ a2, 200, 1200 - 3]

t
+;j(; At'B(r, 1,5 t— "G, [y(r,, {r,}, ] .
(IL. 2)
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The notation {r,} in the argument of  indicates the para-
metric dependence on the location of the local sites

and will be omitted henceforth, Z(r,r’,¢) is the propa-
gator for the bulk dynamics which satisfies the linear-
ized bulk kinetics and a singular initial condition

Z_ov@)z (IL. 3)
Z(r,r’; t=0)=56(r-1") (11, 4)

where  is the matrix of the linearized bulk reaction
rates

oF
a-(Z) .
ad, L
Equation (II. 2) is an important result since, if we put
r=r,, wehave reduced our problem to a set of ordinary

integral equations among the concentrations at the var-
ious sites.

(IL, 5)

B. Steady states
The bulk system is taken to be stable so that

E(r, r, ) ~0. (11.6)

The steady state solution $*(r) of Eq. (II.2) is obtained
by replacing ¥(r, ) on both sides by $*(r) and taking
f~ in the right-hand side (rhs) of Eq. (II.2). We ob-
tain the following algebraic equation for the steady states:

’

PE) =9, +)_ Z(r-1,)G, [y (r,)], (I1. 72)
where
Z(r-1,)= f”dzz(r, rf) (IL. 82)

0

and where we used the fact that the propagator E(r,r’; #)
in an isotropic system depends only on (r-r’), Z(r)
can be obtained explicitly from Eqs. (II. 3) and (II. 4) by
applying a Laplace transform in ¢ and a Fourier trans-
form in r, Limiting our results now to one dimension
(x), we obtain
dk -

Z(x)= f S e wo-t (IL. 8b)
with which we may calculate the steady state concentra-
tion y* satisfying

P*(x) =4, +Z Z(x —x,) G [*(x,)] . (II. 'b)

m

From Eqs. (II.7) we obtain the steady state concentra-
tions and then investigate their stability by linearization

of the integral Eq. (IL. 2) in perturbations about these
states.

For the AA lattice all sites are taken to be equiva-
lent, so that G, =G; for the AB lattice the rates are
taken to be G, at sites of type A and G, at sites of
type B.

1. Steady states of the AA lattice

Here we expect the possibility of a solution such that
$*is the same on all the sites. In general, of course,
there may be other solutions corresponding to spatially
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differentiated structures.!

Taking the lattice spacing to be (a), we place the sites
on positions x,, given by

(IL. 9a)

Since the concentration is taken to be the same at all

sites, we put
) =9 .

It is convenient at this point to introduce lattice Fourier
transforms (m—gq). For a quantity A taking on values
A, at site m in our infinite lattice, we define the lattice
Fourier transform A, by

A, =2Am g-tama

X =WHA

(IL. 9b)

(I1.10a)

a %q §
A== f dgA,e'™ (1. 10b)
21 J,

In association with these transformation and inversion
formulas we have the completeness relations

= fx dgett =0 (II.10c)

2T 4 mm! .

a S ig~’)ma _ . Al

on mEn e TZ: 6lg-q -7¥G) . (11. 10d)
The lattice vector ¥, is defined as

3¢, =27/a (II.10e)

Using (I, 7b), we can show that the steady states of
equal concentration p at each site are given by

=9, +uGly] , (I1.11)

where
p= Y. Zlx,) (II.12a)
=q™ i [(mk,)?D - Q] (I1.12b)

The last step in (II, 12) is obtained using (I1.10d). The
summation formula®

2 (y*-m¥)" =£ [cot(my) - (my)] (I1.13a)
m=1
yields a closed form for u:
p=- :1(-1—7; alcot(ra)D?, a?=(ED)'q . (I1,13b)

Note that o is a measure of the ratio of the time scales
for diffusion on the length scale of the site separation
(3¢ D) to that of the bulk kinetics Q. [Care must be
taken in writing equations such as (II. 13b) since quan-
tities such as D, 3, and « are matrices and hence the
ordering of products is important, |

2. Steady states for the AB lattice

For this case the sites of type A are located at x, =ma
and those of type B at x, =ma +b. The steady state con-
centrations are then found to be

d’*(x) = d’h +; e-(m:lcax) [ (mJCa)z D - n]-l GA [dJ(xm)]
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+ e a0 (36, 12D — Q] Gy [Y(x,))] (I1.14)
We let EA and E[]B be the values of the steady state concen-
trations on their respective site types, limiting our-
selves to the case such that for any given site type (4 or
B) the concentrations are the same on all sites of that
type (y, or P). With this we obtain

EA:‘I’A*'“(“GA[JA]“L“(O)GB [EB] ’ (I1. 15a)
$B=-‘ﬁh+u(0) G, [‘EA]‘*F‘(G)GB [JB] ’ (I 15b)
where
490 3 [ iro-al (. 150
ry==~
= —-‘%T alcot(ra)D! (I1.15Q)
p® =gt Z ei"1%a [ (1, 3¢,)2 D - Q™ (I1.15¢€)

[5 Stnad
We have been able to find a closed form for u‘°’ in the
special case b=a/2, for which we obtain
u.‘°’(b=a/2)=—jf—na"csc(na)D" (11.16)

These formulas will be used to study model systems
later.

The concentrations $*(x) at a general point x may be
obtained via (II.7b) from the concentrations ¥, and ¥
on the sites. Thus our partial differential system has
been reduced to a set of nonlinear algebraic equations,
(I1.15a) and (11, 15b) and similarly for Eq. (II,11) in the
AA lattice case,

C. Stability of steady states

Consider the stability of the system to small pertur-
bations ¢ from the steady state concentrations y*:

P, ) =9 ) + olx, 1) . (I1.17)

Linearizing in ¢ about the steady state $*(x), we have

%?=[DV2+Q]¢+L(x)¢> , (I1.18)
L(x)=) Ty 0lx—xn) , (I1.19)
T, = (G, /a)y* ) * (11. 20)

In Eq. (II.20) the matrix I', is evaluated at the steady
state concentration y*, Equation (II.18) can be trans-
formed to the integral equation

1
o, ) =T(x, )+ E f dt'Z(x—xm,t -t Lo, D,
m ~0

(II. 21)

Tlx, t) =[ de' Bx-x", 1) p(x",0) . (11, 22)

Equation (II, 21) is our starting point for investigating
the asymptotic stability properties of the system,
1. AA lattice

We inzestigate the stability of the symmetric state
$*(x,,) =9 and hence T, is independent of nz;
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r,-T . (1L 23)

Since ¢ at arbitrary x may be obtained from ¢(x, 0) and
¢ (xn, 1), we focus our attention on ¢(x,,?). If we take
Laplace transforms (- s) and introduce the notation

i, )= [ ate™ o, (1. 24)
0

then Eq. (II.22) at site m takes the form

b, $) =T (xp, s) +Z EXp =X, S) I‘&)(x,,,., s)

(I1. 25)
Equation (II. 25) is solved by lattice Fourier transform
(m - ¢q) introduced in (II.10). Using the convolution
theorem for these transforms, we see

Ze-“maz i(xm = Xmey S) ra(xm’a S) =Z¢(S) r&;q(s) ?

(11, 26)
and we obtain from (II, 25)
¢ () =[I=E () T Tls) , (11.27)
so that
*fwac N ~
o= [ asli-E ) TI Tols) (IL. 28)

=104C

where the contour of integration is chosen, via ¢, to be
to the right of all singularities of the integrand and
where

E.(s)= 2 Elx,, s)e™ (1L, 29)

prayi

The stability of the system is determined by the location
of the poles of a>q(s) in the s-plane, Intheabsence of any
local reactions, I'=0, these poles are seen to be identi-
cal with those of 'i‘,(s). Since the bulk is assumed to be
stable, we see that instability behavior, i.e., the pres-
ence of poles in @,(s) in the right half-plane, can only
arise from the factor [1 - £,(s) I'|*. These poles s(q)
are the solutions of

-~

det[I-E (s)T]=0, (1. 30)

the characteristic equation for our system.

Let us now derive an explicit expression for i,(s).
First we note that we are using two types of Fourier
transforms in this work. A continuous transform de-
fined by

Alx) =(2m)™ f " A, ot

I

(11. 31)
A, = f dxAlx)e™

and the lattice Fourier transform defined by Eq. (II.10).
Applying continuous Fourier transform (FT) to Egs.

(I1. 3) and (II. 4) and taking also the Laplace (¢—s) trans-
form, we obtain

2(x, 5) = (2m) f ke (sl + D - Q)" .
[Note that (II. 8b) is obtained as the s—0 limit of this
equation.] For x=x,=na we obtain

(I1. 32)
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ﬁ(x,,, s)=(2n)™ fﬂ dke™™(sl +k?D - Q) (11.33)

Taking the lattice FT of the last equation according to
Eq. (I1.10), we get

B(s)=(2n)t [ ar(s1+#D- Q) Fetwm | (1.39)
a0 n
Here g is limited to no larger than K,(=27/a) but  can

take any value. Equation (II. 10) can then be used to
show that

E(s)=a™ Y [st+ (K, —qPD-Q]"

722 c0

(11. 35)
which is the desired explicit form of Z,(s).

2. AB lattice

The stability analysis for this case is essentially the
same as for the AA lattice and hence details wili not be
given here. If we define

Ta= <%) i’

=),

*p

(I1. 36)

the stability of the system is determined by the sign of
the real part of the roots s(g) of the characteristic equa-
tion

Z,(s|b) Ty

det -
1-Z,(s|0) T

=0, (I1.37)

E (s1b) =a™ ™o 2 " [s1- Q+ (mi, - g?D] .

X ) (1. 38)
Note that Z,(s |b=0) is identical to Z,(s) given in (II. 35),
as arose in the discussion of the A4 lattice.

3. Stability of uniform steady states to uniform
perturbations: The continuum limit

In this section we consider the continuum limit where
the lattice spacing a for a regular array vanishes, In
particular we analyze the stability of such a system with
respect to homogeneous perturbations, that is, ¢(x;0) is
the same in every cell. For the AA lattice this case
corresponds to setting ¢ =0 in Eq. (I, 35) and we write

Eo(s)=a™ 5: [st -9+ (3c,)?D]? .

-

(11, 39)

Uniform steady states are unstable to uniform perturba-
tions if there are roots s of the equation

det{l - Z,(s)I']=0,

with Res > 0. At a critical or marginal stability point
we have at least one root with Res =0, To investigate
deviations in the critical point from its value in the
continuum limit we seek an expansion to solutions of the
stability Eq. (II.40), Formally the continuum limit is
defined by

(I. 40)

alG=g
, a=~0with Igi, lvi<e

(11.41)
a'r=y

b
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where o™ is the number of the sites per unit length.
From Eq. (II. 39) we have to order a?

aZy(s) o (sl - @)™ +a?D/12, (11. 42)
where we have used the relation

D ome=nt/p (11.43)

m=1

Hence we find that in the continuum limit the stability
condition Eq. (II.40) can be written

det[sl—Q-y-(sl-Q)a®D'y/12+-..]=0 . (II.44)

If we let a—~0 in this equation we obtain the characteris-
tic equation for the determination of the stability to
homogeneous perturbations of a system with effective
linearized kinetics (@ +y). Let z,, o), and {a| be the
eigenvalues and corresponding left and right eigenvec-
tors of this stability matrix, i.e.,

@+ ) =z,|@),
(al(ﬂ+y)=(a‘za .

Then with nondegenerate perturbation theory we calcu-
late the first order correction to the eigenvalues s, of
Eq. (II.40) as

(I1.45)

sal@)=z, +3 (a|yDy|a)a? (I1. 46)

In the continuum system the critical point is determined
by the condition Re z, =0 for at least one a. Here the
condition Re s, =0 implies a shift in the critical point
which in the continuum limit ™ G- const (1) is quadratic
in a, the distance between the reactive sites, (2) is qua-
dratic in the local reaction rate terms, and (3) ex-
plicitly involves the diffusion coefficient matrix. As
expected, the shift vanishes with diffusive homogeniza-
tion |D| =, Indeed if we introduce the matrix K, of
inverse penetration lengths K.f =-D1y, we see that the
shift in critical point goes as (K, a)?, that is, as the ra-
tio of the interparticle distance to the reaction-diffu-
sion lengths corresponding to the time scale of the local
kinetics.

111. APPLICATIONS TO MODEL SYSTEMS

The equations derived in Sec. II are now applied to
several model systems chosen to illustrate the coopera-
tive and other aspects of local sites of reaction in a
system maintained far from equilibrium.

A. Product activated enzyme localized on an AA
lattice

In this section we consider a system consisting of a
bulk reacting medium and a periodically distributed ar-
ray of local sites of reaction. The local reactions in-
volve a product activated enzyme step which couples to
the bulk to yield a reaction mechanism with multiple
steady states. This and other effects are possible be-
cause the bulk reactions are maintained out of equilibri-
um, The results are obtained in closed analytical form
and hence describe the phenomena over the complete
range of site densities.,

We consider a model system with bulk reactions

Bimpong-Bota, Nitzan, Ortoleva, and Ross: Instability phenomena in catalytic sites

k
X-D

y

(III, 1)
BA~vic

In the scheme Eq. (III,1) we have put all rate coeffi-
cients equal to % to simplify our analysis,

At lattice sites there occur the reactions

X+E""=E’

’

X+E'RE | (111. 2)
Y+E-E+X

?

In Eq. (III, 2) only the concentrations of the species X
and Y may diffuse. The three forms of the enzyme E,
E', and E"' are localized to the sites, and the total con-
centration at a given site (E'' +E’+E) remains constant.
Assuming that the equilibration between the various
forms of the enzyme is fast and that the total enzyme is
low in concentration, then one can show that the overall
rate of the processes (III, 2) takes the form AX2Y, for
low X concentrations; A is a constant, ¢

In the absence of the localized reactions, the bulk
homogeneous steady states are [see Eq. (III.1)]
X, =0

’

(I11. 3)
Y,=B .
For our system the bulk reaction and diffusion matrices
are given by

D,
Q=-k1, D= o . (I11, 4)

DY
Hence the steady state factor u given in Egs. (II.11)
and (I1,13) is purely diagonal, with diagonal elements
denoted p, and u,, and we obtain from Eq. (II.11) the

steady state equations
X= X7 (II1. 5)
Y=B-ayX2Y , (I1L. 6)

where A is the local rate constant.
found to have the solution

These equations are

X=0, Y=B (Im.7)
and a pair of solutions

T =1 \/ 2 _ pY -1

X, =3[Bu/ ) 2V (B, /1,)% - 400,), —_

Y. =(ap, X))

The branches of steady states (+) are strictly nonequilib-
rium states existing beyond a critical value B, of B
given by

B, =2(, /Au2)/?

Let us now examine the site density dependence of B,
for the possibility of cooperative phenomena among the
local sites.

(111. 9)

From (II, 13b) we obtain
0% =a%k /4D, (I11.10)

Thus Eqs. (III.9) and (III, 10) give the explicit depen-
dence of B, on a. In order to interpret this result we

Wy =ak™ g, cotoy ,

J. Chem. Phys., Vol. 66, No. 8, 15 April 1977
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o
©
o

10k -
o : Dx<<dy -
8
7
B ©
5
4
3
2
!
-3
in (1/70)
FIG. 1, Critical concentration B, necessary for multiple steady

states, plotted (full line) against the natural logarithm of the
density of sites for model system (iIl. 1) for the case D, <D,
Dashed and dotted lines are for the continuum limit and isolated
site limit, respectively. Values of parameters used are
D,=0,01, D,;=100, k=4.

first calculate the extreme limits of low and high site
density.

For the present problem the continuum limit takes
the form a—0, Aa™ —const <, Putting (III, 10) into
(IIL. 9) and retaining terms to order a? we obtain

B, ~ 2(ak/N'2[1 +a?(k2 - 2k3)] ,

¢ b (II1.11)
where the bulk inverse penetration lengths k; are given

by
ky=(k/D)!/? (II1.12)

Equation (III, 11) shows the interesting possibility that
the discreteness of the sites, appearing there as a cor-
rection to the continuum limit, may increase/decrease
the values of critical parameter depending on the nature
of the site interaction (kg Z 2&%).

In the low density limit a—~ < we use Eq. (II.12a) as
our starting point. For the present model the matrix
Z(x) [see (I1I. 8a)] is diagonal and is easily calculated.
Its diagonal elements Z,(x) are given by

Z,(x) =(2k, D;) e *i11} (IT1.13)

Using this result and Eq. (II,12a) we neglect terms of
order (¢™*)? and higher and obtain

B~ 24k D,/ND,)"/*(1 +e™° - 2¢™) . (Il.14)

This result may be interpreted in terms of the expected
cooperative aspects of the multiple site problem. As the
intersite distance a decreases from infinity the sites be-
gin to interact in that the autocatalytic nature of the pro-
cess at each site is augmented by sharing the X mole-
cules produced at neighboring sites. Thus as a de-
creases we expect that B, will decrease, This effect is
manifested by the — 2¢™* term in (I, 14), However, if
Dy > Dy, then before the cooperative sharing of X is
sensed at a given site the cooperative depletion of Y at
that site by its neighboring sites occurs and hence B,
first increases as the density a™ increases from zero,
as seen in the +¢™° term in Eq. (ll.14). Eventually,
however, as a decreases (i.e., the density increases)
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the cooperativity associated with the X species becomes
dominant and thus B, attains a maximum and then starts
to decrease for the Dy > Dy case. These ideas are
demonstrated in Figs. 1 and 2. In these figures we also
graph the results for weakly interacting sites (IIL, 14)
and for the continuum limit (I1I. 11) for comparison with
the exact result [Eqs. (I1.9) and (II,10)].

The case Dy >> Dy allows for an interesting phenome-
non., Figure 1 may be viewed as a phase diagram in the
(B, Inn) plane (2 =a™ is the density of sites). In the re-
gion B> B, we may have three steady states (one of
which, X_, is probably unstable). If we look at the
available states as a function of density for fixed B we
may run into the possibility, as shown in Fig. 1 along
the line 1-2, that as the density of sites increases from
a given point labeled 1 there may be an intermediate re-
gion of density corresponding to that segment of the line
{(denoted 1'-2') where only one state is available, that
of no X.

B. Oscillatory scheme with localized Prigogine-Lefever
reactions

In an earlier paper® we demonstrated the existence of
marginal stability oscillations at a localized site by us-
ing for the reactions at that site a model mechanism
proposed by Prigogine and Lefever.” We consider for
the present case such reactions localized at all sites of
the AA lattice and show how the marginal stability point
varies as a function of the site density,

Consider an infinite system with no reactions in the
bulk, F=0[see Eq. (II.1)]. At the steady state $* of
our system with no bulk reactions, the net rate of
change of all species at the site must vanish, i.e,,
G[y*]=0; this implies that the concentrations are uni-
formly distributed. For the nonreacting bulk with equal
diagonal diffusion the propagator i(x,,,; s) takes the form
E(xn; sN. From (I, 32) we have

i(xm;s) =f Z—: e *m(s 4+ k2 D)
- (11, 15)

__ 1 -(s/DN/2
= 2(sD)I7? e lxm' .

The ¢ =0 lattice Fourier transform Z, [see (II.10a)] is
given by

1.0 3
.9 —
.8 =
7 —
B. 6 =
5 n
4 =
3 —
.2 =
N -
1 | P s | J
-2 -1 0] | 2 3 4 5
4n (1/q)
FIG. 2. Same as in Fig. 1 but for the case D, > D, withD,=100,
Dy=1, k=4.
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FIG, 3. Variation of marginal stability concentration B, with

a/D for model system (II. 22), with D,=D,=D, r=1.

e(s)_ 1 (1+e-asl)
=0\ T 9T sD (1 — ea’s/D)

We now use this result for the analysis of the present
mechanism,

(111.16)

At the local sites there occur the Prigogine- Lefever
reactions’

A-X,
B+X=Y+D,
2X+Y-3X ,

X-E .

(II1.17)

This mechanism in a homogeneous phase, with A, B, D,
and E kept constant, is known to give limit cycle oscilla-
tion in X and Y. Thus if this mechanism is localized at
sites, we expect that cooperative effects among the

sites will alter the conditions under which oscillation
may occur, We keep A, B, D, andE constant in the
present calculations and focus our attention on the
species X and Y, ¢=[X, Y], which may diffuse and
evolve in time. For the mechanism in Eq. (III.17) we
have

A-BX+X*v-X

G=x (I11.18)

Bx-Xx%y

where we have set all rate coefficients to A, The steady
states for the system (bulk and sites) are obtained by
setting G =0, which gives

X*=4A,
Y*=B/A ,

For simplicity we take A =1, in which case the matrix
T of the linearized local reactions becomes

(II1.19)

B-1 1
L=x . (111, 20)

-B -1

The characteristic equation (II, 30) for the stability ei-
genvalue s may be written

det[E:1(s)-T]=0. (111, 21)

Let 6+iw be the eigenvalues of the matrix I'. Then for
the simple case of equal and diagonal diffusion consid-
ered here we have

E(s)=b6%iw | (1. 22)
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which from (III.16) is seen to be a transcendental equa-
tion for s. We seek the critical value of B, labeled B,

for marginal stability oscillations and hence the condi-

tion for which s is a pure imaginary number

s =iw, (111. 23)

For the mechanism Eq. (III.19) the quantities 6 and w
are easily calculated by finding the eigenvalues of T in
(I, 20) and we have

6=MB-2)/2 , (111, 24)
o -T2 |

Equation (III. 22) with 6 and « given by Eq. (IIl.14) was
solved numerically to obtain the critical value of B, B,
(see Fig. 3). For a—0 we obtain the result B, =2 cor-
responding to the continuum value found previously.”
For the independent site case a—~ we also find the pre-
viously obtained value B, =2 +v 2 for the isolated site,®
The maximum in the calculated curve for the critical
value of B is a result of the cooperativity among the
catalytic sites. Calculations for unequal diffusion coef-
ficients were not done; however for such cases we may
expect similar findings as obtained for the product ac-
tivated enzyme mechanism, of Sec. III. A, where pro-
nounced peaks in the critical parameter were found.

C. AB lattice

In this section we consider a system with two types
of local sites of reaction, An interesting feature of
such a system is that the isolated single sites of either
type (for the mechanism chosen) do not sustain new far-
from-equilibrium steady states, whereas the symbiotic
relation between the two types of sites can bring about
new steady states.

Consider the system to have two species X and Y.
These undergo first order decay in the bulk medium and
for simplicity we take the bulk rate constants equal to
k; hence Q=-kl. The species X and Y are synthesized
at the local sites only and are chemically coupled such
that each controls the production rate of the other,
More explicitly the local rate expressions G, and Gz
on sites of type A and B, respectively, [see Eq. (II, 14)]
are taken to be of the form

GAZAAfA(Y)[é], GB‘:)\BJ[B(X)[?] .

This scheme was used by Shymko and Glass! for their
treatment of two sites. In Eq. (II.25) A, and Xz are
production constants (products of a rate constant and
substrate concentrations). Substituting the given forms
of the G’s in (II.15), we have

(1. 25)

Xh=p@r £,(¥D, (111 26a)
Yi=pQN f(X5), (I, 26b)
Xp=p®n, £, (YD, (I1I. 26¢)
Yr=u® 2 f (X3 . (I11. 264)

We see that the steady state concentrations XJ, Y5 are
determined by Y* and X} and that X7 and Y} obey a closed
closed set of equations (III.6b) and (II.6¢). We now con-
sider a few specific choices of f, and fz which yield new
far-from-equilibrium states,

J. Chem. Phys., Vol. 66, No. 8, 15 April 1977

Downloaded 03 Feb 2004 to 132.66.16.12. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Bimpong-Bota, Nitzan, Ortoleva, and Ross: Instability phenomena in catalytic sites

SR N —
—_——

A 4 A u
FIG. 4. (a) Schematic plot of Eqs, (I, 25)~(II, 27) showing
that the solutions of Eqs, (III.25) and (III, 26) lie on the line
x=y and that there may be multiple solutions, (b) Steady states
¥* (=x, ) plotted schematically as a function of the production
constant A, Note the existence of multiple steady state solu-
tions in the region A, <A <A,

For the case of mutual activation we make the further
simplification that f;* and fa have the same functional
form f and also that the production constants are equal,
A, =)z =X, Writing x =Xj, y =Y., we see that Egs.

(I1. 26b) and (III. 26¢) become

x =xp‘(0)f(y) ,
y=ApQf(x) .

where from (II.18) u® is given for equal diagonal
and D and for the case b=a/2 by

u® =[2(eD)/2sinh({avE/D)]? .

Shymko and Glass* considered a system of two localized
sites in which they took the function f to be a Hill func-
tion. Such a control dependence has been observed in

a number of different biochemical systems, !*!! The
qualitative dynamics of systems with rates given by
such functions are insensitive to the detailed shape of
the sigmoidal function () and hence in our treatment
we take f(¥) to be a piecewise smooth function of the
form

(I11. 27)
(111, 28)

(L. 29)

1, P>y +€
F@=fo+@-d)A-f)e, H<p<yy+e, (111. 30)
fU! ¢<¢0,

where f,, ¥, and € are constants [see Fig. 4(a)]. A
plot of (III, 27) and (III. 28) in the x, y plane shows that
the only solutions are symmetric, x =y. From Fig,
4(a) we see that there may be 1, 2, or 3 steady states,
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For three steady state solutions the production constant
A must satisfy

NSASN, (II1. 31)
where

A= (o +€)/en'® (111 32)

A=Y/ fon® (I11. 33)

Figure 4(b) shows a schematic plot of the variation of
the steady states with the production constant A, Be-
tween the values A, and A;, there are three steady
states. Choosing for example f,=0.01, =1, €=0.1,
k=1, D=1, and b =a/2, we use (II, 16) in (II. 32) and
(I1, 33) to obtain

A, =200 sinh(a/2) ,
A;=22sinh(a/2) ,

(1. 34)
(111, 35)

for the present case of equal diagonal reaction (Q=-%1)
and diffusion (D=D1), A plot of In{},} and In(},) against
the density of sites, a™, is shown in Fig, 5. This plot
serves as a phase diagram for the system. Only the
branch of steady states 1 [labeled in Fig. 4(b)] exists
in region I and similarly for branch 3 in III. In region
II the system may be found in either state 1 or 3 (state
2 is expected to be unstable). Thus we have here an
analogous situation to that encountered for the product
activated enzyme mechanism, Fig. 1. For given ex-
ternal constraints, here the quantity A which depends
on substrate concentration, the system has available
one stationary state at low density of catalytic sites,
three stationary states (two stable, one unstable) at in
termediate densities, and one stationary state at high
density. From (I, 29) we see that as a—<, p'® van-
ishes exponentially and hence from (III. 27) and (III. 28)
we see that the concentrations of X and Y thus also van-
ish exponentially according to

[
d .2

|| J
.3 .4 .5

FIG. 5. A nonequilibrium phase diagram in the (in}, o)
plane. The demarcation lines defining the various regions,
InX; and In A, are termination (or bifurcation) points for the
various branches shown in Fig. 4(b),
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*_ ok Afy -1/2¥F7Ba
Xp=Y3 o W‘Zq‘ﬁ e . (111, 36)
This behavior is seen in the leftmost part of region I
in Fig. 5 and is due to the strong interdependence of the
two species because of the mutual activation of their
rates of formation.

IV. DISCUSSION

In this paper we have analyzed the stability proper-
ties of systems with simple bulk reaction and transport
and with local sites on which nonlinear chemical pro-
cesses take place, We presented a general formulation
of an approach to the stability analysis of such systems
based on integral equations for the site concentrations
in which a propagator describes the linear transport
and reaction dynamics of the bulk. This general for-
malism was applied to simple one-dimensional systems
for which we demonstrate that the marginal stability
points depend in a nontrivial way on the density of local
sites and bulk reaction-diffusional coupling between
them. In the almost homogeneous limit the shift in the
marginal stability points for a general system is given
in Eq. (II. 46) and is inversely proportional to the diffu-
sion matrix and to the square of density of sites. The
homogeneous limit is taken by keeping the product of
density and local rates constant as the density goes to
infinity. This is the physically interesting limit since
it leads to a finite rate contribution in the continuum
limit. Note for example in Eq. (II.44) how the term
¥(=a™ I, where I is the linearized local rate) plays the
role of an effective bulk rate contribution as is expected
in the continuum limit, This is discussed in greater
detail in Ref. 8. (In that work the full three-dimension-
al aspects of catalyst particle dynamics is discussed
and effective rate and transport properties are calcu-
lated.) Far from the continuum limit the shift in criti-
cal constraints may vary monotonically or can pass
through extrema as the distance between sites is varied.
As is seen clearly from the mechanism in Sec. II. A
this type of behavior can depend qualitatively on the bulk
properties such as the ratio of diffusion coefficients.
For given constraints the number of available stationary
states or the possibility for oscillation can be varied
with changes in the density of catalytic sites.

The concept of localized reactions is important both
in living organisms and in chemical reactor systems.
Generally we see that interesting effects may arise in
problems of heterogeneous catalysis when the arrange-
ment of catalytic sites becomes a variable to be con-
sidered, This paper is a beginning in analyzing the far
from equilibrium properties of such systems with par-
ticular emphasis on this variable, Further develop-
ments should involve application to thre&-dimensional
systems® with attention given not only to the density of
sites but also to the geometry of their packing.

A random distribution is typically the case for the
dispersion of catalyst particles in a solution (although

Bimpong-Bota, Nitzan, Ortoleva, and Ross: Instability phenomena in catalytic sites

experiments with styrofoam particles in water have
shown that electrical effects can lead to a lattice struc-
ture). For a random distribution one might expect a
local clustering to cause a local instability under condi-~
tions for which the periodic array is stable. The effects
of the randomness of the catalyst site distribution is
still an open question. An ensemble approach for deal-
ing with such problems has been introduced in Ref. 8.
Generally one expects that in nonlinear systems a ran-
dom input to the problem would yield a change in the
location and properties of a point of instability from the
values of these quantities as predicted by averaged
equations.
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