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The renormalization-group (RG) method is applied to the problem of formation of a localized state of a
particle moving in a given potential. It is shown that RG transformation on the particle’s Green’s function
can be performed exactly. The fixed-point equations yield information on the critical binding strength, while
the transformation equations near the fixed points give scaling laws and critical exponents, e.g., for the
dependence of the localization radius on the energy and the potential strength. The general theory is
illustrated by considering the simplest case of the Slater-Koster problem in detail. We find that it is possible
to take all the irrelevant variables into account and thus obtain the exact result for the critical binding point.
Critical exponents and scaling laws are, however, universal in character. The method is then extended to the
case of motion in random potentials, and some applications are pointed out. In particular it is shown that the
RG properties of the averaged absolute value squared (<] G|?>) of the Green’s function do not
correspond to a simple second-order phase transition. The analysis illustrates certain features of RG methods
which have not heretofore been encountered in other problems and which are likely to be found in treatments
of disordered materials. In particular, the runaway behavior observed in the RG transformation of { G} and
<|G |*> as well as in many random-spin systems, might be associated with the formation of bound states
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in the band tail for any amount of randomness.

I. INTRODUCTION

Since its introduction by Wilson into the field
of critical phenomena,' renormalization-group
(RG) theory has been extensively studied.>”® Most
of the work to date has been focused on using the
theory to treat various problems in phase transi-
tions and critical phenomena, though some appli-
cations in the theory of polymers (excluded volume
problem)* and percolation theory® have been pub-
lished. The close connection of both the excluded
volume problem®'” and percolation theory”'® with the
quantum theory of motion in a random potential® sug-
gests that RG theory may be useful also for this last
problem, and an attempt in this direction has been
made. '°

In this paper we study a new application of RG
theory—to the problem of critical binding. We
consider a particle moving on an infinite lattice
under the influence of a given potential. If the
strength of the potential is characterized by a
given parameter, it is of interest to determine
the critical value of the parameter that gives rise
to a bound state. The applicability of RG theory
to this problem is related to the fact that this is
actually a question about the behavior of the wave
functions at large distances from the binding cen-
ter: A potential which does not give rise to a
bound state does not affect the long-distance be-
havior of the (free-particle) wave functions, while
a potential which leads to at least one bound state
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does. We therefore expect that under conditions
where no bound state exists, the potential is an
irrelevant variable of the RG transformation with
respect to the free-particle fixed point, and that
averaging out short-wavelength information leads
to a free-particle Hamiltonian. At the critical
value of the binding-strength parameter, the po-
tential should become a relevant variable. The
RG equations around the corresponding fixed point
then contain information about the critical binding
region (such as the way in which the localization
radius becomes infinite when the binding strength
approaches its critical value from above).

The Hamiltonian for the problem is taken to be
(in the lattice-site representation)

=32 i 2 Viala, (L.1)

where a} and a; are creation and annihilation oper-
ators for the particle on site fi and where Jzz=J
for nearest neighbors and is zero otherwise. It is
possible to include non-nearest-neighbor terms
at the cost of more tedious algebra. The first
term in (1.1) corresponds to a single-band model
for the motion of a particle on a pure (periodic)
lattice (or, in the continuous limit, to the kinetic
energy of a free particle), while the second part
is the imposed local potential. A matrix element
of the corresponding Green’s function can be rep-
resented as a correlation function of a classical
field by employing the identity for multivariate
Gaussian variables:
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(1.4)

In Eq. (1.4) d is the dimensionality and E,- corre-
sponds to the sum over nearest neighbors. « is a
free parameter which can be chosen so that the
integrals in Egs. (1.3) and (1.4) converge where-
ever G is analytic. This feature of the theory is
important in treating disordered systems, since,
without @, averages of G, etc., over the random
potentials are undefined. For simplicity we have
specialized here to a d -dimensional generalization
of a simple cubic lattice. In g space U{X] takes
the form

vix] =% fa {E ~2dJ+ 2J<d _Z cos(ZHq,))]XaX_a

-3 f J' VoganXeXe s (1.5)
Ty
where f 3= f 1d?q and where the transformation is

Xa,:fxq_ezrﬁ-i’

¢ (1.8)
X3= ine-zﬁi-i‘

i

The normalization is chosen so § is dimension-
less, and the lattice spacing is 2r. ¢, is the com-
ponent of the vector ¢ along the ith axis. Defining
E and V to be

E=(E+2dJ)/(21)%,

(1.7)
V=V/2(21)%,

and making the effective-mass approximation
about the lower band edge we obtain

U=%L (E-flz)sz-a-J: J; VogarXeXe . (1.8)

The neglected terms are of higher order in ¢* and
are irrelevant under the RG transformation. They
are not expected to affect any universal feature of
the critical-binding problem, but are important
(and are reintroduced) in determining the exact
value of the critical-binding strength. Equation
(1.8) can also be viewed as the starting point for
the critical-binding problem in the continuous
limit.

In the language of the theory of critical phenom-
ena, Egs. (1.2)-(1.5) and (1.8) constitute a gen-
eralized Gaussian model with a nonisotropic
Hamiltonian. Recently, Wegner!! has discussed
the influence of adding such nonisotropic terms
to an otherwise isotropic Hamiltonian and showed
that this leads to renormalization of the scaling
fields, namely, to a change in the critical tem-
perature. In the model discussed here, however,
expanding the parameter space on which H is de-
fined by including the new anisotropic term leads
to a new fixed point which plays a crucial role in
the critical-binding problem.

The analysis described above is the starting
point for the use of RG methods in problems in-
volving single-particle Hamiltonians in contrast
to problems involving Ising-like models arising
in applications to critical phenomena. This gen-
eralization of RG methods is a prerequisite to at-
tempts at applying it to disordered quantum-me-
chanical systems. In this paper we first study the
nonrandom case with special attention given to the
single-impurity problem. This simple applica-
tion serves to illustrate a number of novel fea-
tures of the RG method as applied to single-parti-
cle quantum-mechanical Hamiltonians. First, it
represents one of the very few cases in which a
nontrivial solution to the RG transformations is
obtained exactly, thereby generating a means for
testing various hypotheses concerning approxi-
mations in general cases and providing a useful
example of the rather involved theory. Second,
the calculation shows how a “critical phenome-
non,” the occurrence of a bound state, is associ-
ated with unstable fixed points of the RG transfor-
mation, rather than the usual cases where the
saddle-point-type fixed points are associated with
the physical phenomena. Third, it is demon-
strated that all the irrelevant variables must be
included to obtain the critical-binding criterion
correctly.

The present approach can be easily extended to
include the case where V is a random potential.
In this case we study the transformation proper-
ties of the moments of this random potential rather
than the potential itself. To discuss the localiza-
tion problem the RG transformation is applied to
(| G|y?—the average of the absolute value squared
of the Green's function. In contrast to the single-
impurity problem, a ruraway behavior is obtained
which may possibly indicate that the transition to
localization as the randomness increases is either
smeared or of the first-order type.

The RG method can also be applied to the calcu-
lation of density of states in disordered systems.
Some comments on this possibility are made at the
end of Sec. V (A).
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In the following sections we give a detailed dis-
cussion of the critical-localization problem within
the context of RG theory. A general treatment,
which is applicable for arbitrary short-range po-
tentials, is provided in Sec. II. In Sec. III we
specialize the general theory to the simplest case
of the single-impurity problem, and in Sec. IV we
study the role of the irrelevant variables and ob-
tain the exact solution for the Slater-Koster prob-
lem!? (localization of an impurity state in a periodic
lattice). Finally, in Sec. V we outline the exten-
sion of this method to motion in a random poten-
tial and discuss the behavior of the averaged quan-
tities (G) and (|G |*) under the RG transformation.

II. RG TRANSFORMATION

Let the g-space Green’s function be written
Gi&""zlf dXX g Xpe V' E), (2.1)
1
== [u )x_—ffv_ XXy, (2.2)
2faz(q *a-) | Veaa Xee,

u,(q)=E -¢*

Strictly speaking the parameter a should be re-
tained here as in (1.2) and (1.3) to insure conver-
gence, but this parameter can be shown to cancel
at the end of the calculations that are presented
herein, Focusing attention on the “partition func-
tion,”

z fdxexp(

uz(Q)XaX.a f_[V-(qoa)Xar'> ’

(2.3)

the RG transformation is performed with the by
now conventional steps: (a) Integrate over all X,
with 1/s<g=1(s>1). (b) Redefine new momentum
variables ¢’ = sq which have the same cutoff 1 as
the old variable ¢ in the original Hamiltonian. (c)
Redefine the field variables X, to make the ¢
term in uz(q) invariant under the transformation.
As in the simple Gaussian model, no anomalous
dimensions appear in this model, and X},=s™(4*2/2
X,.
In carrying out step (a) we encounter a simple
perturbation expansion which can easily be re-
summed to all orders. Let us rewrite Eq. (2.3)

i —

a B R

FIG. 1. Typical diagram in the expansion Eq. (2.5).

as
" 1 ”
Z=Igf dXexp(-Efa u2(q)X.3X_a>1, (2.4a)
’
1'/ dXexp( ; uz(q)XaX_
f f V_,M,X-Xa> ,  (2.4p)
1
f dx**XP( 3 uz(q)X,l .q) , (2.4¢)
where the general notation V3, is used instead of

V (e+e 2S the latter is appropriate only for local
operators in n space. The general definition is

@t' Vl§:>=V§1,§:=Z:z;e"ii°‘ Vage' P8 . (2.5)
For local operators Vgg = Vzdzz and
Vg = V-a.a"-‘(—al V]:l') . (2.6)

Also in Egs. (2.4) f denotes mtegratxon over
variables 0<g =1/s, while f denotes integration
over variables 1/s<g=1. The I} terms in Eq.
(2.4a) can be disregarded when RG transformation
on G,,. is being considered. I can be expanded in
powers of V in the form

1=exp(znjn~1! w,), (2.7)

where W, stands for the contribution of all linked
diagrams of order n. A typical such diagram is
shown in Fig. 1. A straight line carrying momen-
tum P stands for u,(P)™. A dotted line, between

q and P stands for V_;, 5. Internal momenta are
integrated from s™ to 1. External momenta are
integrated from O to s™. Thus the diagram in Fig.
1 is given by

AT

Now define the projected propagator

f -ql-P V-Pl-p2 -B,-B
Bpet u, (P )uz(PJ

A= j, |B)uy(p) B | .

&
ﬂﬁ _,5 = XgXy (2.8)

(2.9)
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With this notation, the expression (2.8) takes
the compact form

f_’fa" (-q|(VAY™V|Q ) X X - (2.10)
e Jv

It is easy to realize that all the diagrams in order
n are equivalent and that there are 2"'n! such
equivalent diagrams. Equation (2.7) therefore
becomes

1=exp<;2”"_[T fa (-4 (VAo)HVla'>XaX€>

n n = -
=exp<J: L (-—q{V|q')X€X5.>,
d ¢
where

V=(1-2VA)"V.

(2.11)

(2.12)

This completes step (a) of the RG transformation.
After this step the “partition function” takes the
form

n - 1
z= | dXexp(-E [ walaax
q

n ” —
+ j f V_aa:XaXa:) .
i Jr

Here the factor I}, which appears in (2.4a), has
been disregarded as discussed above. Steps (b)
and (c) can now be easily performed. The final
form of the transformed “partition function” is
idential to (2.3) with u}(g) replacing u,(g) and

(2.13)

Vi ¢ replacing V_; o, where

uy(q) = s%u,(q/s) (2.14a)
and

V' =s24(1 - 2VA,)V. (2.14b)

These are the RG equations for a transformation
which involves scaling by a factor s. It is conve-
nient to rewrite these equations for an infinitesi-
mal transformation s =1+ 5¢. Recalling that u,(q)
is of the form E - ¢%+0(q?), it is evident that the
O(g*) terms are irrelevant in Wilson’s sense.
Equation (2.14a) then leads to the differential equa-
tion for E:

dE

L2 -2k,

ai (2.15)

which is the usual Gaussian equation. We see that
E =0 must be satisfied at any fixed point. To ob-
tain a differential equation from Eq. (2.14b) we

note that A, Eq. (2.9), takes the form
Ay=5t(E -1)1Q, (2.16)

where @ is the projection operator

Q= [ aa|iXi], (2.17)
in which I is a unit vector and the integration is
over all the d — 1 angular coordinates. The differ-
ential RG equation for V then becomes (in an oper-
ator form)

av 2

ar ==V g

VQV. (2.18)

The following points should be noted:

(a) Equations (2.15) and (2.18) are the exact RG
equations for the relevant variables, and these
equations are valid for arbitrary short-ranged po-
tentials V.

(b) In addition to the Gaussian fixed point
V=E=0, there may be other fixed points as is
evident from Eq. (2.18).

(¢) d=2 emerges, as expected, as the critical
dimensionality. For d> 2 the Gaussian fixed point,
E=V=0, is stable in the V direction, while for
d<2 it is unstable. This is related to the fact that
small perturbations on a free particle Hamiltonian
cannot cause localization in dimensionality d> 2
but they can for d<2. This statement is clarified
in Sec. III.

(d) Though the initial interaction V is local in
n space, it is obvious from Eq. (2.18) that nonlocal
terms may be generated by the transformation.
The fixed-point equation is a matrix equation

(2-a)@|v+|§)=2 [ aa@| v+ DA|v+[a),
(2.19)

and in general is difficult to solve. The single-
impurity case is treated in Sec. III to illustrate
the new features of the RG transformation (2.15)
and (2.18). This case is simple because Eq. (2.19)
then becomes a single algebraic equation. In fact,
the single-impurity problem is a useful example
because the RG equations for the irrelevant vari-
ables can likewise be exactly solved for this case
(Sec. 1V).

HI. SINGLE-IMPURITY PROBLEM

In this section we consider the implications of
the RG equations (2.15) and (2.18) for the case of a
single impurity in an otherwise homogeneous
cubic lattice. If the impurity is located at the
point m we have

Vg=Vag, (3.1)
@|v|§)=vexpli@-4d)- ], (3.2)

j ae@|v|IXI|v[a'y = vk, explid - @)+ ], (3.3)

where K, is the surface area of a unit d-dimen-
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sional sphere. The fixed-point equation (2.19) then
becomes a simple algebraic equation for the pa-
rameter V whose solutions are V*=0 and

V*=(2 -d)/2K,. (3.4)

In terms of the physical parameters E and V we
then have the fixed points: E*=-2dJ,V*=0 (Gaus-
sian or free-particle-like) and E*= - 2dJ,V*
=(21)%J(2 -d)/K,. We denote these points by F,
and F,, respectively. Obviously, if we define our
momentum variable to correspond to the effec-
tive-mass approximation about the upper band
edge, we get similar results with both E*and 7*
changing their signs.

The interpretation of these results is readily
made by referring to the flow diagram given in
Fig. 2. From Fig. 2(a) we see that for d<2 a
negative perturbation V of any size is sufficient
to change drastically the long-distance behavior
of the free-particle state, while Fig. 2(b) shows
that for d>2 a small negative impurity potential
is not sufficient to change what is effectively (at
long distances) a free-particle state. This cor-
responds to the fact that for d< 2 any binding per-
turbation on a free-particle Hamiltonian is suf-
ficient to create at least one bound state, while
for d> 2 the impurity potential must be less than
a negative critical value for a local state to
emerge from the bottom of the band.!® It is temp-
ting to associate the point F, for d> 2 with this
critical potential. We show below that this inter-
pretation is essentially correct.

From the linearized forms of the RG equations
we can find scaling relations for the Green’s func-
tion and for the characteristic length. This length
plays the role of the correlation length of statisti-
cal mechanics and has the same meaning; it des-
cribes the effective range of the impurity poten-
tial. In the case of localization, this is the local-
ization radius and it diverges at the critical-bind-
ing point. To see this, consider again the RG
equations,

dE

—— =2E

dat ’

av 2K (3:5)
—_— - - d 2

g =2-AV - v

and their linearized form (for d#+ 2)

d OF 2 0\ /6E
E<5V>=(B c)(ﬁv)’ (3.6)

with

B=-2K,V*? (3.7a)
and

C=2-d-4K,V*. (3.7b)

lN_“

J
|

(@) (b)

FIG. 2. Flow diagrams for the solutions of Eq. (3.5).
(a) d<2; (b)yd>2,

Near F,, V,,1 =0 and the solutions of the linearized
equations are

SE=0Ee* (3.8)
and

BV =8V ez, (3.9)
Near F,,V} = (2 -d)/2K,, and

8E=8E e, (3.10)
while

6V ={6Vy+[(2 - d)/2K,(4 -d)]6E } et
-[(2-ad)?/2K,(4 - d)]6Ee* for d+4,
(3.11a)
bV =0V,e? — (4/K,)6E te® ford=4.  (3.11b)

For d+4 it is convenient to define the scaling
variable

W=V+[(2-d)?/2K,(4 -d)]E, (3.12)

which scales near F, like §W=5W,e™ 2%, From

these results we can derive the following scaling

relations for the Green’s function (for d+2):
Near F,,

G(k; E;6V)=e* G (e'k; e* E;e' V),
(3.13)

where & stands for both the £ and 2’ indices.
Near F,, d+4,

G(k;E; 5W)= e(z-d)tG(etk;eztE;e-(z-d)tGW)
(3.14)

(where W= W - W3,), while near F,, for d=4,
G(k;E;6V)=e*G(e'k; e E; e 2 5V
- te?[(2 - d)?/2K,]E).
(3.15)

All these relations are, of course, special
approximate cases of the result

G(k; Ey; Vo3 ) =2 G(etk; e E; V(E); J,(t),

(3.16)
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where V(¢) is the solution of (3.5) with the initial
value V, and with E = E ¢?* (see Sec. IV for a dis-
cussion of the solution of a general equation of
this kind), and similarly J,(¢) are the scaled ir-
relevant variables with J9 their initial values.

To obtain information about the characteristic
length £ we use the general scaling rule for length
variables

£(t)=e"£(0) (3.17)
to obtain
£(Eq, V)= et E(E e, V(). (3.18)

Focusing attention on the band edge E =0, we get

in the linear region
EV*=V)=elE[(V¥ -V )e™], d+2, (3.19)

where for d< 2 the fixed point relevant to critical
binding is F, and

rY=2-d, (3.20)
while for d>2 it is F, and
y=d-2. (3.21)

Equations (3.19)-(3.21) lead to a relation for the
way £ diverges when V* -V -0+,

E(V* -V (V* v )2l g#2, (3.22)

The case d=2 is similar to the case d=4 in the
S* model for the theory of critical phenomena.
Here the linear approximation cannot be used.
Equation (3.5) takes the form (for E=0)

av

Et—=_2K4Vz’ (3.23)
with the solution

V()= (1/Vy+ 2K, 8)™. (3.24)
The scaling relation

E(Vo)=ete[(1/V,+ 2K,)™] (3.25)
then leads to

E(Vy) e et /4mVo, (3.26)

Other scaling relations are also easily obtained.
Most trivially, since the energy scales like ¢!
while distances scale like e™f, it follows that
£~ |E;|™/2, where E, is the energy of the local
state below the band edge. Similarly, the fact that
8V=V* -V, scales for d#2 like e'*"2'* and E scales
like e leads to the relation 5V~ | E|'4-2!/2 between
the binding potential (measured from its critical
value) and the energy of the local impurity state
(measured from the band edge). Similar argu-
ments for d=2 lead to (V)™ ~1n|E|. All these
relations are in agreement with the results ob-
tained by utilizing the relation
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1 p(E’) .,
; -pf dE

£ (3.27)

between the energy of the local state E<O and the
impurity potential V[p(E) is the density of states
of the pure material and P denotes the Cauchy
principal value]. It is interesting to note that this
information is obtained by considering a totally
unstable fixed point rather than the saddle-point-
type fixed point as is usually the case in the theory
of phase transitions.

To conclude this section we note that for one-
dimensional motion there is a fixed point, stable
in the V direction, with a positive (repulsive) V,
and that the Gaussian fixed point is unstable in this
case. This reflects the fact that the effect of (even
infinitesimally small) repulsive potential can, in
one dimension, be carried to infinity (e.g., for any
V there are some energies giving rise to total
transmission).

IV. ROLE OF IRRELEVANT VARIABLES

While the scaling results presented in Sec. III
do not depend on the nature of irrelevant variables,
the actual magnitude of the critical binding strength
cannot be calculated exactly without taking these
variables into account. Their role is similar here
to the role they play in determining the exact criti-
cal temperature in statistical mechanics. In this
section we discuss this point within the context
of calculating (for d> 2) the exact critical impurity
potential, for which a bound state just emerges at
the band edge.

Substitute

d- 2 cos(2rq,) = 2d - 3(21)%g?
e DU ey )

into Eq. (1.5), and define

2(-1)"(2m)™2/(2n)! =dJ,,, (4.2)
to obtain
U=lf (E-q2+ 3 dJ, iq”)XX
—J‘ j’V_(m.,Xqu,, (4.3)
e "q

where V is defined by Egs. (3.1) and (3.2).
The RG equations for the variables E and J, are
obtained simply as before

dE

E_ZE’ (4.4)
al, _ -

a =-2m-1)J,, n=2,3,... . (4.5)



4482 ABRAHAM NITZAN, KARL F. FREED, AND MORREL H. COHEN 15

We should be more careful in deriving the cor-
responding equation for V, because we are now
interested in the exact position of the fixed point.
In particular we note that the initial Hamiltonian is
defined with a cutoff given in a Cartesian coordi-
nate system. We therefore perform the RG trans-
formation by integrating out field variables with
momenta in the range s™<q;=1;i=1,2,...,d.
The RG equation is the same as (2.14b), only
again V is a parameter rather than an operator
and

Ay= f(E P S, Z_:P?">-l, (4.6)

n=2

where f » denotes now an integration over this
rectangular shell. A, can be written explicitly
in the form (for s=1+6¢)

A“Z aP, (HL dp,>R,+0(at2), (4.7)

i=6t J#i

where

g—‘f_(z AV - M@)V?,

M(t)= M(E(t),J,()) = - Zd(ﬁ fo ' dP,) [E

e -1- ?j
=1

- [E -1 _?; P30, (1 +g p§ﬂ>}". (4.8)

n=2

The symmetry of this expression implies that the
term inside the summation sign in Eq. (4.7) does
not depend on i. Therefore (4.7) yields

A,=dSlA,, (4.9)

=<Hfo ldP,)R‘ (4.10)

is independent of ;. The RG equation for V is
finally obtained in the form

av

where

7 =(2-d)V -M(E,d,)V?, (4.11)
with
M(E,J,)=-2dA,. (4.12)

Combining Eqs. (4.8)-(4.12) with (4.4) and (4.5) we
can write the RG equation for the parameter V in
the form

(4.13)

- - -
P2+ E;Jﬁe'z‘"""<1+ ﬁ Pi")] . (4.14)
n= =1

Recalling the definition of J,, Eq. (4.2), M(t) can be recast in the somewhat simpler form

M(t)= d(Z;re")2 n.f dP) E e +d - cos(2re™) - x cos(zne"P,)> . (4.15)

The solution of Eq. (4.13) is given by

t -1
V()= Voe"“e”(l +V, f e""'”‘M(t)dt) .
0

(4.16)

We are interested in the asymptotic behavior of V(¢) for /~=. As long as |V,| is small enough, V(f)~0,
when £ -, The vanishing of the term in brackets in Eq. (4.16) signals the departure from this behavior.

This sets the condition for criticality

V,= -(L T ematyy(p) dt>-l.

(4.17)

Equations (4.6) and (4.14) or (4.15) constitute the exact solution of the RG equation. The desired critical
value of V, is obtained by taking E =0 in these equations. Equations (4.15) and (4.17) then yield

Vo= -[d(%)zjo Tt et <i1 leP,> (d - cos(2re™) - )

which can be transformed into

v --(zn)“'{(ﬂf )( {V_:, cos®)” |

(4.19)

Using Eq. (1.7) we obtain for the physical impurity
potential

=1

cos(?are"Pj)>- J " (4.18)

r

- 2(217)"J[< fI f 2th> <d

cos(Py) >-1} - .

(4.20)
This is the critical value of the impurity potential
necessary for an impurity state to just emerge at
the bottom of the band. For d= 3 this is identical
to the known result obtained originally by Slater
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and Koster.!? The method described here may be
the most complicated one ever used to solve this
problem. The importance of the result obtained
lies, of course, not in the result itself but in
demonstrating the validity of our interpretation of
the RG transformation results as discussed in
Sec. I, and in providing an illustration of the use
and new features of the RG for single-particle
Hamiltonians.

V. MOTION IN A RANDOM POTENTIAL

A. Averaged Green’s function

In this section we extend the method described
before to the problem of localization of a particle
moving in a random potential. It is shown that the
onset of localization, as randomness increases, is
different in nature than the onset of binding in an
attractive potential field. Typical runaway be-
havior similar to this, known in some random spin
systems, is found in the RG transformation. A
discussion of the possible meaning of this behavior
is given at the end of this section.

We start again with the integral representation
of the Green’s function for a particle moving in a
given potential [Egs. (2.1)-(2.3)]

G-q-a,':gfdiXaXa:e.aU[n ) (5.1)

1

X125 f[u@XeXq- [ [ Viwr XeXe
uz(q)=E _qz , (5.2)
Z=fd§e"‘"”” . (5.3)

Now let V; be a random function of space. Let

J

(Vvp=0,
(VaVa) =Mz ,

(5.4a)
(5.4p)
with higher-order cumulants being zero. Then

(Vg2=0 (5.5a)
and

(ViVa)=MH(a+q') , (5.5b)

again with vanishing higher-order cumulants.

For the sake of simplicity, we shall restrict the
treatment to the case where V; (and Va) "1s a Gaus-
sian random function of the lattice site. n, so that
cumulants higher than the second are disregarded.

Next we consider the average (Gg). In order to
obtain a useful expression for this average it is
convenient to rewrite Gy in the form

Gge=alim f d(i,)XaaXa@exp<-aat=lU[Xa]> .
(5.6)

Here we have replaced the field variable X; by a
n-vector Xz, @=1,2,... ,n. fd(xa) stands for

ad»

I .

a=1
and U[X,] is given by Eq. (5.2) with X; replaced
by X,z everywhere. Equation (5.6) is verified by
noting that it can be written also in the form

Gﬁ,=a1ni_rg( j &axaaxaa.e'“"[xalz"'g. (5.7

The form [Eq. (56)] enables us to take the aver-
age of Gz over the random distribution of V in a
simple form. A cumulant average yields

(Ga,)=alig1fd()?a)XﬁXaa. exp<~%afu2(q)ZXMXam
q [+

vat [ oo
[ [

preceedy

where
u4@1’azyasya‘g):%M-(qlﬁz)- (5.9)

Equation (5.8) is a representation of the aver-
aged single-particle Green’s function for a parti-
cle moving in a Gaussian random potential, given
in the form of a two-point correlation function on
a classical vector field of » components, in the
limit » -~ 0. Note that a in this equation is an arbi-
trary constant which can be chosen at will, It is
chosen here to make the functional integral in
Eq. (5.8) convergent wherever (G) is analytic.

f u,@,,8,,8,,4,) 6@, +8,+§,+d,) }: Xﬁi‘XGEZXBisXBQ)’
aB

(5.8)

Other than that it has no role in our discussion.
As in the case treated in Sec. II, @ can be shown
to cancel in the RG equations.

A representation similar to Eq. (5.8) has for-
merly been suggested by Ma,'° who has obtained
it by comparing graph expansions of this expres-
sion to the conventional graph expansion for the
average Green’s function. Ma’s contribution was
withdrawn because it did not contain the param-
eter a appearing in Eq. (5.8), (i.e., a=1), and,
therefore, it was argued that the representation
[Eqs. (5.8) and (5.9)] was not convergent (since
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M>0). As we see now this is a rather trivial point.

A similar approach, based on the n» — 0 limit of
a correlation function on a n-vector field, has
been introduced by DeGennes* for the excluded-
volume problem. Also Emery'* has simplified and
extended DeGennes’s approach. The relation be-
tween the random walk with excluded-volume
problem and between particle motion in a random
potential is best demonstrated by utilizing the
fact®” that the Green’s function for both cases
corresponds to formally the same form of equa-
tion of motion (written for the continuous limit)

Z= f X, )exp( f (E+ qu)zxaaxa.-q

ll!

— -DVzlp—zV('r)z,b, (5.10)

where V is the Gaussian random potential satisfy-
ing (V(r)=0 and (V(@»)V(@')=M(r -7"). Disa
positive constant for the excluded volume problem
while D=ih?/2m (m is the mass) for the particle
motion (Schrédinger equation) case. Therefore,
Eq. (5.8) is appropriate also for the random walk
problem if we replace u,(q)=E —q? by E —ig®.
Most generally we can write the corresponding
partition function in the form

+a%b fﬁ f 6(q1+ q,+ qa + Q4)u4((ilng3q4 Z Xaal aﬂzXﬂagxﬂq)’ (5.11)
11000 yqz

where for the particle motion case c= -1 and dz
b=1, while for the excluded volume problem dat =2z + (n+ S)K" +1’ (5.14a)
c=-iand b=1. ” Y2 e

The partition function [Eq. (5.11)] is formally T 4(n+ 8)K, (z—+l> ,
identical to the one treated by Wilson and co-
workers? for the critical properties of a classical with the nontrivial fixed point
n-component spin system. The appropriate choice

X - n+2

for b and c for this case is c=-b=1. We note z*=—5(—n—+—8—)€,
again that for any choice of b we can make the (5.14b)
integral defining Z convergent by a proper choice w1 1 :
of the constant a. (In the current localization = E 4(n+ 8) €

problem, Z is analytic for all values of E if an
imaginary part ImE is appended and if a is chosen
to be pure imaginary with aIm E<0. The limit

Im E -0 is then applied at the end of the calculation
in the usual fashion.)

The RG equations for the parameters appearing
in Eq. (5.11) have been obtained by Wilson and co-
workers in the €=4 - 6 expansion. To the first
order in € these are

dE
d— =2E - (4n+ B)bKd E
(5.12)

2
_Ya
dt Eu+(4n+3Z)bK,<E c) ,

where u, is § independent in this order. The cor-
responding fixed points are

= -c[(n+2)/2(n+8)]e,
(5.13)
u*= - (c*/bK,)[4(n+8)] €,

and the Gaussian point E*=4*=0. For all three
(Wilson’s, excluded volume, and particle motion)
cases these results can be written in the form

where z = E, u=u, in Wilson’s case, z={E, u=u,
for the excluded-volume problem, and where
z=-E,u=-u, for the particle motion in a Gaus-
sian random potential. The crucial difference
between the first two problems and the last one
is that the physical initial value of  is positive
for the Wilson’s and the excluded-volume prob-
lems, while it is negative for the motion in a
random-potential case. It is seen by inspection
and has been confirmed by us numerically that
while physical trajectories may, for appropriate
initial conditions, converge to the non-Gaussian
fixed point in the first two cases, they cannot do
so for our problem. Wilson analysis of the criti-
cal behavior of the Hamiltonian defining the parti-
tion functicn (5.11) is thus useful also (in the
n~ 0 limit) for the excluded-volume problem, as
has been shown first by DeGennes and extensively
studied since. However, no implication of this
critical behavior exists for the averaged Green’s
function in the problem of motion in a random
potential.

The following points should now be mentioned:

(a) This result is in accord with our knowledge
that the averaged Green’s function should not
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contain information about localization of a quan-
tum-mechanical particle in a random potential
field.

(b) Our conclusions here have been reached on
the basis of an € expansion, for z and » of order
€, and for a Gaussian-type randomness. There
are several indications however that this result
is more general. Aharony, Imry, and Ma's have
recently studied the problem of critical behavior
of a random spin system, where the randomness
is described by a binary distribution. In our no-
tation this is given by the following distribution
for the potential V:

P(V,)=(1=C)oy o+ Cby,, v (5.152)

pdv,,i=1,2,3,...D=[I P(v), (5.15b)
i

which corresponds to a random-binary-alloy mod-
el with local randomness. The free energy of the
random m-component spin system is calculated
as the n— 0 limit of a nonrandom nm-spin system.
The averaged Green’s function for the binary-alloy
problem corresponds to the m =1 limit of the
Aharony-Imry-Ma'® study with the nonrandom
fourth-order spin interaction term taken to be
zero. For a small amount of randomness [small
€ or small V in Eq. (5.15a)], these authors also
conclude that the corresponding fixed point is un-
attainable. They also argue that this conclusion
remains valid as well for large ¢ and V. Further-
more, calculations based on the Wilson’s approx-
imate recursion relation seem to sustain this
result.!®

(c) It is interesting to note that there exist ran-
dom models where the averaged Green’s function
does have singularities which express themselves
as attainable fixed points of the RG equations.
For example, a model in which the random poten-
tial has a nonvanishing second and third cumu-
lants with the higher cumulants being zero is
mathematically equivalent to a model which has
been used in the theory of critical phenomena to
discuss tricritical behavior.!” We have not studied
the implications of this analogy onthe form of the

)

averaged Green’s function or the density of states
in this model. It is clear from our previous dis-
cussion that this has nothing to do with the local-
ization problem.

(d) Even though, as was expected, no critical
behavior of the averaged Green’s function of a
particle moving in a random (Gaussian or binary-
alloy type) potential is found, the RG method may
still be useful in studying the properties of (G).

It is well known, within the context of the theory
of critical phenomena, that the RG method can be
applied to obtain scaling laws as well as for a
direct calculation of the free energy or the cor-
relation function near the critical point. The idea
is to use the RG recursion relations to relate the
free energy far from the critical point (which is
amenable to theoretical calculation) to the free
energy near the critical point. Similarly, it is
possible to use the RG recursion relations to find
scaling laws for (G) and for the density of states,
and possibly also for a direct calculation of these
quantities in “difficult” regions (such as the band
edges of the corresponding ordered system) given
data from easier regions.

B. (IG ) and the localization problem

It is now generally agreed that the averaged
Green’s function of a particle moving in a random
potential field does not contain information about
localization. Such information is contained how-
ever in the averaged absolute square, {|G|?, of
the Green’s function. It may be expected that the
mobility edge corresponds to a critical point where
{|G|? develops in infinite range. In this case we
might find a fixed point of the RG transformation
on {|G|? which corresponds to this transition.

In this section we show that the RG transforma-
tion on (|G|® is characterized by the same run-
away behavior that we saw in the (G) case. We
have to conclude that the mobility edge does not
correspond to a simple second-order phase tran-
sition.

The RG transformation of (| G|?) can be handled
in a way similar to that we used for (G). We start
with [cf. Eq. (5.8)]

- - m "2
Géﬁiciﬁa =ab '1'113)1 f d(xa)d(Yﬂ)XaalXaa.l Y3,Y sy €XP (- az v[x,]-b 2:1 m[n]) , (5.16)

n3+0

where

vle)= [ 6 -a2eZa- [ [ Veeatite,

a=1

(5.17)

and where, for |G [ 2 we have to take E,=E}. Taking the average and assuming again the properties [(5.4)

and (5.5)] for V, we obtain
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(Ghg;Cz) =ablim 0 [ AR, d(T0) Xog X Vot Yoty

n2° 0

x exp['%a J; ué(‘l)zxaaxm-a -%b J‘ ug(q) zﬂ: YBGYB.-G’
a q

car [ o

Breeerly

Herezﬁ=ﬁl+ﬁg+ﬁa+ﬁ4, u;(q)=E‘ -q%, and u=v
=w are identical to u, defined in Eq. (5.9). We use
three different notations to account for the pos-
sibility of these parameters becoming different
during the RG transformation. The parameters

a and b can always be chosen to insure conver-
gence of the representation [Eq. (5.18)] whenever
(|G|? exists. Thus if E,=Eg+iE,, E,=Eg-iE,,
with E;>0, we should choose a= -7 and b=¢ to
insure this convergence. As was the case with
{(G), it can also be shown here that the parameters
a and b cancel from the RG recursion relations in
any order.

Consider now the RG equations on the Hamilto-
nian defining the averaged product [Eq. (5.18)].
The derivation for small %, v, and w follows the
same perturbation approach used in the € expan-
sion, only now we have to consider two zero-order
propagators

Glq)=(E, -¢*)™, GiYq)=(E,-¢?)™, (5.19)

for the X and Y fields, respectively. The two
fields are coupled to each other by the w form in
Eq. (5.18). The resultfor small %, v, and w is
(e=4-4d)

dE,

dt -8+ )K”E ‘bzzK,, —7>
dE
=2E -(8+4n2)K,E 4nK,E s
2
dt =eu+(32+4n )Kd( — >+4n2K,,( E, 1)
o 2 (5.20)
T =ev+(32+4n )Kd< > +4n K,,( 1> ,
aw_ (8+ 4n K, —%¥__
dt A ‘(El—l)z

w2

1)’* 18K DY, -

+(8+4n,)K, (E

Now, for n,,n,~ 0 the pairs of equations for (E,,u)

[
i [ e [t
allO..'aq

+2ab | - jwa,.
qyrecesdy

’q4)5< Z q) Z
, §4)5< 2 ﬁ) ;2 LEXRIXREXRENA

XagXag,

. ,q4)6<2 q)Z Xag Xag,Yeq Yﬂ] (5.18)

r

and (E,,v) decouple from each other and from the
w equation and become identical (by changing the
sign of the variables) to Eq. (5.14). Therefore,
the conclusion arrived at for the (G) case about the
runaway behavior persists also in the present
case.

This result, namely the decoupling of the fields
X and Y in the n;,n,~ 0 limit, which was demon-
strated here for small coupling parameters u«, v,
and w, can be easily shown to be general for any
order in these parameters and for any kind of
randomness (see Appendix).

We thus see that any conclusion reached for the
RG transformation on (G) remains valid also for
(|G|®. In particular, the runaway behavior, which
we found unsurprising in the (G) case, persists
also for (| G|?.

There is one important difference between the
RG transformation that we applied for (G) and the
one we used for {(|G|?. The difference is best
seen by focusing on the spatial Green’s functions.
For these we have (T,Tare two lattice sites)

(Grp=alim f AR ) X aiX oge™atX), (5.21)

(|6i319=ablim [ [ a@a)a(¥.)

ng=0
R A5 s |
XXaiXojYgrYge™ 2" 0

(5.22)

Here JCI[X ] is the Hamiltonian appearing in the
exponential in Eq. (5.8) while C,[X] is the Hamil-
tonian appearing in the exponential in Eq. (5.18),
[and also in a more general form in Eq. (A1)].
Going now to ¢ space we obtain for (G)

(Gg)=8@+Talim [ dRo) Xogk o, 072

=5(d+3'XG)q, (5.23)
such that
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(G19)=(Crp= fa (G 2% AD, (5.24)
On the other hand for (|G |? we have
RS fq 2@ AN G |2, (5.25)
where

(|6|9g=ablim [ [ 4T ppgeE T,
ny-
7!2“0

(5.26)
and where

pa=.[a' Xa,Ya_ap. (5_27)

In the RG transformation on (G) we integrate
over Xz variables with high-g values. Physically
this means that we focus on values of {(G;3) for
large |i‘—ﬂ distances, disregarding the short-
range behavior of (G;;). The equivalent thing for
(|G |? would be integrating Eq. (5.26) over vari-
ables p, with large g values since, as we see in
Eq. (5.25), it is ¢ only which is related to the
distance i’—f. What we actually do to obtain RG
recursion relations such as Eq. (5.20) is to inte-
grate over all variables X and Y3 with high-q
values.

Can this difference be of importance in the pres-
ent context? We believe that the answer is no.
The reason is best seen by focusing back on the
critical-binding problem in a nonrandom potential
field discrssed in Sec. II. In this case space is not
homogeneous and G;; or Gz depends explicitly on
the two space or momentum indices. By integrat-
ing out in Eq. (2.3) those variables X; with large-
q values, we have related Gz to another matrix
element of G between waves of smaller momenta.
Such matrix elements of small g and ¢’ values do
not contain enough information to describe spatial
matrix elements G,; with large |i —j|. However,
they contain enough information on matrix ele-
ments of G taken between wave packets which are
concentrated around the sites ¢ and j, for wide
enough wave packets (which contain only low-g
waves) and for |i —j| large enough so that the
wave packets do not overlap. In other words, the
RG transformation in which we integrate over all
variables of high-g indices provides a relation
between Green’s-function matrix elements taken
with wave packets concentrated around given lat-
tice sites, and between similar matrix elements
with wider wave packets concentrated around more
distant sites. It is this transformation which con-
verges to a fixed point when the Green’s function of
a particle moving in a binding nonrandom potential

field develops an infinite range.

An exactly similar interpretation holds also for
the RG transformation that we apply for (|G|?).

We conclude that this transformation is sufficient
to give indication of localization if it corresponds
to a second-order phase transition like the case
discussed in Sec. II.

The fact that no attainable fixed point is found
to this RG transformation, suggests that the tran-
sition to localization in a random system is not a
simple second-order phase transition. Usually
in the theory of critical phenomena, runaway be-
havior in the RG transformation is associated with
either a first-order or a smeared transition. It
is interesting to note that very recently Licciar-
dello and Thouless!® have argued that there exists
a minimum metallic conductivity (that is first
order transition) with a universal value in two
dimensions and sustained their arguments by
numerical computations. However their numerical
accuracy is insufficient to distinguish among first-
order, second-order, and smeared transitions.
On the other hand, Aharony, Imry, and Ma'® have
argued that at least in the random alloy case the
runaway behavior cannot be associated with a
first-order transition. None of these arguments
can be classified as a rigorous proof. Further-
more, it should be kept in mind that while the
existence of an attainable fixed point is a sufficient
condition for the occurrence of an infinite range in
the system, it is by no means a necessary one.

An alternative way to account for the runaway be-
havior is provided by comparison to the Slater-
Koster problem treated in Secs. IIIl and IV. We
have seen that no fixed point is attained if our
initial impurity potential is larger than the critical
value. In the one-dimensional case the critical
potential is zero, and a runaway behavior is ob-
tained for any initial finite binding potential. Now,
in the random problem there exist in any dimen-
sionality localized states for any amount of ran-
domness [expressed by the size of M,, Eq. (5.5b)].
By analogy, we may expect a runaway behavior
following any initial finite positive M . If this con-
tention is correct then the mobility edge cannot

be obtained as a fixed point of the RG transforma-
tion described in this paper.

In summary, we have shown that the RG equa-
tions on (|G |?) decouple to yield recursion rela-
tions identical to those found in the RG transfor-
mation on (G). This result is exact, and since
(G) is not expected to have any critical proper-
ties we have concluded that whatever the critical
properties of (|G|"’) are, they do not correspond
to a simple second order phase transition. This
in turn may mean either that the transition is
really not a second order phase transition and/or
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that (|G|2> is, for some reason, not the correct
quantity to renormalize. Comparison to the non-
random-binding-potential case suggests that the
observed runaway behavior may be associated
with the occurrence of localized states at the band
tails.

VI. CONCLUSION

In this paper we have studied the critical local-
ization problem within the context of RG theory.
We have formulated generally the RG problem for
a single particle moving on a lattice and subjec-
ted to an arbitrary given potential field, and de-
scribed inparticularthe detailed solution for the
Slater-Koster model. “Universal” properties like
scaling laws and critical exponents have been ob-
tained as well as the exact critical value for the
binding potential in the Slater-Koster problem.
Furthermore, we have shown how RG ideas can
be used in the study of a particle motion in a ran-
dom potential field and concluded that the observed
properties of the RG transformation do not cor-
respond to a simple second-order phase transi-
tion.

From the point of view of the RG theory, our
study contributes to the understanding of this
important method. The generalized Gaussian
model treated here provides a simple and exactly
soluble but nontrivial model for critical behavior.
Of particular interest is the fact that the critical

o= -%af ul(q) Z Xy Xo, _ébf.u.f,(q); Ya¥az
q

NN

anana[

A typical vertex has several pairs of type-1 and
several pairs of type-2 propagator lines going out
of it. A pure vertex has pairs only of one kind
going out of it. Consider now a renormalized pure
vertex of kind 1 which is obtained by linking to-
gether several vertices, some of which are not
pure or pure of the other kind 2. It is obvious
that, since all the propagator lines of kind 2 must
terminate (so-called internal lines), there will

point for binding in a nonrandom potential appears
as an unstable fixed point of the RG transforma-
tion; such that in the absence of a localized state
the transformation leads to the free-particle limit,
while in the presence of a bound state it leads away
from this limit.

Since no attainable fixed point has been found
for the random localization problem, we cannot
yet obtain any information about the nature of the
transition beyond the observation that the RG prop-
erties of(|G|2) do not correspond to a simple
second-order phase transition. It is hoped that,
as our understanding of the RG theory increases,
the methods described here could be used to shed
more light on the true nature of this transition.

APPENDIX

Here we show that in the RG transformation on
(|G|, performed using the n,,n,~0 limit of a
four-point correlation function on two coupled
fields, the equations for the renormalized pure
vertices do not involve any coupling between the
two fields. By pure vertices we mean those ver-
tices which couple free propagators belonging to
one field only.

The Hamiltonian which is used to represent
{G'G? as a correlation function in Eq. (5.18) can
be written for a general model for the randomness
in the form

[/uz,(qlql, ..,ala;)5<zq>g(za:xaalxaﬂ+zs YBci‘YBEi)(a:l""’”x; B=1,..-,n2).

(A1)

r
necessarily be closed loops of kind 2. Each such
closed loop contributes an order #, to the renor-
malized vertex, which then must vanish when the
limit n, - 0 is taken.

Exactly the same arguments hold for the renor-
malized energy. We conclude that the RG trans-
formation does not couple those parameters in the
Hamiltonian which purely belong to one field.
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