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A harmonic oscillator weakly coupled tc a heat bath is studied without invoking the rotating wave approximation.
Corrections to the lorentzian lineshape which characterizes the RWA are derived. An expression for the time evolution of
the population of the oscillator which is exact in the van Hove weak coupling limit is also obtained. Our results are com-
pared to earlier expressions which were obtained using the rotating wave approximation.

In our equation for the population of the oscillator, we observe an additional transient term, and we examine the time
evolution of the population under a variety of conditions. The applicability of the rotating wave approximation is discussed
in light of our results. '

Relaxation of vibrationally-excited systems in condensed phases has in recent years become accessible to ex-
perimental study, with the development of laser-induced fluorescence, stimulated Raman scattering and laser opti-
cal double resonance techniques. Concomitantly, a great deal of effort [1] has been expended on theoretical
treatments of the vibrationa! relaxation problem. The usual model is to consider an individual oscillator interacting
with a medium by means of a linear coupling. Possible elaborations would include intramolecular coupling of one
mode to another [2], use of Morse rather than harmonic oscillators, etc. Possible simplifications include treatment
of bath as a collection of oscillators [3,4]. A few treatments have appeared which consider nonlinear coupling.
Sun and Rice [5] have examined the problem in a lattice impurity context, and have suggested that impulsive in-
teractions, beyond the linear term in the oscillator displacement, can make the major contribution to the relaxa-
tion process. Fischer and Laubereau [6] have very recently examined the dephasing process [7} (loss of phase
memory by the oscillator), and have argued that the quadratic terms in the oscillator displacement, which are near-
ly always neglected in studies of the relaxation process, dominate the dephasing. These higher-order terms can also
become important in lineshape studies [8].

Another possible elaboration, with implications which are more conceptual than practical, lies in relaxing the
rotating wave approximation (RWA) which was generally invoked in earlier treatments.

The rotating wave approximation [9] consists in neglect of high phase terms compared to those of slowly os-
cillating (or zero) phase. It was originally developed for oscillator—oscillator interactions, but has been used in
numerous cases in which rapidly-varying and weakly-varying terms appear additively. For instance, if one considers
dipole—dipole interaction in a two-state, two-site (a and b) system, the interaction hamiltonian is

Vi(0) = Any i (aly agg + afoay))aby ayo + algap (D) (1)
= A,“a Hyp {azlaaoaloabl * agﬂ a1 aEl abﬂ}

+ A,y {aly a,0a]) 3y exp(2iwyg ) + alga,; ahay; exp(=2iwyg 1)}, 2)
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where , is the dipole matrix element on site a, A is a proportionality constant, agl creates a particle in level 1 at
site a, I denotes interaction representation, and wq is the energy difference between the two levels. The first
bracketed term on the ths of (2) is the RWA term; it has no phase. The second term is rapidly varying, and is ex-
pected to make a relatively small contribution on timescales long compared to wall. Such terms are usually ne-
glected for long-timescale processes [10].

Some treatments of quantum mechanical time evolution problems which do not invoive the RWA have been
published in the past. Estes, Keil and Narducci [11] have treated the problem of two coupled harmonic oscillators
and have shown that the terms neglected in the RWA become important when the coupling between the two os-
cillators is of the same order of magnitude as the oscillator frequency. Agarwal [12], in his treatment of the
brownian motion of the harmonic oscillator, observed that the RWA is justified in the weak coupling limit {oscil-
lator frequency > decay width). Agarwal’s model is equivalent to the one employed in the present paper apart
from his choice of the coupling to be linear in the bath coordinate (a restriction not included in the present work).
Also, no systematic study of the effects of the correction terms was carried out by Agarwal. Very recently, Hioe
and Montroll [13] have treated the problem of coupling between a harmonic oscillator and a two level system,
again without making the RWA,

Recent work, however, has cast some confusion on the possible importance of the RWA. Hioe {14] has shown
that in calculating the equilibrium critical properties of the superradiance system, the terms omitted in the RWA
are as important as those retained in this approximation. On the other hand, Diestler and Wilson {15] claim to
obtain, without invoking the RWA, the same results for the vibrational relaxation problem as obtained previously
[16] within this approximation.

In view of these results, and because of the current interest in the vibrational relaxation problem, we decided
to reexamine this problem with special attention given to the role played by the RWA. We restrict our attention
to an interaction which is linear in the weak coupling limit. We follow the procedure of Nitzan and Silbey [16],
except that we do not make the RWA. This procedure is based on the Kubo approach [17] in which the Liouville
operator for the time evolution of an observable is expanded in a cumulant series. We employ the weak coupling
limit in which only the first non-vanishing cumulant is included. A general result can then be obtained for the
time evolution of the oscillator, from which the effects of the RWA on the calculated relaxation process can be
deduced. We examine the transients caused by the terms neglected in the RWA and conclude that the corrections
to the RWA are small indeed in the weak coupling limit, but definitely non-vanishing.

While additional transient terms arise from non-RWA contributions in the case of a harmonic oscillator, we
note that for a two-level system, the RWA expression for the population of the upper level is, indeed, the exact
expression. Terms neglected in the RWA do not appear in the equation of motion (see appendix). However, this
is not the case for a harmonic oscillator.

Consider then a system with the hamiltonian:

H=Hy+V, (3)

H[]:(J.HTG"'HB, (4)

V=Ftag+tFat, (5)

where 2t and a are the creation and annihilation operators of the harmonic oscillator, w is the frequency of the :
oscillator, Hy is the free bath hamiltonian, V is the coupling between the oscillator and bath, and F is a general .
operator over the states of the bath; we have neglected zero-point motion, and use atomic units (2 = 1). We assume
that the oscillator-medium interaction is linear with respect to the oscillator coordinates. This model is thus de-
scriptive primarily of at-resonance or near-resonance transfer of excitations from the oscillator to the bath.

Consider a general operator P of the oscillator. Since the oscillator is coupled to a heat bath, let us consider the
thermally-averaged operator (P> where the subscript T denotes the average over bath states. This thermally-aver-
aged operator may be expressed as [9]
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.
(P(t))y = (expy i f V¥ (r)dr])p Py (e). (6)
0

Here the superscript X denotes the commutator superoperator, and the notation expq denotes the time-
ordered exponential; V;(7) is the interaction representation of the operator V, given by

Vi) = FT(Dae 1w + F(r)qt elwrt

We may express the time evolution of (P(r))y as a cumulant expansion to second order (consistent with the weak-
coupling assumption)

t
d . _
3 PO =(expoli | Vi (r)arDy 15 KX ()P + i[Ho, 2,1, (7)
0
where
4
K5 ()P =2 f dr [V (7), [V (1), 2] ] - (8)
0
The equations of motion for {a)y and {a¥); may thus be found, using the relations
K3 (e ()= -B oy (1) + Dy} (1), 1K} (r)a}‘ (ty=Dyay(t)-Bya] (1), 9)
where
t _ ! .
B, = f dr((F(2), FT (1)) elwtt-7) B, = f dr([F(r), FT (6)]>p e7iwlt=7) = gt
0 ¢
(10)

t !
D, =fdf<[FT (D), FT(D)Dy elwt-1) D, = fdr([F(:r),F(t)])T emiwlt=n = p¥,
0 0

Using eq. (7), two coupled differential equations are obtained:

a%(a)r=—(Bl + i) (@) + Dylatip, _f;th:—(Bz—iw)(aUT +D, (@) . (11
This system of equations is then solved to give:
e_glf(k+ ekkr —k_ek”) efﬁerz(ekq.r_ek_t) 1. ,
- -/ 1
(@) P r (@) + Lk @ty (12)

where By = B +iw, By = By—ic, @) = @)y (t=0), 'y = (@} r (¢ =0), and

ky =51Q[1 £ (1-4]Dy12/)1/2] (13)
where

Q=(B, B,)i=2w+ImB)). (14)
In general, 1D, | < 11§20 and so

ky ~if2, k_ == 241D, 1%/%2. (15)

2
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Hence, the thermally-averaged operator (¢)p may be calculated from eq. (16), obtained by substitution into eq.

(12):
_B.+ |D1|2 5 I.Dl'z o ) ,DZ B ' . ID112 .
{adp =e S1tiexp|2i o t‘) 2 exp(iSde) ; {a), —ig emF1 lexp(i2t)~exp (21 Q r) {a ()106.)
Similarly, the hermitian conjugate is obtained:
. Dy 12 1D, |2
(ah)p = e~ Bt exp( 2i Sll ) -2 exp(— I.Qt)} CIN
D5 . 1D, 2
“s_i e o2t exp(—lﬂr)—exp(—«m“ﬁ*— t.) @)y . (17)
From this, we may obtain the Green function for the oscillator:
\ 1 t20,
G(1) =0 ()((@(0) +at @) {e(?) +at (1)), 9(f)‘3[ (18)
0 <90,
which, assuming a bath at zero temperature becomes
G(£)=—-i8(D)[@(Da(t) + @(©0)a' (1))], (19)
in which
@(@a(e))=—i(D,/2){exp [(iﬂ—gl)r]—exp [(2iID1I2/Q~§1) t] 1 (n(0) + 1), (20a)
@(0)at 1) = {exp{—(2ilD}12/Q + By) t]-2(D,12/Q22) exp [~ (i + By) 1] } (n(0) + 1), (20b)

n(0) being defined as {afa)p (¢ =0).
As stated previously, it is in general true that {D| < and D, <, and therefore the major contribution to
the lineshape function will be from the first term in eq. (20b):

@(0yal (1)) ~ [exp(=B,H)] (n(0) + 1). 2D

The lineshape function, given by
+ o0
LE)<Im [ exp(iE)G(r)dr (22)

will therefore be approximately

Re 52
(E-ImB,)? + (Re B,)?
Eq. (23) is the correct result in the RWA; the lineshape functlon is a lorentzian with a maximum shifted by

Im32 and a linewidth of Re 32 Without the RWA, the first term in eq. (20b) contributes a term to the lineshape
of the form:

L(E) ~ (23)

Re(2ilD,12/Q + B,)
[E-Im(2i|D,12/S2 + B,)]2—[Re(2i1D;12/2 + B,)]2

The second term of eq. (20b) and the two terms in eq. (20a) will each contribute a term of similar form to the
lineshape function. However, because Dy and D, are very small relative to §2, these remaining three terms will be
small.
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We now focus attention on the temporal evolution of the population of the oscillator, again using eqgs. (7) and
(8). First, we find that: _

;—K§ (r)a;‘al = —Ba{al +Daga; + Dzzﬂ;a;r +C,
%K% (t)aja; = —2Bya1a) * 2Dza;fa, -2, i{Hy, ayay] = 2iwayay, (24)

1 K5 (r)a?a} = —ZBza{a;f + ZDla;‘aI—--Uz , i[HO,a;falT] = Ziw a‘;af .
In these equations, we have defined

B=Bl +B7_=2Re31,

I {
C= f drFt () Fip expli(r 1] + [ drFt (1) FDp expl-iw(r—n)],
0 0

(25)
T H
Jy = [ arF@FO)pexp(-iw?), Iy = [ arFHO)FT (pexplicn) =T
0 0
Hence, we obtain three coupled equations of motion:
d%(afa)-r = _Blala)y + Dy laa)p +Dylatat)p + C, (26a)
'(%W)T = 2(B, +iw)aad + 2Dylatap -2, (26b)
d
% (@tat)p = —2(By-iw)@tat )y + 2D et adp -2/, (26¢)

with the initial conditions (4)y (r=0) = (4);, for A =a'a, gz, and atat.

If one assumes that By, B;, D), D,, C, J,and J, are all independent of time [18], these three coupled, first-
order inhomogeneous differential equations may be solved exactly. Thus we have an expression for the time de-
pendence of the operator ¢ata)y

(atarp (1) = @t adg q (1) + (amdy r () + aTadg re () +u(t), (27)
where , '
_q? 21D, 12
q(r)=( + 1 (expli(Q2-41D12)\ 1] +exp[-i(Q2 41D 1)1 }) e Bt (28)
4D,12-Q2 4|D,2-Q2 Pl 15 ) expl L

12D, 2iD, 1D 12 exp [1(§22 - 41D{12)1/21) 2u)2u)l|2eXp[—i(nLd,wlP)lﬂ:]) .
Sl PRI _ . e o

r(t) =(~__-——-_
410112_92 (41D1|2—Q2)[(Qz—4|,01|2)”2+Q] (4lD1|2—Q2)[(92*41D1|2)”2—Q]

(29)
—Q2C-2iQD, ), +2iQD,/,

(1-e5+
(41D,12-92)8

u(t) =
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41D,12 [B-i(52?- 411) |2)UZ]

( 21D 12 )( 410,12C~2iDyJ [(R2-4D, |3’-)1f2 Q]—-"LD J,[(gﬂ —aiD12)12 + Q] )
+ - -
[ 41D, |2 - Q2

X {l-exp[(-B + i(§22~4ID1I2)”211}}

[( 21D, 12 )(4|0112C+219211 [(92-41D,12)1/2 + Q] + 21D J5 (241D, 12)1/2 - €] )
+

41D 2022 41D, 12 [BH(} 41D, 2)12)
1

X {l—exp[(—B—i(Qz-4|Dl|2)”2)t]}} : (30)

where §2 is defined by eq. (14).
Note that (aTa>T (1) is an operator in the oscillator space. If we take the expectation value of this operator over

the initial oscillator state, we obtain
UaTadpX2) = €aTaygX(0) g (t) + u(r)y =n(0)q(r) +u(t). (31)

The second equality assumes that the oscillator is initially in an n-state (that is, an eigenstate of the number oper-
ator).

Eqs. (27)—(30) provide the general result for the time evolution of the harmonic oscillator interacting linearly
with a thermal bath. We note that a general operator F has been used for the bath term in the oscillator—bath
interaction. Eq. (27) for the population operator shows that in addition to the diagonal part which appears in the
RWA (and is modified here by non-RWA contributions), this operator contains also non-diagonal contributions
which are missing in this approximation.

We are now in a position to compare our results to earlier results [4,16] obtained in the RWA, and to Diestler
and Wilson’s result [15], which was obtained without explicitly invoking the RWA. To this end it is sufficient to
take the bath-molecule interaction to be linear also in the bath coordinate. This is done merely to simplify the
presentation and is by no means necessary. A calculation of the relevant correlation functions for more compli-
cated couplings has been presented elsewhere [19] and has no bearing on the issue at hand which is the applicabil-
ity of the RWA. We thus take

F() = a 23 G,b, exp(—ieo, 1) + B 23 GIb] explico,n), 62

where bJr and b, are the creation and destruction operators for the normal mode of the bath (considered as an

ensemble of DSCllldtO[S) of frequency w,. Here, @ and § are parameters put into the expression to distinguish the
terms retained in the rotating wave approxtmatlon from those terms disregarded in the RWA. In the RWA, o = 1
and 8 = 0. In the treatment exact in the weak-coupling limit, a =1 and § = 1. We may now use this expression for &
F(t) to find explicit expressions for the parameters in our equation for a4l Xr). We find that

G G2 -'
P o L o

n—0 y 1(ca w,)—n y Hwtw,)—7n

Neglecting the (nonresonant, small) terms involving (w + w),)~ ! we have

By =o? lim (IE O ) a?i E|G |2(PP~Jw — i 6 (w-w )) (34,35);

n— 0 v (w w).l-] v

The principal part term will shift the oscillator frequency by a small amount and can be neglected in the present
discussion. ‘
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Define the decay rate I" by

C=n 271G, 120 (w-w,) =L (8, +By)=1 8. (36)
then
B =T, (37)
Similarly:
1 1
=__ i 2 Ly 3
Dy~ lim L6, it o) o
Again, neglecting terms in (> + w,) ! and PP terms,
Dy=afn 231G,12 6 (w,~w) = (39
=ofl’. (40)

Hence D3 = 0in the RWA while D, =T in the exact description.
So, we may substitute the values

By=By=D,=D,=T (1)

and B =2 Re By = 2I"into our eq. {31) for Catarp).
We will further assume that J is real, hence Jy = J; and rearrange the equation for a'ak;) to obtain

ar? C 4r2)
T = 1' I, St-- -2re . ——— _ a2t
Ualady) = Ka a)T>,:0(l 2 (cos St 1))e + (EF) (l + = (1 )
(42)
+(ﬁ“4—~) QI3C+ TS, )1 ~e 2T cos §1) +(—---—‘4—-— ) (C2CS- 2T27, 5)(e =2 sin S1) ,
§2(4r'2 +52) 52(ar? +s?)

where § = (2-4|D1})1/2.
It welet D) =D, =0, ie.,if we make the rotating wave approximation, we obtain

<(aTa)T}: (aTa)O e B+ CIB(] e~ B1) (43)

which is identical to eq. (26) of Nitzan and Silbey [16], to IV.14 of Diestler and Wilson [15], and to (4.6) of
Nitzan and Jortner [4]. Our treatment has additional high-phase components (38) which are absent in the rotating
Wave approximation. The result by Diestler and Wilson is identical to the rotating wave approximation solution be-
Cause these authors limit themselves to initial conditions where the oscillator is in a number-state (eigenfunction
of a¥a). Therefore obviously the bath averaged operators (aa)y (1) and (atat »r(£) are of order |G|2 and, in our

€q. (15) for d{a¥a)/ds the terms involving {aa) and <a'a') are of order IGI* and can be neglected. Indeed, we see in
€q. (42), which also takes (aTaT)FO = (aa),. = 0, that the corrections to the RWA tesult are of order I'2 = |G|4.
On the other hand for other initial conditions (e.g, a Glauber state) one can no longer assume that {ae) and {aTaT}
are small at all times and the Diestler-Wilson approach is no longer valid.

To illustrate the validity of the rotating wave approximation, we compare the time evolution of the population
of the oscillator in the weak-coupling limit in both the exact description and the rotating wave description for the
€ase of the bath at zero temperature (corresponding to € = 0) and for the case Jy =J5 = 0. In the numerical com-
Putations, we have assumed that £2 = 2w + 2 Im By = 2. No difference between the exact and RWA descriptions
18 observable (figs. 1,2) when I'= 1 ¢cm ! and w = 1000 cm~ 1. For larger values of I, the difference becomes
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Fig. 1. The population of the oscillator as a function of time in Fig. 2. The difference ("exact‘"RWA) in predicted population -
the exact description, for the case T' =1 em!, w = 1000 em' !, as a function of time for the case T = Lem' !, w = 1000 ceml,
and zero temperature. The graph of the population in the RWA and zero lemperature.

as a function of time is identical to this plot; for this case, the
difference between the populations in the exact and RWA de-
scriptions is on the order of 10°5. (See fig. 2.)

(figs. 3,4) more apparent, but it is only in the unphysical situation of I" = 500 cm—1 and w = 1000 cm™! that one }
begins to observe appreciable differences between ney,cy and ngy4- For the latter case, the error in the rotating
wave approximation is 40% or less, and the correction term damps out within 10~13 seconds.

An additional ramification of our solution is that, for F hermitian, and assuming Jy =J5 =4 C, we obtain for

time —> o°:

C A2 2
Latad (=P =% (1 +— ) - (-———r~— ) (4I3C + 1$?
T B\ 52 52(4F2 +52) )

- %= lexp(w/kT)-117! = &aTarp), (44) |
which s, as is expected, the thermally-averaged population of the harmonic oscillator. Obtaining the asymptotic
behaviour without disregarding the imaginary parts of J, and J, isan involved mathematical problem which will
be dealt with elsewhere. :

Thus the exact equation for the temporal evolution of the population of the oscillator in the particular weak
coupling system under consideration contains a transient term (an additive “correction” term) which is not ob-
tained when the Rotating Wave Approximation is invoked. However, this correction term is smaller than one part’
in 103 for typical physical situations, and, in any case, damps out in a time of order 3 X T-1. For relaxation pro- }
cesses which are detectable experimentally at this time, the RWA appears to be a very good approximation in the §
weak coupling limit. The possibility of observing the transients is an intriguing one, but is probably beyond pres- |
ent experimental techniques, which, in the most favorable cases, are in the picosecond range, or at least ten times

too slow.
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Appendix: Relaxation of a two-level system

For a two-level system

— T

— 8

with the hamiltonian

H=H,+V, (A1)

Hy=(e,~e )P+ Hyy (A2)

V=F@Q+0%), (A3)
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and operators defined as

P=1rrl, Q= Is)rl, ot = Ir )Gl
we may employ eq. (7) to obtain the equation of motion for the population P(r) of the upper level. We find that

[Hy, P] =0 )
and
V), V0, PO = B() F(O)]—(1-Pp) €7 + p o=

—FOF@(-Pp) e _p T (AS)

where we definc € as the energy difference between upper and lower levels
€=¢€—€,.

Substituting into eq. (7), we obtain

+ oo + o
d%(P(z))-(l @) [ o FOF@eie — @ [ dramFoper (A6)
Defining
+ oo
K= f dr el (F (1) F(O) (A7)

—ca

and noting that

+ oo .
[ artE @) F@peier = Kb, (A8)

— oo

eq. (A6) may be rewritten as

'c%@(‘)): _KPY+Ke P (1-(P)). (A9)

All terms in eq. (A9) are retained in the RWA: for the two-level system, higher-energy states which can serve as
intermediate states are absent, thus @0 and QJr Ot are zero. Hence, the RWA treatment of the second cumulant

for the relaxation of a two-level system is exact.
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