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Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which
the system energy increases (upside) or decreases (downside) with respect to a threshold energy level
are derived. This selective analysis is applied to examine transport properties of a nonequilibrium
Brownian process that is coupled to multiple thermal sources characterized by different temperatures.
Distributions, moments, and correlation functions of a free particle that occur during upside and
downside events are investigated for energy activation and energy relaxation processes and also for
positive and negative energy fluctuations from the average energy. The presented results are sufficiently
general and can be applied without modification to the standard Brownian motion. This article focuses
on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply
this general formalism to processes in which heat transfer between thermal reservoirs is mediated
by activated rate processes that take place in a system bridging them. Published by AIP Publishing.

https://doi.org/10.1063/1.5007854

Il. INTRODUCTION

The advent of nonequilibrium fluctuation theorems' has
driven significant advances in statistical physics, underpin-
ning the development of theories to describe nonequilibrium
processes far from the linear response regime.>® In paral-
lel, the derivation of macroscopic thermodynamic observables
from stochastic dynamical equations>’~" has given credence
to the role that trajectory-based approaches serve in formu-
lations of thermodynamics.” On a trajectory level, nonequi-
librium thermal fluctuations drive heat transfer’-!°20 and
electron-transfer-induced heat transport,”’* and thus gain-
ing a fundamental understanding of the physical basis of
these fluctuations is critical for the control of energy con-
version in thermal transport devices. Analyses of fluctua-
tions are prevalent in the theoretical formulations of rate pro-
cesses in which transitions between locally stable states are
induced by thermal activation.”>® These fluctuations, and
their corresponding thermal statistics,?” are typically treated
as properties of the full ensemble by including both positive
and negative deviations from the average. However, positive
and negative deviations can also be analyzed separately. As
we will show, such selective analysis of a system undergo-
ing activation and relaxation events can lead to new kinetic
information.

Selective statistical analysis is applied in economics and
econometrics to predict the risk vs. reward of investments
during times of increasing (upside) and decreasing (down-
side) values. Analyzing upside and downside trends sepa-
rately presents new metrics and insight, beyond what can
be obtained from analysis that takes into account the full
data set.’®** This separation procedure is performed using a
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selector (a measurable—usually the value of an investment)
and comparing how that selector compares to some thresh-
old. In economics, the threshold could be, e.g., an open-
ing price or the mean performance. As we will show here,
selective analysis of upside and downside trends can also be
applied to physical phenomena in order to elucidate trends
that are obscured through an analysis that takes into account
all fluctuations. There are many possible selectors in a phys-
ical system, and the chosen selector could in principle be
any fluctuating observable. However, in the stochastic pic-
ture commonly applied to condensed phase chemical dynam-
ics,>3% the energy of the system is perhaps the most impor-
tant selector due to its relation to activated events and state
transitions,?%-32-36:46:47

Heat conduction between multiple thermal sources due to
vibrational interactions is a paradigmatic process in thermal
transport>'-20 and is often described using stochastic mod-
els, of which the simplest is the Brownian motion.***84° For
anonequilibrium Brownian stochastic process x(¢) that is cou-
pled to multiple heat baths and that is not constrained by an
external potential, the energy of the system E(¢) depends only
on akinetic energy term that is a function of x(¢) = v(¢). Trajec-
tories can be classified at any given time as upside or downside
using the instantaneous system energy as a selector. If the
energy of the system at time ¢ is greater than a threshold energy
E*, the process is an upside process at time ¢, and if the energy
of the system is less than the threshold energy, the process is a
downside process at time ¢. Obviously, the classification of a
process as upside or downside depends on the time of analysis,
and, as shown in Fig. 1, a process can change from upside to
downside and vice versa many times over the course of the
trajectory.

Published by AIP Publishing.
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FIG. 1. Energy of a representative stochastic process x(¢) as a function of
time. The upside segments (E > E*) of the trajectory are colored in red, and
the downside segments (E < E*) are colored in blue.

Here, we examine the statistical properties of a free Brow-
nian particle that arise by separating the full ensemble of
trajectories that describe it into upside and downside sub-
ensembles with respect to various energy thresholds. These
statistical properties (moments, expectation values, correla-
tion functions, probabilities, etc.) are classified as restricted.
Properties that are termed unrestricted correspond to analy-
sis of the full ensemble. We focus on the situation in which
the full ensemble is in a steady-state, although the developed
methodology can also be applied to other cases. The two most
pertinent threshold energies are (a) the initial energy of the
process E(0), which is a particular property of each individual
trajectory and (b) the average energy (E) of the system, which
is a statistical property of the full ensemble. When the ini-
tial energy E(0) is used, any calculated result is then averaged
over this initial energy using the (assumed known) initial dis-
tribution (usually taken to be the equilibrium or a steady-state
distribution). When (E) (a property of the initial distribution)
is used, the final result is given as a function of this energy.
Using the average energy as the threshold, where this average
corresponds to a given steady-state situation, has a particular
meaning in statistical physics because of its relation to the def-
inition of positive energy fluctuations SE* = E(t) — (E) > 0,
which are upside processes, and negative energy fluctuations
OE™ = E(t) — (E) < 0, which are downside processes. Note
that (E) is a number that is the same for every trajectory while
E(0) is a property that depends on the initial conditions of a
trajectory.

The development of an upside/downside formalism for
thermalized molecular processes is principally motivated by
questions that arise with respect to what fraction of the total
system energy change and what fraction of the total heat cur-
rent are contributed by each bath when a system that is driven
by multiple thermal sources increases in energy and when
the system decreases in energy. Similar partitioning questions
arise with respect to positive and negative energy fluctuations
from the average energy. However, these problems cannot
be addressed using theories that treat properties of the full
ensemble, i.e., unrestricted properties that do not differen-
tiate between activation and relaxation. For example, given
a system that is connected to N thermal baths, each with a
respective temperature 7 and energy relaxation rate into the
bath 7y, applying the upside/downside formalism yields the
result that when the system energy increases or decreases by a
factor AE the fraction of this energy that is obtained/released
by each bath is y; T/ 25{\’ vi Tx. While this result is intuitively
plausible, its derivation is not possible using an analysis that

J. Chem. Phys. 148, 044101 (2018)

treats the full ensemble without separating it into upside and
downside sub-ensembles. In future articles in this series, we
apply the framework developed here to examine the way
energy transfer between different thermal reservoirs is affected
by an activated rate process in the system bridging them. We
find that in the heat transport equations that arise in such anal-
ysis, dynamical transport properties appear that depend not
only on the time ¢ where the upside/downside constraint is
imposed but also on all times #* < . Thus, developing both
one-time transport properties which depend only on time ¢
and two-time transport properties which depend on times ¢’
and ¢ is imperative in obtaining solutions to the partitioning
problems.

The remainder of this article is organized as follows:
Sec. II contains details of the nonequilibrium Brownian pro-
cess that we use as a model. In Sec. III, unrestricted cor-
relation functions and moments of this process are derived.
The primary motivation for including the derivation of unre-
stricted properties is to provide a basis for counterpose with
respect to the restricted dynamical properties examined in
Sec. IV, but the general integral forms of these properties can
also be applied to restricted transport. Statistical properties of
restricted transport are derived in Sec. IV. Concluding remarks
and outlook for future articles in this series are presented in
Sec. V.

Il. BROWNIAN MOTION DRIVEN
BY N THERMAL SOURCES

The stochastic process we consider in order to examine
restricted transport and energy fluctuations is a free Brown-
ian particle that is driven by N thermal sources, where each

sourcek € {1,...,N}hasarespective temperature T;.*>*’ The
Langevin equation of motion for this nonequilibrium system
is
N N
B== ) yik+ ) &), (M
k k

where yy, is a Markovian dissipative (friction) parameter of the
respective bath and & (¢) is a stochastic noise term that obeys
the following correlation relations:

(GOEN) = 2yikpTim™ 8t ~ 1),
(EME&E)) =0,
(&) =0,
(&) =0,
for unrestricted transport, where (...) denotes an average

over realizations of the noise. The formal solution of Eq. (1)
is

@)

x(t) = x(0) + / v(s)ds, 3)
0

N N ., N
o) =vO) ] [e'+>] / (]_[ e—yk“—s))g,(s) ds. ()
k 770\

The most common case is a process driven by two thermal
sources (N =2), and this system has been the focus of intensive
investigation due to its relevance for vibrational heat conduc-
tion”-10-20 and electron-transfer-induced heat transport.?!-240
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In this article, the general derivations of the restricted proper-
ties are valid for arbitrary N. For simplicity, the results shown
in all figures are for the N = 2 model.

The equation of motion (1) can also be written in a
simplified form as

X =-yi+£(), ®

in terms of the total friction and stochastic noise
N N
y=Dm and €)= &), ©)
k k

For convenience, we will most commonly use this simplified
notation. These friction and noise terms satisfy a fluctuation-
dissipation theorem

(EDEW)) = 2ykgTm™ " 6(t — 1),

(N
(ém) =0,
that defines an effective temperature
N
T,
T = Z M 8)
= 7

The effective inverse thermal energy is 8 = 1/kgT, where kp
is the Boltzmann constant. The general solution of Eq. (5)
is

x(t) = x(0) + / v(s)ds, ©)]
0

t
v(t) = v(0)e " + / e Y19 ¢(s) ds. (10)
0

It is important to note that Eq. (5) is equivalent to the
Langevin equation of motion for an equilibrium Brownian
process, and therefore all the restricted observables derived
herein are also applicable to the standard Brownian motion.
In future articles in the series, we apply the formalism in
Eq. (1) in order to analyze specific nonequilibrium transport
properties.

The Brownian process is initially characterized by a veloc-
ity distribution pg, and in the limit # — oo, it approaches a
nonequilibrium steady state (ss) with temperature 7. At steady
state, the velocity distribution is a Gibbs distribution'® given
by

p(ss)(v) _ e—B%mvz

o : (11)

where Z©9 is the standard partition function. In a likely special
case, the initial (r = 0) velocity distribution of the process is
the steady-state distribution: py = .

lll. UNRESTRICTED TRANSPORT PROPERTIES

In this section, unrestricted statistical properties for a
Brownian process that is driven by N thermal sources are
reviewed. These unrestricted properties will be used in the con-
struction of the restricted properties that are derived in Sec. IV
and will serve as a basis when comparing unrestricted transport
and restricted transport.
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The transition probability for a Brownian process satisfy-
ing Eq. (5) is®

1 b —v/e =\ ?
2nod(t — 1) W

where T
o2t —1) = B—(l _e—2y(t—t')), (12)
m

is a time-dependent variance. Equation (12) expresses the con-
ditional probability that a process with velocity v’ at time
t'—p @t |v't") = 6(v—v’)—has velocity v at time 7. Without
loss of generality, the initial time can be defined as ¢ = 0, and
in this case, p (v | v 0) is the probability that a process with
initial velocity v(0) = vy has velocity v at time ¢. The instan-
taneous energy of the system is E(v) = %mvz, and its initial
value is E(0) = %mvg.

The first velocity moment for a Brownian process evolving
through Eq. (5) is

(0(0) = (w(©0))e™ + / eV E(s)) ds, (13)
0

and using (£(s)) = 0 from Eq. (7), for unrestricted transport
(@) = (wO))e™". (14)

The general form of the second velocity moment is
!
(1)) = (&(0)) eV 427! / N ((0)é(s))) ds
0

! !
g /0 /0 PO (¢ (s51)E(52)) dsy dsa, (15)

which can be evaluated using the statistical properties in
Eq. (7) yielding

() = (1(0)) ™" + kan—T(l —e ™), (16)

which is valid for ¢+ > 0. For a Gibbs distribution of initial
velocities (or as t — oo for any bounded initial distribution),

Eq. (16) reduces to
ksT
() = 2=, a7

m
In this case, the system will be in a quasi-equilibrium state
at the effective temperature 7. The general expression for the
two-time velocity correlation function is>!

(D) = <v2(0)> Y e*y(t+z'>/ e {v(0)é(s1)) dsy
0
1oV / " (0(0)E(s1)) ds)
0

t ¢
+e7YH0 / / eI (£(51)E(52)) dsy dsa,
0 Jo
(18)

which after applying the unrestricted noise correlations and
evaluating the integrals leads to

(v’(t’)v(t)) — <U2(0)> e—y(t+t’) + ]ﬂ (e—ylt—t’l _ e—y(t+t’)) ,

m
(19)
where for notational convenience v’ = v(¢').
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The average energy of a free Brownian process is

1
(Et)) = §m<v2(r>>, (20)

and for unrestricted transport under steady-state conditions,
1
(E) = SksT, 21

which illustrates that the energy of a particle coupled to N
thermal reservoirs obeys an analogous equipartition theorem
with respect to the effective temperature as does a particle
coupled to a single reservoir.

IV. RESTRICTED TRANSPORT PROPERTIES

Restricted transport properties of a free Brownian par-
ticle are derived in this section. Details of these derivations
can be found in the supplementary material. These properties
are applied in the next article in this series to resolve questions
related to energy partitioning in nonequilibrium processes that
are driven by multiple thermal reservoirs with different tem-
peratures; however, the developed formalism is sufficiently
general that, apart from heat transfer properties that are unique
to the nonequilibrium situation, it can be applied without
modification to the standard Brownian processes. As a con-
sequence, the upside/downside mathematical framework has
direct ramifications and applications in the theoretical formula-
tion of equilibrium statistical mechanics, specifically analyses
of fluctuations.

A. Restricted transition probabilities and distributions

The general forms for the conditional probability that the
energy of a process is either above (upside process T) or below
(downside process |) the threshold energy E* at time ¢ given
that the system was characterized by the initial distribution pg
att =0 are

pi(t1E@) > E¥, po0)

= /R Po@)p |5 0)O(EQ) - EN)dvdi,  (22)
pu(t1E@) < E¥, po0)

= /R _Po@p( |5 0)O(EF ~ E@))dvdi,  (23)

where O is the Heaviside function and R" denotes integration
over n-dimensional real space. These restricted probabilities
can be applied to construct the restricted probability densities.
The general forms for the restricted densities of v at time ¢
given that the system was initially characterized by velocity
distribution pg are

Sz po(@)p(v |5 0)O(E(v) — E*)dD
pr(t1E() > E¥, p 0)

Sz po@)p(w 1|5 0)O(E* — E(v))db
pu(r1E@) < EF, py 0)

where p represents a restricted density. From these general
expressions, the restricted transition probability densities for
different thresholds can be derived.

pr(vilpo0) = L)

5Lwt] po0) = . (25)
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E(t) compared to E(0)—For E* = E(0) and po = p(ss)
[where E(0) is a function of o which is averaged over the distri-
bution po(D) to obtain the expectation values] (supplementary
material), evaluating Eqs. (22) and (23) gives the expected
result:

1
pr(t1E® > E©, 0 0) = py (1| E®) < EO), p0) = 3,
(26)

which shows that a trajectory sampled from the steady-state
distribution has equal probability to increase or decrease in
energy over time interval [0, ¢] and that these probabilities are
time-independent and temperature-independent.

The restricted probability densities in v are

-(D(|U|,U;l) —®(-|v|,v;1)
| P11 E@ > E©), p0) |

pr(v] p0) = pw)

27

P11 p™0) = p* ()

—1 —®(Jv],v; 1) + (- |v],v;51)
pu(t1E®) > E(0), p= 0)

(28)
where
{04
O(a,v9;t) = / p(t|vy0)dv, 29)
1 vt _
= Cerfe [ (30)

2| Vet

is the time-dependent cumulative distribution function of
the probability density p(vtlvg0). The upside and downside
densities are shown in Figs. 2(a) and 2(b) as functions of
v for various values of ¢. In this case, the restricted den-
sities are symmetric (even) functions in v for all 7. Also
observe that both the upside and downside restricted prob-
ability densities are not Gaussian and have a singularity at
v=0.

E(t) relative to (E)—A process can also be classified as
upside or downside with respect to the average energy (E)
(an ensemble property) instead of the initial energy E(0) (a
property of each trajectory individually). We denote a pos-
itive energy fluctuation from the average energy (upside)
as

SE*=E@®) —(E)>0 (€20)
and a negative energy fluctuation from the average (downside)

as
OE” = E(t)—(E) <. (32)

When using this threshold, the “upside” and “downside” terms
simply imply that the system energy is above or below the
average value, respectively. A likely special case is a sys-
tem with energy threshold E¥ = (E) and initial distribution
po = p. Using Egs. (22) and (23) leads to

pr(t|6E*, p0) = erfe(y/1/2), (33)
pu(t16E™, p*0) = erf(y/1/2), (34)

after evaluating Egs. (22) and (23), which are temperature-
independent.
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4 FIG. 2. Restricted upside and down-
side probability density for po=p®
with [(a) and (b)] E¥ = E(0) and [(c)
and (d)] E¥ = (E). The time-dependent
densities in (a) and (b) are evaluated at

different times marked in the legend of

(a). Parameters in this and all other fig-
uresarey =1(y; =1/4,y,=3/4),m=1,
and T =1 (T =4/5, T, = 16/15) which
E are given in reduced units with char-
acteristic dimensions: length o =1 A,
time 7 = 1 ps, mass m = 10 m,, and
temperature 7 = 300 K.
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For positive and negative energy fluctuations from
the average which are categorized through application of
E* = (E) as the energy threshold, the restricted densities in v
are

PV ) O(EW) — (E))
p1(t16E*, p0)
P W) OE) - E(v))
pl(t |6E~, p 0)

pr(vt] p0) = , (35)

ALt p*0) = (36)

which are time-independent because p; and p; are time-
independent. In this case, the restricted densities are truncated
Gaussian distributions that are normalized over the respective
upside or downside region. These distributions are shown in
Figs. 2(c) and 2(d) where it can be observed that each distribu-
tion has singularities at v = i\/@ . Note that the application
of an ensemble-based constant energy threshold, specifically
(E), results in restricted distributions which have differing
geometrical properties than those obtained using a trajectory-
dependent threshold E* = E(0) which are shown in Figs. 2(a)
and 2(b). Namely, when using the average system energy
as a threshold, the upside probability density §4 is nonzero
on the discontinuous interval (—oo, —m) U (m, o)
and the downside density p; is nonzero on the continu-
ous interval (—m, m). Also observe that the restricted
densities obtained using a constant energy threshold are
symmetric.

B. Restricted moments: Velocity

The restricted probabilities and probability densities
derived in Sec. IV A can be used to construct the restricted
velocity moments, which, for Brownian motion, are propor-
tional to the restricted energy moments. These moments appear
in the expressions for the restricted heat currents that are inves-
tigated in the next article in this series, and thus have direct
implications for upside/downside thermal transport and energy
partitioning.

In the explicit integral form, the kth restricted raw
moments of v for threshold E* given that the system was
initially characterized by distribution pg are

(v*(t| E@) > E*, po 0))T
_ Jp2 v po@)p(v 110 0)O(E() — EF)dv db

= k -
= <v (t)>T pT(tlE(t) > Ei,po 0) )

(37)
(v*(t| E@) < E*, po 0))l
_ Jr2 v po@)p(v 1|0 0)O(E* — E(v))dv db

k
<v (t)>¢ - pl(t|E(t) < E*, py 0) ’

(38)

where the numerator in each expression is a normalization
factor.
E(t) compared to E(0)—Under steady-state conditions,

(v(t| Et) > E(0), p 0)>T =0, (39)

(v(t| E@) < E(0), p™ 0))l =0 (40)

as expected from the corresponding symmetrical restricted
probability densities [see Figs. 2(a) and 2(b)]. The second
restricted moments are

(v?(t| E@) > E(0), o™ 0))T = kBTT [1 + %G(r)], 1)
<vz(t|E(t) < E(0), p 0)>¢ _ kT [1 - %G(t)], (42)
m /4

with
G(it) =Vl —e 2, 43)

The unrestricted and restricted second moments are shown
in Fig. 3 as functions of time where it can be observed that
after an initial transient decay the restricted moments approach
respective asymptotic values corresponding to G(¢) — 1 in
Egs. (41) and (42). Figure 3 also illustrates that for thresh-
old E(0), when the full ensemble is in a steady-state, the
equality

(0 1E@ > E©)., 6% 0)), = 0*0))
= [(v? (1 E®) < E©). o™ 0)) = ()] @44)

holds, which states that upside and downside second moments
are split symmetrically about the unrestricted moment.
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FIG. 3. Velocity moment (v2(1)) as a function of ¢ for restricted (solid) trans-
port and unrestricted (dashed) transport and a steady-state initial distribution
9. The threshold energy is E¥ = E(0).

E(t) relative to (E)—Using energy threshold E* = (E),
the first restricted moments of the velocity for a system initially
characterized by the distribution pg are

<U (t| SE*, po O)>T
= (o), = Je2 vpo@)p(vt| D O)(?(E(v) —(E)) dv dﬁ,
pi(t18E". po0)

(45)
<v (t|6E, po 0)>l
Jr2 vpo(@)pv |5 0)O(E) — E(v)) dv db
pu(t16E, po0)

bl

= (v(1), =
(46)

and for the special case with py = p**¥ the expected results are
recovered as follows:

(v(t]0E", p 0))T =0, (47)
(v(t]6E™, p 0))l =0. (48)
The second restricted velocity moments are, correspondingly,
<02 (t|6E*, po 0) >T
_ Jp20?po@)p(v 15 0)O(EW) ~ (E)) dv di

= (W (0), = ,
n PT(f [6E™, po 0)

(49)
<U2(t|6E_’ Lo O)>i
_ Je2 02 po(@)p(v 117 00O (E) ~ E(v)) dv dB

= (1), = ’
L pi(t16E. po0)
(50)
and
ks T [2 1
2 + _(ss) — B— — N\ =
<U (t|6E", p 0)>T m |\ e (erfc(\/l/2))}
~2.53 % kB—T, D
m
ks T [2 !
2 E-, (ss) = B 1- - (—)
(2157 p 0)), 7e \erf(V172)
~ 0291 x ‘BT (52)
m

J. Chem. Phys. 148, 044101 (2018)

The time-independence of the restricted moments for this
energy threshold is a direct consequence of stationarity in
the corresponding probability densities [see Figs. 2(c) and
2(d)].

C. Restricted moments: Energy

The expectation value of the system energy E at time ¢
in the restricted spaces corresponding to upside and down-
side processes can be calculated directly using the respective
restricted second velocity moment derived in Sec. [V B. The
general expressions for the restricted energy expectation val-
ues at time ¢ given that the system was initially characterized
by the distribution pg are

1
(E(t|E@) > EF, po 0))T = Em<u2(z |E@t) > E*pg 0)>T,

1
(E(t|E@) < EF, po 0))l = Em<v2(z|E(t) < E*, py O)>¢’

where the upside and downside processes are separated using
energy threshold E*.

D. Two-time restricted transition probabilities
and distributions

Up to this point, we have only considered the statisti-
cal properties of a process at time 7 given that the process
is upside/downside at time 7. A more general analysis that
includes future- or history-dependence can be performed by
observing fluctuations at time ¢’ > ¢ or ¢’ < ¢ given that the
process is upside/downside at time ¢. In other words, a pro-
cess can be selected as upside or downside at time ¢ and then
the statistical properties along that process at some time ¢’ > ¢
or t’ < t can be constructed. This two-time analysis will be
used to evaluate two-time correlation functions and transport
properties and to resolve the question of what fraction of the
total energy change and total heat current is contributed by
each bath during upside and downside events. In what follows,
we limit ourselves to the case of ' < ¢. The reason is that in
future articles in this series, integrals appear in the heat trans-
port equations which contain energy fluxes from each bath as
integrands that must be calculated at time ¢’ from the group
of trajectories that are upside/downside at future time ¢ > t'.
Applying this two-time selective analysis in the limiting case
of ' = t will recover the properties derived in Secs. IV A and
IV B.

The first two-time observable we examine is the condi-
tional probability that a process that is upside/downside at
time ¢ is also upside/downside at time ¢’ < . There are four
possible combinations of upside and downside events: upside
at both ¢’ and ¢ (1), downside at both #" and ¢ (]|), down-
side at ' and upside at 7 (1), upside at t' and downside at
t (T]). Calculation of these probabilities involves evaluation
of transition probabilities with constraints at both time ¢* and
time . The general forms for these two-time twice-restricted
upside/downside-upside/downside probabilities given that
the system is initial characterized by distribution pg
are
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pr(t' .| E() > E* Et) > E¥, py 0)
= py(t’,t] po0)
= /R3 po@p(vtlo’t")p(v"t" |50)
X O(E(W’) — E¥)O(E(v) — E¥) di dv’dv/
X /R3 po@)p(vtlv t")p@ t'|50)

X O(E() — E*) do dv’dv, (53)

pu(r. 1| E@) < E* E(t) < E*, po 0)
= pn(t',1] po0)
= /3 po@pvtlv ) p@ t"|50)
R
X @(E* — E("))O(E* — E(v)) dv dv’dv /

X /R3 po@p (vl t")p(v’t"|50)
X O(E* — E(v)) di dv’dv, (54)

pu(t.t|EW) < E*, E(t) > E*, py 0)
=pup(’,t] po0)

= /R] po@p(vtlv’'t")p(v’t"|50)

X O(E* — E(v"))O(E(v) — E¥) do dv'dv/

X /R3 po@p(vtlo’t)p(v"t" |50)
X O(E() — E*) do dv’dv, (55)

pru(t' .t EG) > E* E@t) < E¥, py0)
=py(t',t] po0)
- /R @iy )p(v’ 1 150)

X O(E(W’) — E¥)O(EF - E(v)) di dv’dv/

X /R3 po@)p(vtlv t")p@ t'|50)
X @(E* - E(v)) do dv’dv, (56)

where we have applied a constrained forward Chapman-
Kolmogorov evolution®* to construct the integrands. These
integrals with multiple constraints are, in general, either
algebraically cumbersome or not analytically tractable and
therefore are most easily evaluated using numerical proce-
dures.

The two-time twice-restricted upside/downside-upside/
downside conditional probabilities for energy thresholds E(0)
and (E) are shown in Figs. 4(a) and 4(b), respectively. For E¥
= E(0) (atrajectory-dependent threshold), the probabilities are
related by the equalities pyy = p;| and p1 = pq; for all #'. Dis-
tinct trends are observed at the limits of the [0, ] time interval,
specifically, as t’ — 0

J. Chem. Phys. 148, 044101 (2018)

p(t',t|p*0) =

~
o
=

(¢',t] ) 0)

= 0.25

FIG. 4. Two-time twice-restricted probabilities pyy (blue; solid), py; (blue;

dashed), py; (red; solid), and pq; (red; dashed) as a function of " for

t =1 and t = 2 and energy thresholds (a) E(0) and (b) (E). In both panels,
— (s8)

pPO=pP

li =1 =li =li =1/2, 57
fmpr = fimpu = limpu = limpn =1/2. (D

[consistent with Eq. (26)] and at the opposite limit ¢ — ¢ of
the interval
limpyy =limp;; =1 and limpj; =limpy =0. (58)
t'—t t'—t -t t'—t
As t" approaches ¢, the probabilities increase rapidly as quan-
tified by (0p/0t’);, which implies that if a process is upside or
downside at ¢, then a short time before at #’ =t — At, the process
was likely to be in the same state. Moreover, for this specific
energy threshold, the most likely outcome is that a process that
is upside or downside at ¢ was in the same restricted state at
any other ¢’ > 0.

When the average system energy (E) (an ensemble prop-
erty that is the same for each trajectory) is used as the thresh-
old, different relations between the two-time probabilities are
observed as shown in Fig. 4(b). In this case, ps # py| and pj¢
# p1., except at the ¢’ = ¢ point where the equalities given in
Eq. (58), are recovered. For this threshold, the restricted prob-
abilities also show different temporal behavior than for the
case with threshold E(0). Namely, processes that are upside
at t are more likely to be in the opposite state at t’ = 0, i.e.,
if a process is upside at ¢’ = ¢, it was most likely downside at
t’ = 0, and processes that are downside at 7 are more likely
to be in the same state at ¢’ = 0, i.e., if a process is downside
at t’ = 1, it was most likely downside at " = 0. This implies
that the probabilities for positive and negative energy fluctua-
tions from the average energy are dynamically heterogeneous
and not symmetric with respect to the unrestricted properties,
which is different from the case of positive and negative energy
changes which are split symmetrically about the unrestricted
probability.

Next consider the restricted probability densities at time ¢’
< t. For a system with energy threshold £ and initial distribu-
tion pg, the general expression for the two-time once-restricted
probability density of v’ at#” < f given that the process is upside
atris
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Je2 0@ p il ') p(v’t'|50)O(E(W) — E*) db dv

pr(v/ ¢ < t|E(t) > E*, pp0) = py (vt | po 0O , (59)
pT( | po ) =7 @ 0" fRs po@p v ) p(' t'|50)O(EW) — E¥) do dv’dv
and the corresponding density at ¢’ given that the process is downside at ¢ is
. . fr2 po@)p(v ] v 1) p(” 1" |5 0)O(E* — E(v)) di dv
pu(v't <t|E(t)<ET,poO) =5, (0" 11 po0)~ R (60)

fRz po@)pilv’ ") p(v’ 1" |50)O(E* — E(v)) dodv’dv

The superscript “<” indicates that the density is calculated at #’ < t while the upside/downside constraint is imposed only at
future time .

In the case of E* = E(0) and Po = p(“), there are no known closed-form expressions for Egs. (59) and (60); however, the
restricted probability densities can be written using series representations (supplementary material),>~>3

pr(v 1" < t|E@) > E©), p™0)

k 2k+1 _1)kr(k+ l)aZkb
— 09 D™ F(k+1. 4 —p2 ( 277 T p (k4 L3 p?
=p (l) )( 7T|:k:0 (2k 1) 1 1( + L) +)+ F(k+1) 1 l( +2’2’ +)

(—l)ka%kﬂ (—l)kF(k+ l)a%kb_
- iy P ke L gi=b?) - e =P (k5.3 -8)

(- l)ka2k+1 5 5 a’(_l)kr(k+%)a_%kb+ i 3 2

i1y 9E L (ko L 3o - e Gk ) P (ke g 30

( l)k 2k+1 5 a'(_l)kr(k+%)agkb_ X 2
ey Gk L) (k1 b) ¢ e B Gk b a) (k535 2)
_erf[b+/\/a$+l +erf b_/,/ag+1 )’ o)

py(v' 1" < t1E@) < E©), p™0) "

(—1)kg2k+! (=D (k + 3)a%*b,
= p™( )( [ mlFl (k+1,é, b$)+ F(k+i) R (k+%,%;—bi)
k=0

(=1yka2+1 Loy DTk + 3)ab s o
-G (k+1,3:-p2) - STES TR (k+3.3:-p2)

(= 1kt a(-DFT (k + 1yab

—(2k g(k+1,a2) 1F1 (k+1,%;—bi)_ |a|]“(k+21)+ +g(k+l,a2)1F1 (k+%,%;—bi)

(=1)ka2k+! s 5 a(—l)kl"(k+%)a3kb_ 22 2
+(2k—g(k+1 ?) 1Fy (k+1,5:-b2) + FRCESH G(k+14.0%) 1Fy (k+4.3:-p2)
+erf[b+/\/ai+l —erf[b_/\/a%+1 ), (62)

where 2(4r
ax(t,1") = + —f“(’) ,
N 0 O_U(t_t’)
g(a,z)z/ v”le”dv// v el dy (63)
0 0 1

batit',0) = (&7 £ ) oo
is the normalized lower incomplete gamma function, 2oy (1 = 1)

1
= a(’,v') = — | ———v'.
1Fi(a,b;z) = z (64) 22" (1)
i 0\(b),

v',  (66)

@,

is a confluent hypergeometric function of the first kind, The explicit dependence of a., b., and @ on , ', and v’ has
with been suppressed in Eqgs. (61) and (62) for notational conve-
@y =22+ Dz +2) - (z+v—-1) (65) nienc.e, but it shou.ld be understood that these qua'ntities.are

functions. In practice, we found that the computational time

being the Pochhammer symbol, and required to partially evaluate the infinite sums to the point of


ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-002803
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FIG. 5. Two-time once-restricted up-
side and downside probability density
for pg = p* with (a) and (b) E* = E(0)
and (c) and (d) E¥ = (E). In all panels,

the restricted densities are evaluated at
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(a) T T T T T T T T T T T (C) T T
v 015F — v —0.01 1 v 0.15F
= — '=0.05 =
7 — t'=0.09 =
N 0.1F -—--t=t'=0.1 \E 0.1+
S S
=005 = 0.05f
zét ’{
0 1 1 1 1 1 X 1 1 1 1 1 0 1 1
(b) T T T T T ! T T T T T (d) T T
v 0.15F K 1 v O.15F
&Q 0.1+ \”‘E 0.1F
ES S
= 0.05f = 0.05F
!i} zo?
0 1 1 1 1 1 1

different times ¢’ < ¢ marked in the leg-
end of (a), and the upside/downside con-
straint is imposed at ¢ = 0.1. The dashed
curves correspond to the respective den-
sities at the ¢ = ¢ limit (equivalent
densities are shown in Fig. 2).

10 -8 -6 -4

convergence was significant, and that application of quadra-
ture methods to approximate the integrals in Egs. (59) and (60)
was a more efficient method.

As shown in Figs. 5(a) and 5(b), for a system prepared
with the steady-state distribution pg = p*¥, time-symmetry
is observed in the restricted densities, in that, at the mid-
point ¢’ = t/2 of the time interval [0, ¢]: py = p;, which
implies that the upside and downside moments of v’ are equiv-
alent at this point. Also note that for t’ < ¢ the form of

|

1 -0/, v5t-1")+D(-

-10 -8 6 4 2 0 2 4 6 8 10

v

the upside/downside density takes the shape of the opposite
downside/upside density at ¢ = ¢ [cf. with the shapes in Figs.
2(a) and 2(b)]. In the limit " — ¢, the shape of the restricted
probability densities begins to morph smoothly into the shape
of the densities for " = ¢ (shown as solid curves) which are
equivalent to the corresponding densities shown in Figs. 2(a)
and 2(b).

For threshold E* = (E) and initial distribution py = p®¥,
the two-time restricted densities are

WH,0"t-1)

ﬁT(v’t’ < t|6E+,p(SS) 0)< — p(SS)(UI)

(o't < 1|6E7, p™0)" = p*(0")

, 67
erfc (\/1/_2) ©n

O(AJ@W2), vt =) = D(— W20t =)
(68)

which are shown in Figs. 5(c) and 5(d) as functions of ¢’ < t.
Recall that, for this specific case, at t’ = ¢ the shape of the
restricted densities are independent of ¢ [see Figs. 2(c) and
2(d)], which implies the distribution is stationary at the time
where the upside/downside constraint is imposed. However, as
shown in Figs. 5(c) and 5(d), for ¢’ < ¢, the restricted densities
are time-dependent. Similar trends to the E ¥ = E(0) case are
observed in the time-evolution of 1 and p; when using (E)
as the threshold, namely, the upside density takes a bimodal
shape while the downside density takes a unimodal shape and
the densities are even functions of v’ for all #’. In contrast with
these geometrical similarities, prominent temporal differences
arise in the evolution of the densities when using the different

|

s v po@p(vtlv’ ) p(v't"|50)O(E() — E*) di dv’dv

erf (\/1/_2) ,

(

thresholds. Specifically, for threshold (E), the densities are not
time-symmetric, which differs from previous observations for
threshold E(0). As t’ — f, the respective densities approach
the functional forms given by Eqgs. (35) and (36), which are
shown as dashed curves and are equivalent to the stationary
densities in Figs. 2(c) and 2(d).

E. Two-time restricted moments: Velocity

The two-time restricted densities can be applied to con-
struct the velocity and energy moments of v’(#’ < t) given
that the process is upside/downside at ¢. The two-time once-
restricted kth moments of v’ are

<v’k(t'|E(t) > E*, po 0)>: = <Uk(f’)>? =

Jrs po@p (vt ') p(v' 1| 50)O(E(v) — E¥) db dv’dv
e v po@)ptlv t)p(v' 1| 50)O(E* — E(v)) di dv’dv

; (69)

<U'k(t'|E(t) < E*, po 0)>I = (Uk(t’))f =

Jzz po@ptlv' 1) p(v’ 1" |50)O(E* — E(v)) do dv’dv

(70)



044101-10 G. T. Craven and A. Nitzan

In the limit #’ — ¢, the “one-time” forms derived in Sec. IV B,
(0 (" =1 E@ > EX, po 0)), = (0 (1)),
(0 (" = 1| E() < E¥, po 0)>T = (v ).

are recovered.

E(t) compared to E(0)—For a system with py = p®
and E¥ = E(0) the first two-time restricted velocity moments
vanish,

(v (7] 0))? = (v’ (7] p* 0)>f =0. (72

This arises from symmetry with respect to v’ in the corre-
sponding restricted two-time probability densities shown in
Figs. 5(a) and 5(b). The second moments,

(v (1| E@t) > E(0), o™ 0))?

r 2yt _ 2y(t—-1')\ ]
= ]ﬂ 1- 2(e —e , (73)
m| G() |
(2 (1 E@ < E©), o )]
r 2yt _ 2y(t—1')\ ]
= Iﬂ 1 E ¢ e’ , (74)
m| G(1) ]

with G(¢) taken from Eq. (43), are shown in Fig. 6(a) as func-
tions of t’. At ¢’ = ¢/2, the second moments are equivalent and
are equal to the stationary unrestricted moment: W/ 2))?
= (vQ(t/Z))f = (v?). This is a direct consequence of the equiv-
alence of the upside and downside densities at this timepoint as
shown in Figs. 5(a) and 5(b). In the ¢’ — ¢ limit, the relations in
Eq. (71) are satisfied and the respective two-time moments are
equivalent to (vz(t))T and (v2(¢)) |, which are given by Eqs. (41)
and (42). In the opposite ' — 0 limit, time-symmetry is
observed in that (02(0))? = (v2(t))f and (02(0))f = (v2(t))?.
This implies that the upside/downside second velocity moment
at t’ = 0 is equal to the downside/upside second moment at

(a) . . ,
50p = (P(t)); = (A)), ===
40

FIG. 6. Two-time once-restricted velocity moment (v2(#))< as a function
of ¢’ for t = 0.5 and ¢ = 2 and energy thresholds (a) E(0) and (b) (E). The
light transparent curves (red; upside and blue; downside) are the (v*(¢ = 1)) <
results. In both panels, pg = p®. The dashed black line corresponds to the
unrestricted moment (v (£)).
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t' =t. The origin of this time-symmetry from the underlying
respective restricted densities can be seen in Figs. 5(a) and
5(b).

E(t) relative to {(E)—The two-time once-restricted first
velocity moments for energy fluctuations from the average
under steady-state conditions are

(v (¢|8E*, o™ 0)) = (' (/| 6E~. o™ 0)) " =0, (75
T l
and the corresponding second moments are

[ [ —2y(t-1")
<U’2(II|(5E+,p(SS) 0)>< _ ]ﬂ 1+ i ( e ) ’
T m | me \erfc(v/1/2)
(76)

<_kT[  [2 (>
2o - (ss) =2 o= [—
<v (t'|6E~, p 0)>l - _1 e (erf(\/1/2))}.
(77

Figure 6(b) illustrates the dependence of the second restricted
moments on ¢’ for various values of 7. As in previous cases, in
the limit ¢ — ¢, the relations between the two-time moments
are given by Eq. (71). In the 7— 0 limit, (v*(0))5 — (v*)1
and <vz(0)>f — (v2);, which are given by Egs. (51) and
(52), respectively. As ¢ is increased and ' — 0, the two-
time restricted second moments approach the stationary unre-
stricted value (v?). This implies that for large  (in relation to y)
the statistical properties for #’ < ¢ are given by the unrestricted
properties.

F. Two-time restricted moments: Energy change
and energy fluctuation

E(t) compared to E(0)—The general expressions for the
change in energy AE = E — E(0) during upside and downside
processes for threshold E* = E(0) and initial distribution pg
are

(AE(|E@) > E©).p00)),
= (E(t| E(t) > E(0), po 0)>T
~(E( =01E0 > EO.p00)).,  (8)
(AE(1| E(t) < E(0), po 0)) .
= (EGIE® < E©).p00)),

~(E(W =0|E® > E©.p00) . (79)

where the first term on the RHS of each equation is the
energy of the process at time ¢ (which is the time where the
upside/downside constraint is imposed) and the second term
on the RHS is the energy of the process at time ¢" = 0 given that
it is upside/downside at time #. Recall that the “<” superscript
denotes that the upside/downside constraint is imposed at time
t while the observable is evaluated at t' < t.

In the case of a system that is initially characterized by
the distribution p**, the restricted expectation values for the
system energy at time ¢ are
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(E(IE® > EQ0). p0)), = "BZT [1 + er(z)] (80)

(E(t| E@) < E(0), p 0)) k‘;T[l - %G(t)] (81)

and expectation values of the energy of the system at ¢’ = 0
given that it is upside/downside at ¢ are

kBT
2

kBT
2

(E(t' = 0| E(t) > E(0), p™ 0)> [1 - %G(t)] (82)

(E(t" = 0|E) < EQ), p 0)) [1 + 72T G(t)] (83)
Note that application of this threshold and initial distribu-
tion give rise to the peculiar property that the expected
energy of an upside/downside process at time ¢ is the same
as the expected energy of the conjugate downside/upside
process at ' = 0. Therefore, the restricted energy changes
are

<AE(t|E(;) > E(0), p** O)>T = szT

84)
ZkBT

(AE(t| E(t) < E(0), p™ O)>¢ = G(t). (85)

E(t) relative to (E)—In the case of energy threshold
E* = (E), an energy fluctuation,

SE = E(t) — (E), (86)

is defined as a deviation from the average energy. The gen-
eral expressions for the expectation value of the magnitude of
restricted fluctuations given that the system is characterized
by distribution pg are

(SE(t|5E™, po 0))T =

(8E(t]E™, po 0))l =

(E(t10E". po0)), ~(E).  (87)

(E(t|6E™. po 0))l —(E). (88)

In the specific case of py = p®¥, application of Egs. (87) and
(88) coupled with Egs. (21), (76), and (77) yields

+  (ss) = L kB—T
<5E(f|5E P 0)>T “ N 2ne erfc(v1/2))° )

|

Jrz v vpo@p(vtlvt")p(v't’ |50)@(E(v) — E*) db dv’dv
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o [1 ks T
<6E(t|6E Pt )0)>¢=_ ﬁ(m) (90)

which are time-independent.

The expectation values of the energy change for a pro-
cess that is characterized by distribution pg and a positive or
negative energy fluctuation at time ¢ are

(AE(1|5E, po 0)>T = (6E (1| 6E* po 0))T

—(E(t" = 0| 6E*, po 0))T +(E),
O
(AE(t|6E™, po O)>¢ = (6E(1|6E™, po O)>¢

—(E(t' =0|6E, po o)}l +(E).
92)

When applying this threshold, AE can be positive or negative
for an upside trajectory and likewise for a downside trajectory.
This is because, in this case, the upside/downside criterion is
that the process energy be above the threshold at time ¢, not
that the process energy has increased or decreased with respect
to its initial value. In the special case py = p**, we get

+ Ss _ 1 kBT _
(SEGI0E" 5 0), = 51 i) (1= €7).

93)

L 1 ksT _
(AEG1SE. p ) = =5 (ﬁ) (1-e2).
(94)

G. Restricted velocity correlation functions

The two-time once-restricted velocity correlation func-
tions (v'(t")v(#))7 and (v’(¢")v (1)) relate the velocity at times
t’ < t and ¢t (denoted by v’ and v) given that the process
is upside/downside at ¢. These functions, which quantify the
time scale of relaxation or activation, can be constructed using
similar methods to those applied previously to obtain the two-
time restricted moments. The general expressions for these
correlations are

' WO E@t) > EF, pg0)] = (o' ()] =

' WO E@) < EF, po0)] = (o't w(®)] =

E(t) compared to E(0)—For initial distribution py = p(“),
evaluating Egs. (95) and (96) yields

(0@ (| E@) > E0), o 0)

"
kgT ) 4 sinh[yt’]

= A 7
m ( 7 G@) <) N

, 95)

Jrz po@ptlv' t")p(v't"|50)O(E() - E*)dv dv’dv
_ Jgsv'vpo@p(tlv ) pv"t" |0 0)O(E* — E(v)) db dv’dv 96)

Jez po@ptlv’ ) p(v' ' |50)O(E* — E(v)) do dv’dv '
[
(v Et) < E©), p* 0>f

_ kT (e _ Asinhly]

-2 (N G0 edy), (98)

where G(#) is given by Eq. (43). These correlation functions are
shown in Fig. 7(a) over variation in ¢’. In the ¢t — 0 limit, the
unrestricted velocity correlation function and both restricted
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FIG. 7. Velocity correlation as a function of ¢’ for energy threshold (a) E(0)
and (b) (E). In both panels, pg = p. Sets of curves are shown for t = 0.5
(denoted by a thick vertical line) and ¢ = 2. In each panel, the unrestricted
velocity correlation function for each value of ¢ is shown as a dashed curve.

velocity correlation functions approach (v2)e™'. This limit-
ing behavior illustrates that the distributions of v’ and v are
equivalent in this limit. In the opposite # — ¢ limit, all cor-
relations recover the respective unrestricted/restricted expec-
tation value of the velocity squared given by Egs. (17), (41),
and (42).

E(t) relative to (E)—In the case that upside/downside
events are defined by positive/negative energy fluctuations, the
restricted velocity correlation functions for a system prepared
under steady-state conditions are

(v @) 6E*, p* 0)? = (02(1)),e 7, (99)
(v () 6E~, p 0>I = (W2),e7", (100)
where the one-time restricted second moments are taken from
Egs. (51) and (52). The restricted correlation functions take a
simple form that is analogous to the unrestricted velocity cor-
relation function. Figure 7(b) illustrates these correlations as a
function of ¢’ for several values of ¢. In the limit #/ — 0, the unre-
stricted correlation approaches (v2)e™’, and the upside and
downside correlations approach, respectively, 2.53 x (v?)e™’
and 0.291 x (v2)e™". Therefore, as t — co with finite #/, the
velocities v”(¢") and v(¢) are uncorrelated for both unrestricted
transport and restricted transport, as expected. In the ' — ¢
limit, the velocity correlations approach the respective expec-
tation values of the squared velocity given in the unrestricted
case by Eq. (17) and in the restricted cases by Egs. (51) and
(52).

V. CONCLUSIONS

We have presented a statistical analysis of sets of the
Brownian trajectories that have been separated from the full
ensemble using the criterion that all the trajectories in each
set are either above or below an energy threshold at some
given time. This formalism has been applied to reveal transport
properties that arise when treating, separately, upside (energy
activation) and downside (energy relaxation) events, and it has

J. Chem. Phys. 148, 044101 (2018)

been shown that these properties differ in both their steady-
state form and temporal evolution from those obtained through
analysis of the full ensemble. Specifically, explicit forms for
upside/downside velocity distributions, moments, and corre-
lation functions have been derived for several pertinent energy
thresholds and initial distributions with particular importance
in nonequilibrium statistical mechanics.

The focus of this article has been development of the
upside/downside mathematical framework. In subsequent arti-
cles, we apply this formalism to the analysis of energy parti-
tioning during upside and downside events under steady-state
conditions for a particle that is coupled to multiple thermal
baths characterized by different temperatures. Particular focus
is placed on upside/downside nonequilibrium thermal trans-
port properties and their relation to the traditional theoretical
picture of heat conduction in which fluctuations are treated as
properties intrinsic to the full ensemble. It has been shown that
this analysis is pertinent for evaluating heat transport driven
by activated chemical processes that take place in thermally
heterogeneous environments.**

SUPPLEMENTARY MATERIAL

See supplementary material for derivations of the
restricted transition probabilities, distributions, moments, and
correlation functions for cases with E¥ = E(0) and py = p*¥,
E* = E(0) and pg = 6(v — vg), and E¥ = (E) and po = p*¥.
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