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We investigate cooperative effects in energy relaxation and energy transfer for N atoms in a
thermal radiation field with superradiance master equations as well as a closed set of coupled
moment equations. Both spatially large and spatially small systems are considered. For small
systems nonlinear rate equations for the energy are related to the moment equations. Symmetry
of the small system to interchanging atoms is used to incorporate off-diagonal solutions of the
superradiance master equation in expressions for the probability of the transfer of energy from
one group of atoms to another. The long time excitation probability for initially unexcited atoms
is large and strongly correlated. Cooperative processes in a large system which fall off with the
distance between a cooperating pair of atoms include energy loss and transfer terms in the master
€quation. The energy transfer is oscillatory in time. Energy relaxation is shown by numerical
solution to become cooperative in a very sudden manner as the scale of the atomic system is
decreased through the resonant wavelength,

1. Introduction

Superradiance, or collective cooperative emission by a system of atoms or
molecules, has received much attention in recent years'~'%). For a system of N
two-level atoms located on fixed lattice sites, the appropriate hamiltonian is

N

N
H=¢3% do;+ Y Y (6/a, exp (ik - x;) + oy ag exp(=ik - x,)) + Hy, (1.1)
J=1 J=1 k

where a, and a; are operators for the kth field mode in the second quantization
representation,

H :Ea:—ak
k
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and x, is the position of the jth atom. The quantities o, are operators on the space
of the jth two level atom with ground state |0> and excited state |1) defined as

ot = 3 |1) Cij — 3105 <0,
of = [1><01,  \_
o7 = |0y 1],

We have incorporated the dipole and rorating wave approximations'') in the
form of the atom-field interaction.

Dicke first showed?) that for an atomic system having dimensions much smaller
than the resonant wavelength, cooperative spontaneous emission with a maximum
rate proportional to N2 is predicted from a group of atoms if all the atoms are
treated as a single quantized system. He defined a cooperativity number r, related
to the eigenvalues r (r + 1) of the operator R2, which is defined [see eqs. (2.1)
and (2.6)] in analogy with the operator for the total angular momentum for sys-
tems consisting of N spins. The other quantum number m describing the atoms is
the eigenvalue of the operator R?, the z component of the angular momentum in
the spin analogy, and corresponds to the degree of excitation of the atoms m
= % (Mexe —~ Munexc), WHEIE Mexg and nnexc are the numbers of excited and un-
excited atoms. Dicke’s superradiant states are those with large values of r and
m = 0. Dicke’s conclusions concerning the possibility of having emission rates
proportional to N ? were based on first order perturbation theory; however, recent
applications of the methods used to study irreversible processes to the problem
have confirmed his conclusions. These methods have culminated in the use of
master equation techniques?) to provide a complete description of the system of
atoms as it approaches equilibrium with the bath-like radiation field. Both ap-
proximate and exact analytic solutions of these master equations in the space of
Dicke states have been studied. In particular the description of the relaxation by
means of nonlinear rate equations for the average energy has been considered!®)
as well as the nature of fluctuations from the solutions for the deterministic rate
equation®). The description of the behavior of systems initially excited locally
rather than in a Dicke state is in principle a simple extension of the known de-
scription in Dicke states. The only difficulty is that, with certain exceptions, €x-
pressions for Dicke states in terms of locally excited states have not been worked
out.

Master equations to describe superradiance from spatially large systems have
also been derived?), but solutions are lacking. Bonifacio and others®) have con-
sidered approximate solutions appropriate for a needle-shaped cavity. Also Lee,
Lee and Chang?’) have studied spatially large systems with small numbers of
atoms using multiple time scale perturbation theory. Rehler and Eberly®) con-



SUPERRADIANCE AND ENERGY TRANSFER WITHIN A SYSTEM OF ATOMS 3

sider the dynamics of large systems with many atoms using a quite different
quantum electrodynamic approach.

Some authors consider also processes which compete with superradiant ones,
including amplified spontaneous emission*?) and various propagation effects'?).
However, we consider here only superradiant processes and therefore in effect as-
sume conditions under which the field functions as a heat bath either at zero
(vacuum state field} or some finite temperature.

Superradiant emission arises from cooperative effects among atoms coupled to
a common radiation field. In this paper we take into account the initial spatial
distribution of energy and extend the analysis of these cooperative effects to in-
clude cooperative energy transfer among the atoms. In particular, the transfer of
energy from the originally excited atoms to other atoms in the system 1s con-
sidered. In the limit for small systems, atomic systems initially excited in a Dicke
state (eigenstate of R?) with r < 1N, come to a state of final equilibrium with a
radiation field at zero-temperature, which is above the ground state energy. The
probability distributions in the long time limit, which we find for small systems
iitially excited locally, show analogous effects, with the added feature that large
excitation probabilities are predicted for exactly those atoms which were unexcited
initially. We also consider the transfer of energy through the radiation field in the
case of atomic systems whose size is comparable to the resonant wavelength in
order to begin to assess the effects of spatial separation on the conclusions drawn
for the spatially small system.

We begin in section 2 by giving a derivation of a closed set of coupled moment
equations for the energy of the atoms by using the cumulant expansion method.
Similar moment equations®) have appeared previously as moment expansions of
the superradiance master equation, but we give a direct derivation which bypasses
the master equation and present a new method for closing the equations, which is
a generalization of technigues commonly employed for one or two particle sys-
tems.

The most elementary indication of the influence which atoms, coupled to a com-
mon radiation field, exert on each other is the nonlinear form of rate equations
which describe the loss of energy to the radiation field. Such rate equations'®) are
quantitatively correct for early times and describe the qualitative features of
superradiant emission from Dicke states. The usual rate equation is obtained from
the coupled moment equations by considering only the first equation and replac-
ing {(R*)*> in that equation by (R*)>2. These equations are assumed to be good
approximations when (R*) ~ N, where N is the (macroscopically large) number
of atoms. Several authors have studied the range of validity of the ratc equations®).
We consider here coupled moment equations for atoms coupled to a radiation
field in thermal equilibrium at temperature T as well as the usually considered
Zero temperature limit (i.e., vacuum state field). In the vacuum case, we show that
if the coupled moment equations are modified by retaining in each equation only
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those terms <{(R*)")> with the highest exponent #, the solution of the resulting set
of equations has the property {(R*)"> = (R*)" and therefore corresponds exactly
to the nonlinear superradiance rate equation. We show that for a non-zero tem-
perature field this same approximation is justified when the value of the photon
number in each resonant mode is small compared to N. In either case, the neglect
of terms beyond highest order in {(R*)") is not a uniformly good approximation
for ail the equations, the higher ones of which contain cocfficients proportional
to powers of N. We consider the effect of this nonuniformity by examining the
ratio {(R*)">/((R*)>" as a function of n as calculated by using the full set of
coupled moment equations.

In section 3, we study the relationship between the coupled moment equations
and the superradiance master equation. In a related appendix, we apply the cumu-
lant method used in the derivation of the coupled moment equations to a general
class of operators and thereby deduce the form of the master equation for a gen-
eral hamiltonian H of the system. The master equation derived in this way is found
to be identical to that obtained with the Zwanzig formalism. Continuing the main
development, we present the analytic solutions of the master equation for small
systems, including in particular the density matrix elements which are off-diagonal
in the cooperation number r and which play a significant role in the description
of systems with localized excitation. The cooperation numbers r and r’ associated
with these off-diagonal density matrix equations are constants of motion and the
solutions of the equations are expressed as a product of two factors: one factor
depends on r and #' but not on the degree of excitation of the system. This factor
determines the maximum decay rate and as we shall see is also responsible for
collective oscillations of the rate of internal energy transfer between the atoms.
The second factor moderates the decay rate in accordance with the degree of ex-
citation of the atomic system. It consists of a product of normalization factors
dependent on r and 7" as well as on the initial and final energies multiplied by a
complicated time-dependent function, the form of which depends only on the
initial and final excitations of the atomic system. Therefore we obtain a separation
between effects due to the total excitation of the atoms and those due to their
“cooperativity”.

In section 4, we turn our attention to describing systems whose initial excitation
1s localized on specified atoms. Such a description is of most interest in connection
with systems which are not restricted in size. However, in order to avail ourselves
of analytic techniqﬁes, we first consider systems much smaller than the resonant
wavelength. For such a system, an adequate description of any localized state
|¥> in relation to a given initial localized state |¥,) is provided by two para-
meters m and @, the first of which is the usual m = 1 (i1, — Punoxc) Used to de-
sctibe the total excitation of the system. The second parameter, (3, the “related-
ness”, 1s taken to mean the number of particular atoms which differ in excitation
in states {¥> and |¥,>. When |¥,) evolves to |¥), O is related to the amount
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of internal energy transfer which occurs. Naturally, for a spatially large system
additional vectorial parameters are required to specify fully the relationship be-
tween two states |%¥) and {¥,>. For a system of 20 atoms the development of a
locally excited system in time is studied in terms of the parameters m and Q as
well as the total probability that an atom goes from an excited to unexcited state
(or the reverse) in the course of time. Probabilities for events in which excitation
is transferred from one location to another within the system show osciflatory
behavior due to cooperative frequency shifts. These oscillations are absent, how-
ever, in the probability that the system of atoms has a given total excitation, even
though this excitation may have been initially localized on a specified set of atoms.
For locally excited systems in which more than half the atoms are excited initially,
we show that the process in which all the initially unexcited atoms become excited
in the course of time is highly favored, resulting in radiation-trapped states ana-
logous to those obtained in the decay of Dicke states with r < #N. We show that
those states in which a large amount of radiation is trapped are characterized by
a high degree of correlation between excitation probabilities on the different
atoms.

In section 5, we discuss the behavior of locally excited states in systems which
are not restricted in spatial extent. The dependence of constants in the master
equation on the interatomic distances is evaluated and we developed the matrix
form of the master equation for the basis of locally excited states. This form is
particularly simple when expressed in terms of the relatedness parameters 0. Nu-
merical solution of the coupled equations for the density matrix elements is used
to study energy loss and internal energy transfer for a system of six atoms on
fixed lattice sites. The transition to relaxation times indicative of cooperative effects
takes place rather suddenly as the size of the system decreases. For systems com-
parable in size to the resonant wavelength, the dependence of probabulity distri-
butions on energy and energy transfer numbers ((2) Is similar to that for systems
of negligible spatial extent. Specific geometric effects play an expectedly secondary
role for small N. However, there is reason to believe that geometric effects may
be more significant when N is macroscopically large. For example, Bonifacio and
Lugiato®) have found important directional effects in the net radiation emitted
from pencil shaped samples containing large numbers of atoms whose spacing is
large compared to the resonant wavelength. For energy transfer effects, which are
essentially local in nature, this kind of cooperative geometric effect 1s less likely
to be important.

2. Closed coupled moment eqguations

We derive by means of a truncated cumulant expansion method coupled equa-
itons describing the time evolution of the thermally averaged moments of the
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operator R? = Y ;o for the total energy of the atoms coupled to a radiation field.
The equations are developed for the case where the radiation field is in thermal
equilibrium at temperature 7, although later we will specialize our results to the
zero temperature limit, corresponding to the vacuum state of the field. Closed
equations for the first N moments of R* are obtained in the case of a spatially
small system, for which the hamiltonian reduces to the form

H=¢R* 4+ FtR™ + FR* + Hyg, (2.1)
where
N N N
F=) a, R =) df, RY =Y o, R™ =) o/.
k Fj=1 ' =1 J=1

Since R*, R*, and R~ are sums over atomic Pauli operators, they satisfy the
commutation relations

[R*, R*] = R",
[R5, R"] = —R", (2.2)
[R*, R™] = 2R".

FolloWing the derivation of Nitzan and Silbey!?) (see also appendix B for more
details), we have for any atomic operator 6 which commutes with H, = ¢R* + Hy

the relations

B = <exp0 l:i f V() dr—l> 6(0), (2.3a)
,i B8y = <exp0 I:l_[t V() dr:|> i l K1) 6(0), {2.3b)
df QO n=2 n!

where
VA = [V, A],

V(1) = exp (iHyt) V(0) exp (—1H,1),
V(0)= FTR™ + FR™,

and K (1) is the nth order cumulant. Only the first nonvanishing term in the
cumulant expansion is retained. This has the form'*~*3)

3K (1) 6(0) = —OI [V(®), [V(®), 6(0)]]) dr. (2.4
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In order to derive a set of coupled equations for the moments of R, we evaluate

(2.4) for 6(0) = (R*)", n = 1, ..., N. For this purpose, it is convenient to use the
relations, valid for any number a,

[R*,(R* +a)) = R* (R* + a)) — R* (R* + a + 1),
[R™,(R* + a)y] = R~ (R* + af — R~ (R* + a — 1), (2.5)

which may be derived from (2.2) by induction. Also we note that due to the com-
mutation relations (2.2), the operator

RZ=(R)? + L (R*R™ 4+ R™R™") (2.6)

commutes with R*, R*, and R~. Therefore R? is a constant of motion of the
complete system as the atoms come to equilibrium with the radiation field. We
“have then

—1K; () (R =0I ([F(x) R* & + F*(r) R™ e,

[F(z) R* e + F*(t) R- e~ (RO} dr. 2.7)

Since the thermal averages {F(t) F(1)) and {(F*(x) F*(t)) are zero at equilibrium,
we drop these terms at the outset to write

= 1K3 (1) (R7)" =0I(C”‘“‘” (F(T) RY, [FH() R™, (R)]]5

+ e ([Fr(T) RT, [F() RY, (REY']D) de. (2.8)

Now since all the bath operators commute with all the atomic operators and since
thermal averaging affects only the bath operators, we obtain

— }K; (f) (Rz)n — [R+, [R_, (Rz)n]]oj e lelt—-1) <F+(f) F(T)} dt
£ R (R, (R [ em160=9 ([F(x), F*(0)]) d
R, [R*, (R} f e¢=9 (F*(x) FQO)) da
4]

— [R*, (R)"] R~ 6[ elt = LF(), FH{n)]) dr. (2.9)



8 J.P. STONE, A, NITZAN AND J. ROSS

By applying (2.5) to the atomic operator expressions in (2.9) in such a way as to
bring factors involving R~ and R* to the left of factors involving R®, we find
that the operators in the first and third terms both equal

(R*R™ 4+ R™R*)(R®)" — R*R~(R* — 1) — R-R* (R* + 1) (2.10a)
while R* [R™. (R*)"] and —[R*, (R®)"] R~ both equal
RY*R™ (R — (R — 1)"]. (2.10b)
The definition (2.6) and the commutation relations {2.2) lead to the identities
R*R™ = R? — (Rz)z + RZ,
(2.11)
R—R+ — RZ _ (Rz 2 _ Rz,

which are substituted into the expressions (2.10a) and (2.10b) with the result that
there appear only R? and the powers (R*)". Finally, we notice that at equilibrium
the two time bath averages depend only on the time difference. As a result we
may make the change of variables v = ¢t — v or v = 7 — ¢ to combine the sum
of the first and third integrals in eq. (2.9) into the single expression

t

C(H) = [e* ([F*(0) F(z))> dr’. (2.12a)
~1
Similarly, the sum of the second and fourth integrals is

B(t) = j"rc"“' (F(@'), FHO)]) dr’. (2.12b)

Putting these changes back into (2.9) gives
— 3K (R = C () {[2R* — 2(R**](R¥)"
~ [R? — (R)? + R (R* — 1y
- [R? — (R)? — R°](R* + 1)}
+ B} {[R* — (R*)> + RA[(RF)" — (R* — 1)), (2.13)

We notice that since R? is a constant of motion, it does not depend on the initial
state of the bath for time ¢ > 0. Hence

{RYR*™ = R? {{RH)"). (2.14)
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Therefore when we expand the binomials in ~1K; (R®)" as given by (2.13) and
apply (2.3) to the resulting expression we obtain

LR gy {R2 v ( "") ARV (=1 + n (RS
dt j=o \ j
-3 (00 ’)<<RI)J>(~1)"+J}
S \y -1
+ € {Rz 5 (j) QRS [ + (=1
-3 ( * l)<<R=)J'>{ +(~l)"“]}. @.15)

The highest moment appearing on the right-hand side is ((R*)"*1>. As a result,
the equations as they are written are not closed. However, for a system of N
atoms, only N moments of the energy distribution are independent. As a result
(see appendix A) it is possible to express {(R*)¥*!> as a linear combination of all
the lower moments as follows

RHVHTY = O,(N) RS + O,(NY(RHY3Y oo + JLQN—-z(N) <RZ>},

On—1(N)
(2.16)
where
l N+ 2
k N - Wk N N
0uN) 2,‘”(“3) ™)
Wo(N) =

I : I +3
w=t- g 5w (07))

k+ 1

keven
N+2—~Kk[/1+3
- Wk—-Q'
k+ 1 k

It is generally assumed that since the correlation functions in the integrands of
(2.12) are composed of a large number of Fourier components of different fre-
quencies, constructive interference will only occur near the origin in time (i.e., the
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correlation time is near T = 0). As a consequence, we replace the limits on the
integrals by ¢ = co. When this is done, it can be shown that'#)

C(0)/B(0) = [exp (efkT) — 1]71.

The quantities {(R*)") and R? appearing in eq. (2.15) are operators in the space
of the atomic states. However, since {R*)* and R? commute with each other, the
equations reduce to equations for numbers ~ the expectation values of (R*)" and
R? - when considered for initial states |r, m)> which are eigenstates of both R*
and R2. The equations then describe the development in time of the average
energy R? and of the various moments of the energy distribution as atoms initially
in the state |r, m) relax to equilibrium with the radiation field. When the field is
in a vacuum state with the number of atoms N macroscopically large and r and m
both of order N with m < r — 5, the coupled moment equations (2.15), (2.16)
may be interpreted for early times (Bt < 1) as a set of nonlinear rate equations®)
involving {( R*> and higher powers of (R*).

In the present paper, we consider simple properties of the moment equations
(2.15) which correlate with this type of behavior and extend the analysis to in-
clude thermal fields (C # 0). We show that when C/B is of the order of the num-
ber of atoms, the description based on nonlinear rate equations breaks down even
for very early times.

First, in the vacuum Jlimit, when the initial values of R* and (R*)" are r (r + 1)
and m", where r ~ N and m ~ N, we can assume for sufficiently small times that
(R¥)" is of order N". The terms in the nth coupled equation (2.15) which are
highest order in N are just

d <((f;)n> = Bn {((Rz)n+1> — R? <(R=)"*1>}, (217)

provided the coefficients in the equation are of order less than N. When # itself
is of order N, the coefficient of ((R*)*~%) for small ¢ is of order N9*2, so that
the approximation (2.17) is no longer valid. If we nevertheless assume (2.17) for
all n, we readily find that the rate of change of the product {(R*)*) {(R*)")> 1s
given by

LR (R
di¢

= Bn (RS {{RY*1) — REL(R) 1))
+ Bg (R {LRHY) — R (R 1H) (2.18)
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If we now introduce the factorization {(R%)*> {(R*)> = {(R*}'**> on the right-
hand side of (2.18), we obtain

I-%" (RS C(RY) = (1 + ¢) B {RT*1y — RE (RT3}, (2.19)

On the other hand, evaluating (2.17) with n replaced by g + 1 yields again the
right-hand side of (2.19) as the time derivative of {(R*)4*">. Thus the expression
obtained for the time evolution is independent of how the moment is divided
into factors. Since we have, by definition, that {(R*)%> ((RH)") = {(RZTt™y at
t = 0, we see that the form of (2.17) is such that this condition is maintained for
all times ™.

The approximate equations (2.17) are not justified when m ~ r because when
m = r their right-hand sides are identically zero, contradicting the assumption
that, at least for small #, the terms in (2.15) that were neglected in (2.17) are negli-
gible compared to terms retained.

When m < r, we may also consider approximations of the type (2.17) for the
case of thermal fields in equilibrium at temperature 7 > 0. In this case C # 0.
Since the highest order terms multiplying C are of order ((R?)"), for fairly low
temperatures where C 15 small, the approximate equations (2.19) remain un-
changed. On the other hand, for temperatures large enough so C/B is of order N,
we must include the leading terms multiplying C in (2.17). When this is done, the
factorization is no longer consistent, Physically, the condition C/B = N implies
that the expectation value of the number of photons in each resonant mode is
equal to N.* Therefore, we have the result that if the number of resonant photons
1s comparable to the number of atoms, the evolution of the system cannot take
place in accordance with a simple nonlinear rate equation which ignores the fluc-
tuations of the energy from its average value. At still higher temperatures, B is
negligible compared to C, so that nonlinear terms do not play a significant role
in the relaxation process. Therefore for sufficiently high temperatures, the atoms
decay exponentially to their equilibrium state without cooperative effects.

We now return briefly to the effect of the inapplicability of the approximation
(2.17) for n close to N on the arguments we have made. In making the factoriza-
tion in (2.18), we assume the correctness of the ansatz for expresstons with a total
power of R* equal to ¢ + n + 1, whereas we end up proving the consistency for

* We may evaluate the possibility of using the factorization ansatz (8,8,> = (6,> ¢8,> for
any 1wo operators 8, and ¢, by examining the expression [V(¢), [V(z), 6,6,]] = [V{e), (V(), 8,11
X 0; + 8, [V(©), [VE), 021 + [V(r), 8,1 [V(¢), 8,] + (V(r), 8,1 [V(7), 6;]. The factorization as-
sumption neglects terms arising from [V(z), 6,] [V (1), 6,] + V@), 811V, 6,].

* For optical frequencies, the temperature necessary to satisfy this condition is much too
high to be attained although, in the microwave region, we may satisfy the condition if N itself
is not too large.
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total powers equal only to ¢ + n. Thus, the consistency of factorizing lower pow-
ers of R* depends on the validity of the ansatz for the next higher power and,
as we have remarked, when we go to sufficientiy high powers (2.17) 1s no longer a
good approximation for (2.15). The one redeeming feature of the situation is the
fact that at £ = O the factorization is exact and, as a consequence, we expect the
ansatz to be consistent for early times and small » values, while at later times, the
error in the higher order equations makes it impossible to prove the ansatz even
for the lower moments.

The reasoning outlined in the preceding paragraph leads to some predictions
concerning the way in which the quantities {((R*)"> deviate from {(R*>" as a func-
tion of n. When m < r, the 1nitial evolution of the lower moments, but not the
higher moments, should be consistent with factorization. As a consequence, de-
viations of {((R*)"> from {R*>" should occur earlier for large n. (This suggests
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Fig. 1. Deviation of moments from factorized form. (a) ((R*)">/{R™)" as a function of n for
m = 20 and two values of r at Br = 0.0005, r = 30—, r = 20 - — —. (b) {(R*Y"J{{R"" for the
same values of r and m at two later times for which both systems have (R*) = 18.
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that the usval assumption in truncation of moment equations — that replacement
of moments by products of lower order forms is better the higher the moment
replaced — must be used with some caution in the present case.) In fig. 1, we have
plotted ((R*)">/(R*)" as a function of n for several cases of interest, in each case
corresponding to an initial state with m = 20. We consider both the case r = 30,
for which the factorization ansatz should apply, and r == 20, for which it should
not, and compare these two cases under two sets of circumstances. In alf cases the
deviations increase with n. The first comparison is made for the situation where
both systems have been allowed to evolve for a short length of time t=0.0005B""
(fig. 12). The system with r = 30 now has (R*) = 19.72, whereas the system with
r = 20 has (R*> = 19.99, In this case the deviations for the r = 30 case are
larger because the system has evolved much further from the initial state (R*)
— 20, for which the factorization assumption is exact. The slow evolution in the
case r = 20, for which n = r, is to be expected in view of the fact that the leading
terms in the rate equations are zero in this case. A truer test of our argument is a
comparison of the systems at times for which the systems have evolved to the
same extent. We have made such a plot in fig. 1b for times when each system has
evolved to (R*> = 18. In this case the system with r = 30 shows, as expected,
smaller deviations from the factorized form.

Therefore we see that the trends shown by the deviations from the factorized
form are consistent with our method of argument. When the initial conditions are
in the factorized form and the lower equations in the coupled set are consistent
with maintaining the factorized form, then early in the evolution of the system it
is a good approximation to assume the lower moments remain factorized, but it
is not such a good approximation to make this assumption for the higher mo-
ments.

3. Master equations

The coupled moment equations such as we have discussed in the previous sec-
tion contain only a limited amount of information about the system. The N mo-
ments (R*)", n = 1, ..., N represent N independent linear combinations of dia-
gonal density matrix elements g,y rmx>

SRV = Y M0rmn.rmas (3.1)

and the fact that the equations are closed simply indicates that these diagonal
elements are coupled only to each other. Here « is a degeneracy parameter re-
quired to specify fully a state with given r and m. Because r and « are both con-
stants of motion, the expression (3.1) for ((R*)") does not include sums over r
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and «. Similar closed equations for {(R*)" (R*)% or {(R*)"(R™)%) likewise con-
tain information about 9., ,m-, for m # m’. In fact, by considering a sufficiently
general class of operators, complete equations for the density matrix can be gen-
erated. Rather than doing this specifically for a superradiant system, in appendix B
we derive equations for the density matrix of a more general system by considering
coupled thermally averaged operator equations for a complete set of operators.
The master equation thus obtained in lowest order cumulant method is identical
to that obtained in lowest order by Zwanzig!®).

In the previous section, we have considered coupled moment equations that
are valid in the limit of spatially small systems. Since we consider in section 5 sys-
tems which are not restricted in size, we include for reference at this point the
master equation for the case of hamiltonian (1.1) which is valid regardless of the
spatial size of the system. When the prescription for the form of the master equa-
tion derived in appendix B is applied to (1.1), the following master equation,
similar in general form to one considered by Agarwal?), results

do . X .
— =ie 3y (g0 — oY)
dr i=1
N N
— jZ Y (B + Cy)loo)o] — o] 00))
=1 I=1
+ Cj (07050 — o] ¢07) + Cjf (poy 0 — o/ pa)
+ (B_J + CJT) (Uff’j—Q - U;QUD],
where

Cop = (Cop)* = X [ exp {i (e — [kl e) v} <alad> x exp {ik « (x; — x,)} dr,
kO

Bay = Bapy* = 2, [ exp {i (¢ — |k ©) 7} {[as, a ]> exp {ik - (x; — x,)} dt.
k O

These quantities are related to the constants B and C defined previously in eq.(2.12)
by

(C-y*=C*=1lim C;,, C=C*+C-,
Xg Xy
(3.2)
(B7)* =B* = lim B3, B=B"+B".

xﬂ_.xg

Up to this point, we have considered the properties of atomic systems coupled to
a field in the vacuum state (zero temperature) as well as systems coupled to ther-
mal radiation fields. However, throughout the remainder of the paper, we devote

L AT T T R M
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our attention to the zero temperature case in which C}: =, = 0. In the re-
mainder of this section and also in the following section, we also consider the
limiting case of a spatially small system before returning to the system of un-
restricted size in section 5. Thus the master equation which 1s the basis for our
considerations in this and the following section has the form,

%g==is@,Rﬂ-_B—gR+R—-B+R+R-g+-BR—gR+. (3.3)
!

By using the relations
Rijro,m,o) = m|r,m o),
Rtirmad=[r(r+ 1) —mm+ DP|r,m+ 1,0, (3.4)
R rmoad=[(+1)—mm-—DPFir,m—10a>,

we may write the matrix elements of the master eq. (3.3) in the basis of Dicke
states

d Mo, Fim s . ’ [
& S = i (' = m) = By () = By (1)
!
X Qmu.r'm'rx' + B‘l’i (?‘) T}r-%r’(rf) Qrm+la.r'm‘+1a’a (35)
where

) =r(r+ 1) —m{m+ 1).

Since coupling is limited to matrix elements having the same energy difference
m — m’, we can restrict our attention to equations for matrix elements diagonal
in the energy. In this case, we write™

erma.r‘ma' !
d¢ = —Re B* ([vﬂl—l(r) + vm—l(r )] Orma, r'ma”

- l[m B+ [r (r + l) - r’ (r’ + 1)] Qrma,r’ma'

+ BP:; (!’) v:(r') Qrm+ la,r'm+1a’" (36)

* If we take eq. (3.6) with r = r’, & = «’, the moments {(R?)"> can be expressed in terms of
the density matrix elements g, p,. ,mq - The solution to eq. (3.6) involves (2r+ 1) (some degenerate)
eigenvalues v,.,(r}, —r < m < r, which determine a sum of exponential time dependences.
On the other hand, we expect on general principles that the solution to (2.15, 16) involves N
€Xponentials. The extra exponentials in eq. (2.15) actually correspond to exponentially increasing
terms. However, this does not imply the existence of any instability since the initial conditions
for (R*)" associated with these exponentially increasing terms cannot be attained for any distri-
bution of energy among the available energy levels — i.e., levels satisfying —r < m < r.
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In these equations, m is restricted to be smaller in absolute magnitude than both r
and r'. When m = r(r'), then »,(r) (v,(r')) is zero and the implied coupling to an
energy state m + 1 is not present.

Consider now the solutions to (3.6) for the initial condition Ormz.ermx = 1
Ormea, rmn = O for me = m;. Since the field is characterized by zero temperature,
the probability of having a final state m; > m; is zero at all times. For m, < m;,
w2 write

Ormgn, rmga’ = (mﬁ ¥ (r) v*(r')) exp{—1Blr(r+ ) +r @ + 1]

n=um,

x exp {—iB' [r(r + 1) — ' (+' + 1)) 1} cu (D), 3.7)

where B’ = Im B*. We readily see that ¢,(¢), as defined by the relationship (3.7),
satisfies

dcm
d¢

= Bm (m - 1) Cm(f) + ch+1 (f) (38)

subject to the initial condition ¢, () = 1. The coupled equation (3.8) may be
solved by successive application of the familiar formula for the solution of a first
order differential equation in a single variable. We express the solutions of (3.6)
obtained in this manner in terms of a propagator for the density matrix 7, which
is a tetradic operator with the property

e:{f) = Z Ty (8, 0) 00(0), (3.9
K1

where each index runs over a complete set of quantum states (r, m, ), i = {r{i), m(i),
(i)}, etc. The fact that coupling in (3.6) is limited to those matrix elements of p,
Orma,rm~- Characterized by the same values of r, r', x, a’, and m — m’ = 0 is re-
flected in 7 as

Tij.k! = Ta‘j,kl ‘5 ({!‘(I), r(j)9 O‘(i): a(j)! m(]) - m(')} »

x {r(k), r(l), a(k), ol), m(k) — m(l) }). (3.10)

We consider now the set of coupled equations (3.6) for particular values of the
parameters r, r', &, and &' for the initial condition g, 4, rma = 1, Crmu, rmar = 0,
m # m;. The propagator matrix elements 7, ,; which can be evaluated by con-
sidering this particular subset of all the density matrix equations are those for
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which
{r(D), r(j), (), (j), m(j) — m(i)}
= {r(k), r(l), k), x(1), m(k) — m([)} = (r, 1, %, %", 0),
m(j) = m@i) = me,  mlk) = m(l) = m. (3.11)

Now if we suppress the indices r, ', &, and «’ and replace ij and k! by the single
indices m, and m,, we can write the propagator T, as follows:

(1) For m; > 0 and
(El) mg > 0:

:rm,m1 = F(m(’ my, T, f) F* (nlf) n, rfa I)
m—1
x Y Gy, mem)exp {BI( + 1)1}; (3.122)
t=m;—1

by —m +1 <m0,

Tm,-m. = F(mls’nlsrs i‘) F* (mh ny, f’, E)

1 (n+ D(n+ 14 1)

iﬂii m—1

1 I 1

X {Z G, I, me, my) (Bf + Y )
[=0

m,—1
xexp{BI(+ D1} + Y G (hm,m)exp{BI(+1) f}};
I=[mg|+1

(3.12b)

(C) me < —Imy + 1’

Tm,ml = F(mfrmh T, I)F* (mf: mi:r"’ f)

m—1 m;— 1 1
G 1) 3 H B +
X{IZO » m,m)( t nsg;«t (n+l)(n+l+l))

Fa

[ rr
x exp{BI{+ 1)t} + Y G, m,m)exp {BI(I+ 1) r]}

‘=m’

(3.12¢)
(2) For m; < 0,

T‘m,.mi = F(m,,mi,r, I)F* (mhmisr’: t)

jm,|

x Y Gy, my, m)exp {BI(I+ 1)1},

i1=|m,|
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where
m—1
Fme, my,r, t) = ( I v,’,}(r)) exp{—3+Br(r + )t} exp {iBr(r + )¢},
m+i+1
Gi ([,mf,r”i)= (2l+ I)(l+mf_ l)‘(_l) ,
(—me+ DU+ m)(m — 1 — I
my + 8
Go ey m) = —— 2 P DEZ I
(d—me+ DU+ m)! (Im] — D!
2 _1ymtmt+l
G U e, my) = @+ D (D

(Il —me + DI+ m)t(m — 1 — DV(im| — I}

and )" indicates omission of singular terms. When r = ', the solutions above
are equivalent to solutions of the superradiance master equation which have ap-
peared previously!”). We need solutions with » # r’ in order to analyze the case
of locally excited initial states which is the topic of the following section.,

The analytical form of the expressions given in (2.12) for T, 18 interesting
from the point of view of the separation which occurs between the dependence on
the variables r and r’ and the variables m,, m,. Aside from the time independent
factor :"’;,,,‘r v‘ﬁ(r), T, m is written in a form of a factor which depends only on r
and " and one which depends only on m; and m,. The factor which depends on r
and r’ takes into account the cooperative effects between the atoms, while the
other factor gives the dependence of the relaxation rate on the amount of excita-
tion present. The product form is quite important in the problem of reducing the
computational effort involved in analyzing locally excited states because it allows
us to find 7,,,, for many different pairs (r, ') by doing a single calculation and
multiplying the results by the appropriate exponential factors. This becomes
especially important when the number of atoms is large. For N 2 25 the numer-
ical evaluation of the formulas (3.12) is so sensitive to round-off errors that the
use of such formulas must be replaced by a numerical integration procedure for
the coupled differential equations (3.6). The numericai integration of one set rather
than many such sets of coupled equations renders this a workable procedure.

4. Locally excited states in a small system

We now determine how eq. (3.12) derived in the preceding section may be used
to describe the behavior of a many atom system with excitation initially localized
on specified atoms. We begin first with a system whose dimensions are small
compared to the resonant wavelength, which may nevertheless be of macroscopic
size.
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Whereas the collective modes of excitation are characterized as being eigenstates
of the operators R? and R?, we may characterize states of localized excitation as
being simultaneous eigenstates of the operators 05,05, ..., 0. Specification of
the eigenvalues of these N operators is adequate to specify completely the system.
However, we recall that specifying the eigenvalues of R? and R leaves the system
incompletely determined because for r < 4, there is in general more than one
state with these same eigenvalues. Eq. (3.6) shows that the additional degeneracy
parameter a, which is required to specify completely the state, plays no role at all
in the time development of the system. In other words, there are many ways of
collectively exciting the system which are equivalent in their decay dynamics.

Our approach here is to find the unitary transformation V between Dicke states
and locally excited states. In a system which is small compared to the resonant
wavelength of interaction with the radiation field, if a specified group of atoms 1s
excited initially, any of the remaining atoms are equally likely as candidates for
becoming excited in the course of time. Therefore any physical quantity which has
reference to two different localized states, e.g., an initial state and a final state,
may depend on the total energies of these states and on the total number of ex-
citations which must be exchanged to go from one state to the other, but cannot
depend on the particular atoms which are involved in the exchange. With this
point in mind, we define a quantity Q (7, £) for two localized states in> and |&)
to be the number of atoms which differ in their state of excitation. This may be
further subdivided into two numbers g (% « £) and g’ (n « £) defined for an or-
dered pair of states (initial and final); ¢’ is the number of individual atoms whose
state changes from excited to unexcited and g, the number whose state changes
from unexcited to excited. Clearly we have the relations

9 +q9=20, - (4.1)

g —qg=m —m. (4.2)

We may think of the quantities ¢ and ¢', defined with respect to a particular
initial state with energy m,, as new quantum numbers with which to describe the
system. The degeneracy of the state |g, ¢’ then is found by multiplying two com-
binatorial factors: (1) The number of ways of picking ¢ atoms to excite out of the
original N — m, unexcited atoms. (2) The number of ways of picking ¢" atoms
out of 4N + m, atoms. The degeneracy g’ (g, ¢') of |g, g’} is then given by

¢ (q.q) = (iN — m;) (}N + m;). 43)

73 q

Although our rationale for defining the quantities ¢ and ¢’ is that the dynamics
of energy transfer in spatially small systems may be described solely in terms of
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them, it is clear that the definitions given above for g and ¢’ are also meaningful
for systems with linear dimensions comparable to or larger than the resonant
wavelength.

In appendix C, we obtain those properties of the unitary transformation ¥
which are necessary for determining the dynamics of a locally excited system. The
resulting expressions, eq. (C.16), unlike the transformation itself, contain no
reference to the dynamically irrelevant degeneracy parameter o but depend only
on the parameters ¢, m; and my for the relevant pair of localized states and on r,
my, and my for the contributing Dicke states. We use (C.16) to find the expectation
value of the energy of atoms [eq. (C.21)] initially in a locally excited state and to
find how the probability density (as determined from 0) propagates among dif-
ferent states of local excitation (C.28).

First we consider the time development of the energy of a system initially ex-
cited to a localized state state [/> having (R*(0)> = R* = m > 0. We have by
appendix (C.21) that the expectation value of R(t) is*

N
RS = ) flr,m, 1) W(n), (4.4)

where f{r, m, t) is the expectation value of R*(1) for a Dicke state and the welighting
factors W(r), whose sum is unity, are given by

J— N ! r
Wir) = (w—m) &)

GN — m)I 3N + m)! 2r + 1
GN -GN+ IN+r+1°

(4.5)

where g(r) is the degeneracy of the state |r, m>. As was pointed out by Dicke in
another context, the weighting factor W (r) for r = m will be quite sizeable when
N is large and m is some substantial fraction of N. Thus for m ranging from iN
to 3N, W (r = m) ranges between approximately ¢ and 1. The weighting factor
for f(m + 1, m, t) ranges between % and O for the same range of m. Therefore the
significant contributions to {R*(t)> come from at most one or two terms and the
emission will closely resemble that of the Dicke state m = r. In fig. 2, we com-
pare the decay of a locally excited state with the corresponding Dicke state with

* (R4)> could also be found with the coupled moment equations (2.15) by incorporating
the matrix expression for R2 in (C.19). Since R2 js not diagonal, the full operator nature of the
equations must then be taken into account.
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8] Qu 0.2 Q.3 0.4

t

Fig. 2. Decay of atomic excitation in two 20-atom systems with {R*) = 5 initially. (a) —— -,
Dicke state with ;mn = 5, r = 5; (b) ~——, locally excited (uncorrelated) state with 15 particular
atoms excited.

r = m;. We note that the effect of terms in {(4.4) with r > m is to further steepen a
decay curve whose slope is already proportional to N 2.7

Several authors®- '8) have considered the emission from states which are similar
to locally excited states in that the atoms are initially uncorrelated. However they
considered only uniformly excited states. Agarwal'®) showed for these states that,
unless correlations between the atoms develop, the system must have a dipole
moment in order for superradiant emission to occur. On the other hand, for
localized states, in which the atoms are also initially uncorrelated and in which
the net dipole is zero, we find that superradiant emission is possible. In our sys-
tem, although the net dipole moment which is proportional to R* remains zero
at all times, at later times the individual atomic dipoles <{o;" > do not necessarily
retain their initially zero values and, as we shall see, correlations develop between
the atoms in the course of time.

T It can be shown that the initial rate of emission as given by (4.2) is proportional to the
number, 4N + m, of excited atoms, just as it would be for noncooperative emission. For ex-
ample, for m = 4N - 1, if we calculate the initial rate of change of (R*> from r( + 1)
= m({m — 1}, the rate for |r = 4N, 4N — 1> is 2(N — 1), considerably greater than the non-
Cooperative rate, while that for Ir = 4N — I, m = 4N — 1> is N — 2, slightly less than non-
tooperative. However, weighting these by the proper degeneracy factors w(r) just gives ¥ — 1,
?"acﬂ}/ the non-cooperattve rate. The fact that initial rates are proportional to N is, however,
N no way inconsistent with obtaining superradiant emission later on, any more than it was for
the special case of complete excitation, which is a Dicke state.
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3
We have seen cooperative behavior in the overall decay rate of a locally excited
state and now seek to learn if this behavior is also manifest in the rate of intra-
system energy transfer. The conditional probability that the system, assumed ini-
tially to be in a state of local excitation |/,), may be found at a later time in a
different state of local excitation |/} is given by the matrix element T 1,141, ©f the
propagator for the density matrix in the basis of localized states which we give
below, eq. (4.4). The process of going from |/,> to |I> involves energy transfer
across the system and/or energy loss to the radiation field.
By using the Dicke state propagator developed in (3.12a-d) and the last section
of appendix C, we find the following expression for the propagator between lo-
calized states

T i = H(m;, my, t)

iN
X ( Z PQ(i,k)(ru)mi’ mk)F(mi, mk,ru,r))

I-I‘=M

3N '
X ( L Pocin(re, m, m) F* (mnmhru,r)), (4.6)

=

where M = max {abs. m,, abs. m;}. Here H (m,, m,, 1) is defined from eq. (3.12)
as

H(mh My, r) = Tlmlmk/F(mi’ My, r, 3‘) F* (mir ny, rr" f) (4'7)

That is, it consists in each case (a-d) of the sums over exponential terms
exp {BI(I + 1)t} or Brexp {BI(I + 1)t}. Py 1, {r, m,, m,) is a weighting factor
~ specifying the relative importance of contributions from different cooperativity
numbers r to the transition moment between two localized states / and k. In ap-
pendix (C.1) we have used the symmetry of small systems to the exchange of any
two atoms to prove that

UGN —m — g g'!

PQ(?‘,m',m):( (r + mH{r + m)! )% 2(r)

(r — m' ) (r — m! N

xi(ﬁl)J(q)(r—m+q'—j)! (J[N+m+j—q’)!.
i~o J (g" — ! (r+m+j—q)!
(4.8)

Whenever the quantity BY = B + 1B’ defined in (3.2) is complex (B’ # 0),
the energy transfer probabilities 7, ,, obtained from (4.6) together with (3.12)
may exhibit oscillatory behavior for m; < N Dbecause of interference effects.
These effects will be significant if B’ (the Lamb shift) is of the same order as B



SUPERRADIANCE AND ENERGY TRANSFER WITHIN A SYSTEM OF ATOMS 23

(the natural lifetime). A comparison of natural lifetimes and Lamb shifts for
typical atomic systems indicates that B’ may be of the same order of magnitude
as B or larger. As an example, we have calculated the probability 9, ,, that the
system remains in its initial state of local excitation without losing energy to the
bath and without transferring excitation to other atoms in the system for systems
of 20 and 40 atoms (fig. 3) with m;, = 5 and m, = 15, respectively. B was chosen
equal to 8B. The probability undergoes a single well-defined undulation in each
case. Similar undulations are predicted in probabilities for transfer of finite
amounts of energy across the system. Since there is no qualitative change in the
time dependence of this energy transfer probability in going from 20 to 40 atoms,
we surmise that interference oscillations may remain important even for macro-
scopic atomic systems. We should keep in mind that such undulations have no
effect on the observed spontaneous emission since {R*) itself does not depend on
oscillating terms [see eq. (4.4)]. Interference effects only become important if an
experiment is designed to measure energy transfer across the system, *

Now, we consider several aspects of the behavior of locally excited systems as
described by the energy transfer probabilities (4.6). In the ensuing discussions,
we assume for simplicity that B” = 0.

(a) Evaluating (4.6) with k = [/ and i = j gives the probability that the system,
initially in a pure local state |/) is found at time ¢ in the local state |;), related to
|I> through certain energy transfer or energy loss processes. In fig. 4, we plot
these probabilities for several values of m; (and a given initial state with m;, > m;)
as a function of the energy transfer number g (the number of initially unexcited
atoms which are excited in the final state) for two characteristic times 7, and ¢,
such that t, < B ' and {; » B~1. At the time ¢, when the system has just begun
to relax, we see that the probability for a given value of m; is a strongly decreasing
function of the number of excitations which must be transferred across the sys-
tem. By the time 7, when the relaxation process is almost complete, the profile of
the system has undergone substantial changes. In the lower energy states, 1t 1s
now more probable to find the system in a state in which large amounts of excita-
tton have been transferred across the system than in a state in which only small
amounts have been transferred. In particular, the most probable state of the sys-
tem is one which is in a sense the exact opposite of the initial state — exactly those
atoms are excited which were not excited initially and all the original excited
atoms are in their ground states. However, the asymptotic state reached at the
end of the relaxation process is qualitatively different from the initial state in that
the density matrix is no longer diagonal (in the local basis). Indeed, the off diago-
nal density matrix elements must now contain information concerning the mech-

Bontifacio and Lugiato predict oscillations in the emission from long pencil shaped samples.
They point out, however, that these are stimulated emission effects which are specifically excluded
from our treatment.
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0O 1 1 1l
0 0.05 Q.10 0.15

Fig. 3. Interference oscillations in energy transfer probabilities for Jocally excited systems. Prob-
ability that system remains in original locally excited state as function of time. 20 atoms, 15 ex-
cited ——; 40 atoms, 30 excited — - -,

Fig. 4. Probability profile of system as function of energy content and relatedness to initial state.

Each curve connects states with same energy m but different values of energy transfer parameter gq.

System contains 20 atoms, of which 15 are excited initially. (a) Profile for ¢t < B~!; (b) Profile
for¢» B~1,
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anism responsible for trapping radiation in the system and preventing its relaxa-
tion all the way to the ground state.

(b) The results shown in fig. 4 indicate, at least for one value of ¥, that in the
long time limit, states with large ¢ values are favored. That this is true in general
may bz seen by looking at expressions for the asymptotic limit of J7.;. ,; as
t - 0. Since the strongest dependence on g in fig. 4 was obtained when m,
= —nm,. we consider this case also here. Using (4.6) in the limit 1 — oo together
with (C.18), we obtain

N—m -l g+2m)2m + 1T
thql . — [(5 1 q) (q I) ( ! ) (49)
AN + m, + 1}
which, as expected, has a maximum value for ¢ = ¥N — m given by
2
P=( 2m, + 1 ) (4.10)
IN + m + 1

For m, between }N and 1A, P ranges approximately between 4 and 1, which is
rather remarkable considering the number of states available to the system. A
check may be introduced at this point by noticing that since the asymptotic value
of f(r, m, t) in eq. (4.4) is —r, the asymptotic energy predicted by (4.4) and (4.6)
1s the same iIf

PMAAN —m\ (AN + m
Z ( )( ' )Qc—m)q.(—m)q = W(m)
G=0 q q

for m > m,. Here we have introduced the degeneracy factor (4.3). This relation-
ship is verified by (4.9) for the case m = m,.

(¢) The probability that an individual atom i in the sample is excited, indepen-
dently of the states of the other atoms, is obtained from (4.6) by tracing over the
states of the remaining atoms and is related to {o7) by

P, = <o) + 1. (4.11)

P, depends only on whether or not i was one of the atoms which was excited
originally. In fig. 5 we plot the asymptotic probability that an atom is excited for
a 20 atom system as a function of the original degree of excitation of the system.
The solid curve gives P, for the set of atoms i which were initially excited, while
the dotted curve gives P, for atoms which were originally unexcited.

(d) Finally, we consider the role played by correlations between the atoms 1n
our system. Again we consider systems of 20 atoms with varying degrees of initial
excitation. This time we start with a state / with m; > 0 and calculate the joint
probability # that all 3N — m, atoms which were not excited initially are excited
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Fig. 5. Long time probability in a locally exciied 20-atom system that an atom { is excited as a
function of the number (4 ¥V — m) of atoms excited initiailly: ——, if atom i was excited initially
-~ —, if atom i was unexcited initially.
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Fig. 6. Correlations in the asymptotic state of a 20-atom system with local excitation; initially n
atoms (n < 10) are in their ground state. Ratio of probability that all » atoms [eq. (4.7)] are
excited to nth power of probability for single atom excitation [dotted line - fig. 5, eq. (4.8)].
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asymptotically. Since —m, is the largest possible value of the asymptotic energy,
there is only one gquantum state in which a given set of ¥ — n1, atoms is excited,
piz., that state |'¥> in which these atoms are excited and the remaining N + m,
atoms are all unexcited. The probability 2 is thus equal to the asymptotic prob-
ability of the quantum state |¥), i.e., 2 is given by eq. (4.10). In the event that
the atoms are uncorrelated, we have

P(m)) = (P(m)" ™™, (4.12)

where P(m,) is given by (4.11) evaluated for one of the +N — m, initially unex-
cited atoms i. Therefore, as a measure of the way in which the asymptotic correla-
tions in the system depend on the initial excitation m,, we plot in fig. 6 the ratio
Pm)KP . (mNO¥ "™ as a function of the number of initially unexcited atoms
N — m,.” Correlations in the final state become quite large for initial states with
a substantial fraction of unexcited atoms. The lack of correlations evident in al-
most completely excited states in the asymptotic time domain is not representative
of the role of correlations at earlier times. Thus, the fact that the Dicke state
r = m = 4N, which corresponds to no unexcited atoms in fig. 6, achieves in time
an emission rate proportional to N? indicates the importance of correlations
during the emission process. The atom-atom correlations shown here are associated
with the phenomenon of radiation trapping: as the amount of radiation trapped
asymptotically increases (which increases with the number of initially unexcited
atoms as long as m, > 0), correlations also increase.

5. Local excitation of a large system

In this section, we consider systems of atoms in a radiation field where distances
between the atoms are comparable to the resonant wavelength. As that distance
becomes large compared to the wavelength, cooperation between the atoms be-
comes unimportant and only those processes in which each atom loses its energy
directly into the radiation field have significant probability.

We again follow the dynamics of the relaxing atoms by considering solutions
of the master eq. (3.1), this time without the simplifying assumption that all the
interatomic distances |x; — x,| are negligible. As the first step, we evaluate the
dependence of the constants C,; and B,j [eq. (3.1)] on the interatomic distances.
Because we are considering a zero-temperature radiation field, C,; vanishes.

The constant B, defined in (3.1) is complex. For the spatially small system, we
have demonstrated that the effect of the imaginary part is to introduce cooperative
level shifts which give rise to undulatory behavior in the time dependence of the

T Ifmy < 0, the state | ¥ defined above has more energy than the initial state. Hence & = 0.
For this reason we always consider systems in which at least half the atoms are excited.,
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probability for local excitation. However, we wish to avoid this complication in
the present discussion and therefore set Im B, = 0. Noting that B,; = 2 Re B,
we extend the limits of integration over 7 in eq. (3.1), replace the discrete sum
over k by an integral, and perform the angular integration to obtain

By = 2r | (la, &) Sin & fxp — Xl [ J e““"“‘dr] dk. (5.1)

k|Xﬁ _xal = -

By noting that the time integral is just the delta function 0 (¢ — k¢), we can finally
write

B, - B sin ko x5 — X,  a B,

ko lxﬂ - x:xl (5 2)
B, =8B,

where B is the value of the constant for interatomic distances small compared to
the resonant wavelength and k, is the resonant wave vector*,

The operator form of the master eq. (3.1) is considerably simpler in appearance
in the vacuum limit, which we are considering:

d ) N . . N N ~ ~ .
= 1€ Z (eo; — oig) — z Z 18, (QGfUl — 20 96? + o, 070). (5.3)

d¢ j=1 j=1 i=1

Besides setting C,; = Cy; = 0, we have also assumed that B is real and set
B:.ri = By = 3By,.

We determine the form of the desired master equation by evaluating the matrix
elements of the operators appearing on the right-hand side of (5.3) between two
locally excited states « and B. The result is

d )
<oc i ﬁ> _ i (my — my) <ol 0 1B
S Y Y B ele DI D
s,(lﬁ_):lvo sj(,af:xlu)m
T A L S 1>

s_'.(a:)}{) 5, {x(—/N)<0

N N
L L BudeaDleif(+h). (5.4)

i=1
s{x)<0 s5()<0Q
+ Agarwal?) has also derived forms for the constants in the large system master eguation.
However, his hamiltonian differs from (2.1) in that his interaction between an atom and a mode
of the light field is a function of the angle between k and the (fixed) direction of the atomic di-
pole transition moiment.
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Here s(a) = {x| o} |x> and the states |x(+i)}> and |a(—j)) are defined, when
si(&) < 0 and s,(a) > O respectively, as

M+ =0/ lo),  la(=f)> = 0] |&). (5.5)

Otherwise they are undefined. As with the coupled equations (3.5), the energy
difference m,; — m, associated with each density matrix element g,, appearing in
a closed subset of the equations is a constant for the entire subset. Since we are
interested in diagonal density matrix elements, we consider those equations for
which my = m,.

For computational purposes we characterize the states appearing on the right-
hand side of (5.4) in terms of the energy transfer parameters g and ¢’ defined in
the beginning of section 4. With the notation m = m, = my, we find that the
energies associated with states in the first two double-sum terms are all equal to m.
On the other hand, in the last term {&(+/)| and |f(+)) are both of energy m+ 1.
If we consider |« and |8) to be final states, then the respective energy transfer
parameters relating them to |a(+/)) and |8(+/)) are

g (xeax(+i)=1  glaea(+) =0,
gip—p+) =1 g« p(+h) =0.
I[n fact, the last term consists of the sum

Zﬁ_ By (a,am, Kep, pi2age

over all those states &’ and ' whose energy transfer parameters are

g (x ') =1, g(x +a') =0,
(5.6)
gB<p)=1 q(f«fg)=0.

The quantity K (a, A') which is defined for any pair of states &« and «' satistying
(5.6) is taken to be the label of the atom which changes excitation.

Next we consider the energy transfer parameters associated with terms in the
first two double sums. One readily verifies that the conditions on the inner sums

5B(-N) <0  and s (a(—j)) <0

are equivalent to the compound conditions

(${B) <0 or j=Des(B(—1) <0
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and
(s(x) <0 or I=))es,{(—=j)) <O

under the restriction already imposed in the outer sums. We first consider the
terms satisfying j = [ In this case |{{B(—}] (+/)> = 18D, {[a(—=)] (+D)] = {«f
and the heat bath constants (eq. (5.2)) all satisfy B;, = B,, = B. Consequently al}
such terms may be combined. Since there are 4N + m terms with / = j in each
sum, the total contribution is B(AN + m)o,s. Finally, we consider terms with
J # I The first double sum consists of a sum over all states g’ such that

g B<p)=1  qB+«p)=1,
(5.7)

; By, 6. 51, K, 8, 910" -

Here K’ (8, §') 1s a two-dimensional vector defined for any pair of states f and §’
satisfying (5.7). The component K| is the label of the atom which becomes excited
in the transition 8 «- §’, whereas K, labels the atom which becomes de-excited.
The analysis for the remaining sum is the same.

We can now rewrite the master eq. (5.4) entirely in terms of the energy transfer
parameters;

de,
r—«-cgi;i = —~(IN+m) Bgaﬁ + Z Z BK(a.n‘)Ktﬂ.ﬁ‘)Qm‘ﬂ‘
o 8

Claea') CIif 8"y

— i
1 Z BKl’{ﬂ.ﬂ')Kz'{ﬁ.ﬁ’)Qmﬁ‘ 2 Z BKI’(a.:-’)K:'(a.a')Qa'ﬂ°
- <

cr (:J?.‘_B') C (mea’) (58)
tlere C and C’ denote the following conditions on a pair of states v and #%:
Cren)=qr+y)=0 and g vy =1,
(5.9)

Crpen=qgren) =1 and g ey =1

K and K’ are respectively one and two dimensional vectors defined for pairs of
states satisfying C and C’ respectively. The components of the vectors are the
labels of those atoms K for which sg(v) # sx(n) i.e., of those atoms differing in
excitationt in v and #. (The ordering of the components of X' is immaterial for the
present application.)

Thus we see that the rate of change of p,, depends on (1) a noncooperative de-
cay rate —(4#N + m) B proportional to g,, itself, (2) terms involving two higher
energy states «’ and ° which can form x and § through loss of a single excitation
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to the radiation field, and (3) terms involving an unchanged state o {or ) and a
second modified state 8’ (or «’) of the same energy related to the original state 8
(or «) through the transfer of a single excitation across the system between two
atoms.

Terms in the master eq. (5.8) which involve only a single atom include the
decay term —(3N + m) Bo,, as well as any terms in the double sum over x’ and
' for which K (a, 0’) = K(f, £#'). All remaining terms refer to two atoms j and /
and are proportional to the heat bath constant B), defined in (4.2). Since Bj; be-
comes small when the distance between atoms ; and / is large compared to the
resonant wavelength A, only terms involving a single atom are important for sys-
temns with intermolecular distances very large compared to 4. Thus the cooperative
relaxation goes over in this limit to the rate —(3N + m) B which characterizes
noncooperative relaxation.

The master eq. {5.8) describes two types of processes which are cooperative in
nature and which depend, for their existence, on having the atoms sufficiently
close that the heat bath constants are not too small. The last two summations
describe energy transfer through the field between two atoms K, and K;. On the

INITIAL o
STATE A * o
Q [ ] (o]
= S |
INITIAL .
STATE B o o
[ ] [ ] L
- s -

Fig. 7. Two initial localized states used in calculations @ indicate excited atom; O, ground state
atom. Indicated size parameter s may be larger or the same order as 1/ky leq. (5.2)]; s <€ l/kp
corresponds to results of section 4,

other hand, the terms of the double sum for which K (x, «') # K (B, 8') describes
a different type of cooperative process in which two different atoms lose energy
to the radiation field. Even though this process can be described in terms of two
separate interactions with the radiation field its contribution to the dynamics
falls off with the distance R separating the two atoms K (x,a”) and K (8, ') as
sin kR{kR [see eq. (5.2)]. Hence these apparently distinct processes are actually
correlated if the atoms are close to each other,

We have studied the solutions to the master eq. (5.8) by means of numerical
integration. The closed set of equations including the diagonal density matrix

_ 2N
elements contains altogether(

N) coupled equations for a system of N atoms.
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We have found it advantageous to construct in advance (i.e., before the point by
point integration) tables for each state » of the states 7 satisfying C (v « n) and
C’ (v « ) [eq. (5.9)]. The extremely strong dependence of the number of coupled
equations on N has nevertheless restricted our calculations to very small values
of N.

For our calculations, we have chosen a collection of six atoms arranged on a
regular triangular lattice as shown in fig. 7. Although N = 6 is hardly macroscop-
ically large, we expect that some of the behavior observed here, when stated in
appropriately general terms, will carry over to larger systems. We consider two
initial states, which we designate A and B, which we may characterize in terms of
the compactness of the pattern of excitation. In the more compact state A (see
fig. 7) the three middle atoms are excited, whereas in the state B, the three outer
atoms are excited.

Systems in which interatomic distances are negligible compared to the resonant
wavelength have states which correspond to radiation trapping and hence require
an infinite amount of time for all the atoms to reach the ground state. In systems
where typical interatomic distances s (see fig. 7) are small, but not negligible, the
time required for any given large fraction of the atoms to reach the ground state
becomes very large as s becomes of the order of the resonant wavelength or smaller.
This is illustrated in fig. 8 for initial states A and B. When s is much larger than
1/k,, the system decays to the ground state much more rapidly than when s= 1/kg.
The decay of states A and B is quite similar even when s equals the resonant
wavelength (fig. 82). In fig. 8b we plot the time required to go from the initial
state (in which half the atoms are in their ground states) to the situation where 907,
of the atoms are in the ground state as a function of the distance s. This relaxation
time is almost constant for s > 1/kq, but begins to increase very rapidly as s 1s
further decreased when s & 1/ko. Thus, we obtain a rather sharp transition be-
tween regions of cooperative and noncooperative behavior.

We have also made calculations of the cooperative internal transfer of energy
for these same states of the six atom system when kos = 1. The analysis of such
results is complicated by the fact that in the spatiatly extended system, the previ-
ously defined energy transfer numbers ¢’ and g are not adequate to define the final
state of the system. Nevertheless, if we consider the probability of reaching vari-
ous final states with given values of ¢ and ¢', averaged over all states correspond-
ing to these values, the resulting distributions are qualitatively similar to those
obtained for a spatially small system (fig. 4) and thus show the same cooperative
energy transfer effects. (In making this comparison we must take Br ~ 1 rather
than ¢ > B-! for the extended system since when r > B~', energy that has at
one time been internally transferred will have subsequently been lost to the radia-
tion field.)

Internal transfer of energy should be favored more for an initial state, such as A,
with a compact pattern of excitation than for a state B, whose excitation is located



SUPERRADIANCE AND ENERGY TRANSFER WITHIN A SYSTEM OF ATOMS 33

State A
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Fig. 8. Energy loss. (a) Decay of total energy in the atoms for the two initial states defined in
fig. 7 for s = 1}ky (solid lines) and s = 16/k, (dotted line). {R*)> as a function of time. (b) Decay
time from initial state B: time required for system to reach {(R* = —2.4 (90%; of atoms in
ground state) as a function of the distance s. The quantity 7 in units of B, 5 in units of k3.

near the edges of the system. We find this to be the case, but the effect is relatively
small due to the small number of atoms involved.
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Appendix A

We show here how to find an expression for the N atom operator (R*)"*1 in
terms of lower moments of R*. We define an N — | atom operator

. N_ l -
S*= 3 0o} (A.1)
J=1
and an N atom operator

N
R =Y d. (A.2)
J=1

We show by induction that (S%)¥ can be expressed as
(SHY = Py_,(S%), (A.3)

where Py_, 1s a polynomial of degree N — 2. This is certainly trucfor N — 1 =1
since

(0%)* = &. (A.4)
Now expand

(RZ)N+I — (S: + O';)N+l,
N

x

N+1
(Rz)NJrl :(Sz)N+1 + (N+ 1)(52)!\10.; + Z ( 1) (S:)N+1-k(0.=N)k
k=2

(A.5)

s N+1 N + l B ]
= [ST+ (N + 1) ox] Py—o(S) + ) i (SHV 1  (ap)k
k=2 (A.6)
: ey SN+ Nk
= {RZ+N0N] PN—2 (RZ—UN)"i‘ Z k (R:—(}'N)N+l "(O’N)k.

‘ (A7)

In this expression, even powers of ¢y become numerical factors and odd powers
become numericai multiples of ¢. RF is symmetrical to the interchange of any
two atoms, say j and &, so we have

(REY¥*1 = f(RY) + ong (R). (A.8)
Interchanging atoms j and N, we have

(RV*H1 = f(R) + ajg (RY). (A.9)
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Since o} # oy, the expressions (A.8) and (A.9) are consistent only if g(R%) = 0.
Therefore we see that (R*)¥*! can be expressed as a polynomial of degree N — 1
in R°. Furthermore, we also see that the only powers of R? which occur are
(R 172 k=0,1,.... So we write

Py_i(R%) = Qo(N) (R¥™' + Qu(N) (RF)" 72 + . (A.10)

Having established that this form is correct for all N, we proceed to evaluate the
coefficients. Substituting

Py s(R%) = Qo (N — DRI + Qx (N — (R + (A.11)

into (A.7) we find an expression for g(R?) in terms of Qy, @, etc. Since each
power of R* must vanish in g(R), this gives us a set of conditions that the Qs
must satisfy. The result is an explicit functional form for Qu(N) as a function
of N and for recurrence relations that allow functional forms to be found for

O,(N). Qa(N), ..., QudN), -

I (N+2
{N) = — W.,
e 2%+ 2 (k+3) ‘

where W, = 1, and W, satisfies the recurrence relations

. 1 : I+3 N+2—kfI+3
W, =1 — N +2 - Wi_,.
| 1-+2k>=:z[( )(k+l) k+ 1 ( k):l .

keven

Appendix B

We derive here equations for the reduced density operator using the cumulant
expansion — coupled operator approach and compare them to the corresponding
results obtained by Zwanzig’s projection operator techniques. We consider a Sys-
tem which consists of three parts — a system of interest, a heat bath, and coupling
between the system and the bath '

H=Hy+V, Hy,= Hs+ Hg. (B.1)

We assume that ¥ has the form

V = g B,S\, (B.2)
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where B, and S, represent bath and system operators respectively. We further
assume that the time dependence of the operators S.(r) = exp (iHs) §,(0)

x exp (—iHst) is known and may be expressed in the form

Sk(t) = iz ggpkl EXp (iw;f).

(B.3)

For simplicity, we also require that the system be spanned by a denumerable ba-
sis (i| and from this basis we define a set of operators 0, = |i> (j{. It is convenient
to take the basis vectors to be energy eigenstates of H,. The time dependence of

0, 1s given by

L
= exp (1] V(1) dr) exp (1H31) 6,
0

= exp (i jr V(1) dr) 0, exp {i(e; — &) 1},
Q

A

where

&y = (Hs)xs

B0y = exp {i (e — ) 1) <exp [i (j) V() dr]> 9,,.
Defining |

0.(1) = exp {—i{e, — &) 1} <0,,(1),

we have

Q1) = <exl3 |:i f V(z) dTJ> 015,
b

—(%— Q1) = <exp [i (jj V) dr]> i % K (1) 0.

=2 N

To lowest nonvanishing order this becomes,

% Q.(t) = —<exp lilr_[ V(1) d{l> J V(D) [V{(), 9,11 dT.

Using

V(t) = 3, Bit) P exp (iwit)

(B.5)

{B.6)

(B.7)

(B.8)

(B.9)
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in the commutator and using the fact that bath and system operators commute,
we can bring (B.9) into the form

q

% O, = — <exp [i j' V(r) dr:|> Y e () LR, (B.10)

where £, and 2, are system operators and c,{t} is a number obtained by evaluat-
ing a bath correlation function

c(t) = § {9.(r) Bs(1)) exp (iw,T) exp (icsgt) dr. (B.11)
0
We also could have formally used the density matrix in
JLV (@), [V(1), 0]]) do
0

in place of 8,;, which would then give us the expression

E =73 cft) Lod,. (B.12)
4

We now continue with the process of finding the equation of motion for 8,;. Con-
stder the operator ¥ .0,,%,. Its (k/) matrix element is (£ ) (#,);,. Therefore

L0R, = ; (LI (R 04 (B.13)

In (B.13), we should be aware that while 8,, is an operator, the multiplying factor
(L (R);, 1s simply a number. Therefore using (B.7) and (B.10), we find

d - -
_dﬁr_ Q.41 = z, co() 2‘ (L i R Onlt), (B.14)

ki

d )
_d_t- <0u> =1(¢ ~ 5;‘) <0u>
+ z cq(t) kZ (&L i (R Qi) exp {i (e; — &) f} . (B.15)
q )
Now, we generally have the situation that terms for whi;:h Ex — & F & — &

make negligible contributions to the right side of (B.14) because ¢ (1) is a strongly

oscillating function. Therefore, we can replace exp {i (s, — ¢,)} by exp {i (g, — £,)}
and write

d
o WBip =16 = 8) B> + ), c(0) g (L (Ro)j i (B.16)
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We now define a tetradic operator T whose matrix elements are
T3 = (Lo (R _ (B.17)

In terms of these matrix elements, we have
d .
Eth <6u> =1(g — ej) <6u> + Z (1) Z Tjtq:)lk<6k!>- (B.18)
q k!

Now if ¢(0) is the density matrix at ¢ = 0, we take the trace of the product of o
with both sides of this equation

i Tro <6ij(f)> =i(g — &) Trop 0,0 + Z Cq(7) Z T;ﬁ):k Tro {6,(1)).
dr ] kt (Blg)

However,
Tro 0,(1)> = Tro (¥ 0:; = 05:(8).

Hence we have the following coupled equations for the matrix elements of o{1)

dp; :
= (e = g eud + 3 e % T ueu ). (B.20)
q
Since Hy is diagonal in the chosen basis, with H,, = &,, we have
(& — &) o;(0) = [o(ry H — Hp (D (B.21)

Furthermore we can show that when the tetradic operator defined by (B.17)
operates on any ordinary dyadic operator 4, the result is

T4 = B AL, (B.22)

Using (B.21) and (B.22) in (B.20), we find the matrix cquation

féﬁ’_ =i[o(t), H] + ¥ eft) B0 (1) 2,, (B.23)

which is the form taken by the master equation as derived by the cumulant meth-
od. It should be noted that operators other than ¢ appearing in the equation
are the time independent operators.

If we compare the irreversible term (second term) of (B.23) with the expression
(B.12) which results from substituting p directly into

J<r @, V@, el d, (B.24)
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we see that in order 10 g0 from (B.12) to the irreversible term of the master equa-
tion, operators which appear on the teft and right of o must be reversed. The pre-
scription for finding the irreversible term then is to evaluate the expression (B.24)
and then reverse the positions of operators to the left and right of ¢.

The irreversible term we obtain may be compared with the corresponding irre-
versible term 1n the Zwanzig formalism in the following way. Writing V(1)
= K S,(1) Bu(D), the irreversible term E may be written!?)

E. = *é Trg ((V (), V(@) o(t) fo(R))D) dr, (B.25)
where f5(R) is the reduced density matrix for the bath atr = 0. On the other hand,
by the cumulant method, we have,

E. = RE. (B.26)

where
E,= — é Tre [V, V), o(t))] fo(R) dz

and # denotes the operation of reversing operators o either side of o. Substitut-
ing the expanded V(1) in both these expressions,

E. = -3 | Tra {Sd0) S,) o(t) Bi() B{D) folR)

ij O
— S,(1) o) Six) By(1) Bi(f)fo(R)
~ Smyet) S B,(1) B(t) fo(R)
+ o(r) S,(0) Si(n) BLT) B{t) fo(R)} dt, (B.27a)

E. = “% 6‘ Trg {Si(7) S;(t) o(t) B(7) Bj(f)fo(R)
— S,y o(t) SKB) Bi(T) B0 fo(R)
— S/ o(t) S(¥) B{t) Bi(1) fo(R)
+ o(t) SAD Si(@) B B/(7) fo(R)} d7, (B.27b)

E. = -} § Trg {o(?) Si(x) St B(7) Bj(f)fo(R)

7o

— S e(?) 5,(z) B{1) Bj(f)fo(R)

— 5,(x) e(t) S Bi(D) By(1) fo(R)

+ S0 Si(@) () B, B,(x) fo(R)} dv. (B.27c)
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In writing (B.27a), we have used the cyclic property of the trace to rearrange bath
operators. On reversing the dummy indices and the first and last terms in (B.27¢),
we see that the expression E, is identically equal to E,.

Appendix C

This appendix is divided into three sections. In the first, we define a unitary
transformation connecting Dicke and locally excited states and use the symmetry
properties of spatially small systems in order to evaluate bilinear sums of trans-
formation elements. In this way we arrive at a reduced transformation in which
the degeneracy parameter « is summed out. In the second part, we illustrate the
application of the reduced transformation to (R*) and other collective operators.
Finally, in the last section, the transformation is applied to the problem of ob-
taining a propagator for the density matrix in terms of locally excited states.

(1) We denote the unitary transformation from the basis of Dicke states to local
excitation states by V. We will see in sections (2) and (3) that in many examples
of physical interest, we are confronted with certain combinations of the matrix
elements of V rather than the individual matrix elements. In the matrix element
V,., the right-hand index refers to a Dicke state; the left, to a local state. There-
fore s is really an abbreviation for the usual quantum numbers (r, m, x) used to
designate Dicke states. Thus we have functions r(s), m(s), and x(s) such that as s
runs through its range, (r, m, &) with r = r(s), m = m(s), and « = x(s) run
through the range of a complete set of Dicke states. Therefore it is appropriate to
write s = {r(s), m(s), o(s)}. The sums we evaluate here are

+
E = z VI,(rma) V(rm'cx).l"
P

The labels / and I’ refer to two states of local excitation. Since these states are
associated with definite values of the total energy, we have F = 0 unless the ener-
gies of |/> and |/') are m and m’ respectively. If this condition is satisfied, we further
expect from symmetry considerations that E depends only on m, m’, r, and the
relatedness O (I, I'). Therefore, reversing indices and performing a complex con-
jugate operation to get rid of the adjoint in the second factor, we write

PQ(r.m,m’) = Z Vl,(rma)V;F. (rm’a) (Cl)

The first case for which we evaluate this expression is for / = " (¢ = 0). We do
this by evaluating

) %
'QH = z Z Vi.(r:ru)ﬁ{rm:x),(r'm‘ﬁ’}Vl.(r'm’a’) (CZ)

rmx r'm's’
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for the operator
G(rmm).(r’m'a.’) - érr' érrp amm' ammp 5:::0.': (C°3)

where r, and m, are chosen values of the quantum numbers 7 and m. For this
operator,

Qtl = z VI. (r,myn) Vl’.‘l (rpmp:s}' (C4)

This expression is zero for localized states { with total energy not equal to m,.
However, according to (C.2), when the energy m(/) is equal to 1, Q,, is equal to
: N
P, (r,, m,, mp). Since there are such values of [/, the trace of 2
IN —m,
evaluated in the local state basis is just

Py (rp, m,, m,) (%Nhj m) ) (C.5)

On the other hand, the non-vanishing diagonal matrix elements of 0 are all equal
to 1 and there are g(r,) of these where g(r,) is the degeneracy of the state |r,, 7,
Hence the trace of 6 is g(r,). Therefore by the invariance of the trace, we have

o Gompern) = 800 {1y 7 ) (6)

In order to evaluate Py, (r, m, m') for other choices of Q and n', we develop recur-
rence relations by expressing the transformation ¥ in terms of the eigenvectors
of R? and R?, using the relationship

R lr,myo) = (r (r+ 1) —m{m— 1))‘} lr,m — 1, (C.7)

for the normalized eigenvectors, and taking into account the symmetry properties
of small systems. If the expansion

Yo (r, moax) [ = [r,m, o) (C.8)

is an expression for the normalized Dicke state in terms of localized states, then
the general theory of unitary transformation provides that

+
€ (rs m, O‘) — V{rm:n). l- (C'g)
As a consequence, we may write

PQ (r’ m, "tr] = X CT (ra m, Cx) Cl’(r') m,s 0‘)' ) (Cio}

a
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Substitution of (C.8) into (C.7) yields the following relationship between expan-
sion coefficients for different states

N

alnm—1La)= ¥ cuolma)(r(+ 1) ~mm— 1)+ (C11)
i=1
s5/{)<0

where s;(/) = {[j 07|/} and }/(+i)) is the state o, |/>. When (C.11) is substi-
tuted for one or both factors on the right-hand side of (C.10), the result is a sum
of terms involving expressions like (C.10) but with other values of the parameters
0, m, and m'. Now the original states }/> and |I'> differ in a certain way in the
total amount of excitation each contains and in the way this excitation is distri-
buted over the N atoms. Knowledge of the excitation and jts distribution enables
us to classify the atoms in sets as follows:

S, = atoms which are excited in both {/) and |/,

S, = atoms which are unexcited in both |/ and |/,

Sq = atoms which are excited in |/ but unexcited in 11",
Sy = atoms which are excited in |I") but unexcited in 11>,

The number of atoms in each class determines the value of the parameters in, m’,
¢, and ¢’. When we substitute (C.11) for the first factor in (C.10}, we must con-
sider the above classification scheme for each of the foliowing pairs of states:

[{{+7)> and |{I") for i such that S,(/) < 0.

Those atoms i satisfying the condition $,(/) < 0 fall into either S. (4, ') or into
Sy (1, 1"). For those atoms i in S, (/, I'), we see that the jth atom classified with
respect to the new pair of states ({/(+1)), [I’>) now falls in the set S U(+D,1)
while all other atoms retain their classifications, Similarly if the ith atom is in
Sy- (4 '), 1ts new classification is S, (/{+i),{’). Now Po{r,m, m’) is only a func-
tion of r and of the numbers #,, »,, e, and ng. which represent the respective
sizes of the sets S,, S,, S,, and Sq’s

f(ra He nu: nqan')'

Substituting (C.11) for the first factor in (C.10), we have

N x Il
p cuvn (o m+ 1, &) ¢ (r, 0, &)
PQ(!‘,m,m)= Z

St T+ D) —mm+ 1)

sdh<o0

(C.12)
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Then the above argument about the reclassification of the jth atom leads to the
recurrence relation

1
(r(r+ 1) —m(m+ 1)

f(rs nc’ nus "qt nq') =

x {n,f(r,ne,my — 1L,ng + 1,ng)
+ ng flryne + 1, 1y, ng, g — 1)}. (C.13)

Since n, + ng = #N + m, n, + ng. = N + m', and ny + ny = Q, we may ex-
press the recurrence relation in terms of Pq (r, m, m’) as

1
rr+ 1) +mim+ l))*

Po(r,m,m') =

x {3 (Q+m —m)yPy_;(r,m + 1, m')
+3(N=—Q—m—m) Py, (r,m+ 1,m)}. (C.14)

We have derived this relationship first because it was more easily discussed. How-
ever, in order to establish properly contact with the result (C.6) we also need re-
currence relations which arise from considering (C.10) with m = m’ and sub-
stituting (C.11) for both factors on the right side. The argument is similar to the
one leading to (C.14) and leads to the recurrence formula

P rrm+1lm+1)= {[r(r + 1) —m(m + D] P, (r, m, m)

2

a” —a

—a2g+ DHP,(r,m+ 1, m+ 1)
— @*Py (r,m+ Lm + 1)} (C.15)

where @ = 3N — m — g, q as defined in text: ¢ = ¢’ = }Q. Using the expression
(C.6) with ¢ = 0 to start the recurrence, we solve the relations (C.15) for Po(r, m, m).
Then we use the resulting form to start the recurrence relation (C.14) and obtain
Py (r, m’', m). The result is

Py, . m) = ((r + m) (r + m)z)* g(r) GN —m— )l q'!

(r —m)(r—mt/) N!

x T (1) (q) r—m+qg-N GN+m+j—-q)
<o | @ - CEmtj-q)
(C.16)
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When r = }N, the expression (C.1) has only one term, which is equal to

—;—' [AN + m)IGN — )L (AN — m)! 3N + m')1]t. (C.17)

In this case, the last factor in each term of (C.16) is unity and the sum may be
evaluated in closed form since it represents the gth order difference of a poly-
nomial of the formx(x + )~ (x + r — m — 1). The result agrees with (C.17)
for all values of g. Another case permitting easy evaluation of the summation is
r = m. The result is

4 + -2
Py (m, ', m) — ( 2m ) ( iIN+m ) 2m + 1 - (C.18)
m -+ m' N+ m —¢ AN +m + 1)

(2) We illustrate here the use of the reduced transformation in the evaluation
of certain collective operators. Consider first the operator R%. Here

e(rma),(r’m'a’) =r (r + 1) d”.r 6mmf aaa..

Therefore, the matrix corresponding to R? in the basis of local states is, according
to (C.2)

'QII" = Z VI,(rmrx}r (r -+ 1) Vl?. (rma)
Yy x

N
= ), rr+ D) Poe, vy (r, my m). (C.19)

r=|m|

Here £2,,. vanishes for states of differing m value. The value m on the right side is
the common m value associated with { and /', In particular we find for { = [’ that

-1 4N
Q- (%N]i m) > rir+ 1) g0). (C.20)

r=lm

As a second example, consider the thermally averaged operators {(R*)"(1))>. The
form of the coupled moment equations (2.15) implies that since R? and (RS
are initially diagonal in the basis of Dicke states, they always remain diagonal. In
this case, we have to consider operators of the form

B(rma}.(r'm’o:’} = f(f‘, m, I) arr‘ 6mm' 50«1')

where, for example, for 8 corresponding to {(R*)", f(r, m, 1) may be found either
by solving the coupled moment equations (2.15) subject to the initial condition

{R? (RS, (RS, ) = (r(r + 1), m, m?, ..}

L]

cRL e
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for {(R*)"> or by taking the appropriate moment of the master eq. (3.5) with
m=m,r =r,a =a', subject t0 Ppms,m: = 1. In this case

AN
Quiy = 3 flr,m t) Pou, o (r, mym). (C.21)

r=|ml

In particular, for / = [’, £2,,(¢) is the expectation value of (R*) in a system initially
in a locally excited state |/).

(3) We now consider the application of the transformation to the propagator
which contains information about the energy transfer from one part of the system
to another. Just as the propagator for the wavefunction is a dyadic operator, the
propagator for the density matrix is a tetradic. Dyadic operators are transformed
according to

2= Ver+ (C.22)
or

Q=v4, (C.23)
where ¥ is a tetradic operator related to V by

Vi = ViVie = ViV (C.24)

Tetradic operators, then, such as T defined by (3.10), transform into the basis of
local states according to

T =vVTV". (C.25)

This follows since the unitarity of ¥ implies that ¥ is also unitary. Incorporating
(C.24) into (C.25), we find the explicit matrix element expression

*
‘Oj-fj.k! = Z V{u {Sm.m,VJu 6mumJTuv, wx (rzn F, M, I)

W, L'y W, X

X 6'urw br F éauaw éavaw V’:v 6mwmk V!x amxml. (C'26)

vV

Here m = (m,, m,, m,,, m,). The dummy indices all refer to Dicke states u
= (ry, My, x,), V = (r,, m,, &), etc. Taking into account the J functions,

gir,) giry)

AN &N
e TNY :r;u rz;" Z, Z Viw (Fu, &us 1)

2o=1 a,=1

[

X Vj(v] (rv? Ay mj) T(rumls rr,-mj; rumka rvmt)

X th{w) (rus all? mk) Vl(k) (rvs O(u, ml)! (C'27)
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where
M, = max {abs m;, abs m,}.
M, = max {abs m,, abs m,}.

Since T does not depend on «, or «,, this becomes

N iN

gwij.klz Z Z T(rumisrumj;rumkarvm{)

=M, r,=M,

glry)

X Z Vi (ru’au!mi) Vk(rusfxu: mk:l
a,=1

gir,)

X Z V.f* (rmo‘ua mj) V.' (r,,,oc,,.,m,)
a,=1

= T(rumisrvmj;rumksrvmt)
X Poiwo u, ma, m) Pop ("mmj»mf)— (C.28)

Therefore we can transform the propagator for g using the expressions Pq(r,m’, n)
developed earlier in (C.16).
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