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In this paper we advance a model Hamiltonian for direct vibrationa) relaxation of a guest molecule in a

host lattice. General expressions for the vibrational relaxation rate constant are derived utilizing the
generating function method, elucidating the gross features of this class of multiphonon relaxation phenomena.
Explicit theoretical results were obtained for the vibrational relaxation rate in two temperature regions: for
moderately low temperatures below the characteristic Debye temperature and in the high temperature limit.
In the low temperature range the vibrational relaxation rate exhibits a nearly exponential variation with

the order of the multiphonon processes, revealing the energy gap law, an appreciable isotope effect, and a
strong temperature dependence. The predicted energy gap law is compatible with the available experimental

data.

1. INTRODUCTION

Recent experimental observations'™® of medium in-
duced vibrational relaxation (VR) of a guest molecule in
a solid or liquid"™™® fa]] into two general categories:

A. Sequential dissipation of vibrational energy into
the medium, which proceeds in two steps. First, a high
frequency intramolecular vibration is converted via in-
tramolecular and medium induced coupling into lower
frequency intramolecular vibrational modes. Second,
medium~molecule coupling induces VR of the latter
modes resulting in the excitation of the medium phonons.
Such processes were recently studied in the ground and
electronically excited states of large molecules in solu-
tion at room temperature, utilizing the techniques of
picosecond spectroscopy, 15 which result in VR decay
times Tyy in the range of 7y =5-20 psec.

B. Direct vibrational energy dissipation into the me-
dium. The molecule-medium coupling results in a di-
rect VR process, without the participation of other in-
tramolecular modes. Such a physical situation prevails
for the VR of a diatomic molecule and for the relaxation
of the lowest frequency vibrational excitation of a poly-
atomic molecules. Such VR processes were observed in
the electronically excited A%z, state of N, in solid rare
gases’ (Tyg = 10° - 10 msec at low temperatures), in high
vibrational levels of the ground X'Zg state of N, (7vz
~1 sec at 4°K), for VR in the ground electronic state
of CO in solid Ar {7y > 10 msec at 8°K), " and for the

J
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970 cm™ vibration of NH; in solid N, (Tyg =2 u sec at
8°K),®

Medium induced VR phenomena can be handled in
terms of a multiphonon process of a high order, occur-
ring within a single electronic configuration. Such a
theory, which rests on a quantum mechanical treatment
of a harmonic oscillator subjected to a linear coupling
with a phonon bath, was recently developed, %1
Equivalent results can be obtained utilizing the first or-
der solution of the Pauli master equation,’®®® which re-
sults in conventional kinetic equations for the diagonal
matrix elements of the density matrix. Consider the
VR of a single “harmonic” guest molecule embedded in
a phonon bath, assuming that the molecule—-medium cou-
pling is linear in each of the intramolecular normal
modes and disregarding the rare possibility of inter-
ference effects, so that the molecular vibrations are not
coupled via their interaction with the medium. We can
thus consider independently the decay of each harmonic
molecular oscillator, characterized by the coordinate
@ and by the frequency w. Specifying the medium modes
in terms of the phonon frequencies {w,}, the occupation
numbers {v,}, and the coordinates {g,}, the molecule-
medium coupling is taken in the form

Hpp=QF({qu}), Ly

where F(qy, g2 *++) is a general function of the medium

phonon coordinates. The VR rate for the transition be-
tween the initial state (I)=11, IT, v, ) to the final state
{0, 1T, v)) is given byl 19817

F({g,})

H v£> 25 [Z (v) —»,) h’w,,—ﬁw] , (1.2)
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where B%= jw/k (with p the effective mass of the mo-
lecular oscillator), 8= (ksT) ! and Z,=[1 - exp( - fhiw,)]
is the partition function for the 1th mode. The experi-
mentally relevant observable for monitoring the VR in-
volves the time evolution n(#) of the population of the
molecular oscillator!?#°

n(t)=n(0) exp( ~ 7£) +{1 —exp( ~y£)}n) 7 ,

where () ; denotes thermal averaging,

(1. 3)

Equations (I, 1)~(I, 3) constitute a useful theoretical
framework for the study of VR processes of class B and
for the first step in type A processes, Utilizing a spe-
cial form for the molecule~medium coupling, ¥

H,p =Z G} (H‘ha)Q »

{v}

(1.4)

and adopting the rotating wave and the random phase ap-
proximations, we were able™ to provide explicit expres-
sions for the temperature dependence of v, without spec-
ifying the exact form of the multiphonon coupling term
Gi,y. In retrospect, our temperature effect for the
physically relevant temperature range (8fiw < 1) just cor-
respond to a multiphonon emission process of the order

N=w/w,), (1.5)

where {w,) is a mean lattice frequency, of the order of
the Debye frequency. We have also conjectured™ that
for a multiphonon process of a high order, the major
contribution of the coupling Hamiltonian (L. 4) to y orig-
inates from a term of the form Gj,, = A8", where A and
b are constants for a given guest-host system and 5 << 1,
Such a relation amounts to an energy gap law (EGL) for
VR, as it implies that

Inye —w/w,) . (1.6)

It will be useful and important to derive some algorithms
for the characterization of VR processes, specifying the
general dependence of y on the molecular frequency,
i,e., the EGL, on the phonon spectrum of the bath, and
also on the temperature, Such a program requires the
specification of the molecule~medium coupling in greater
detail than that given by Eq. (. 4). In this context, Sun
and Rice!! have applied the Jackson—Mott?! model for
vibrational relaxation for VR in solids. This approach
rests on a binary collision approximation which is not
directly applicable for a dense medium, Recently,
Diestler'® has attempted to handle the VR problem of di-
atomic molecules in solid rare gases assuming that the
origins of the lattice normal modes are displaced be-
tween different vibrational states of the host molecule,
He then phenomenologically obtaing a rate expression
for two level VR relaxation which is identical with the
well-known result for multiphonon electronic relax-
ation. 2~ The weakness of this approach lies in the
initial assumption concerning the parallel displacement
of the lattice modes, which cannot be rigorously justi-
fied. The temperature dependence obtained by Diestler
is of the form y= [{n,) 7 +1]", which is characteristic of
any multiphonon emission process and which does not
reflect on the validity of his model,

We would like to advance a new model Hamiltonian for

~ its nearest neighbor medium atoms,

medium induced VR processes, which will enable us to
elucidate the gross features of such processes, The
present approach may be also useful for the study of in-
tramolecular energy redistribution'®#%® and of coupled
electronic ~vibrational relaxation processes in large
molecules. A similar model has recently been invoked
by Lin, ®° who, however, obtained useful results only
for the strong coupling limit.

. A MODEL HAMILTONIAN FOR VIBRATIONAL
RELAXATION

Let us invoke the customary approach for the molec-
ular VR, assuming that the dominating impurity ~medi-
um intermolecular interactions which contribute to Eq.
(1. 1) involves short range repulsive terms. > We must
thus adopt for 2 moment a molecular physics type of ap-
proach, focusing attention on the repulsive interaction
between the impurity molecule and its j=1,2,...,J
nearest neighbors, We adopt a grossly simplified pic-
ture for the coupling between a diatomic molecule and
First, we consider
a collinear configuration of the molecule and the perturb-
ing atom. This picture was common in model calcula-
tions of “linear” collision processes® and is strictly ap-
plicable only for a linear chain. Second, we assume
that in the collinear counfiguration the interaction poten-
tial depends on the separation between the perturbing
atom and the closer atom in the diatomie. 2° Third, we
assert that the intramolecular frequency is sufficiently
high and that the intramolecular displacement @ are
small (relative to the reciprocal characteristic repulsive
length), whereupon the coupling can be linearized in the
internal coordinate Q. Thus our model Hamiltonian
takes the form

J
HmL=QZajeXp(‘Olej); (m. 1)
=1

where a; are constant coefficients and o, denotes the
characteristic inverse length for repulsive interactions, 3
while X, represents the separation of the jth atom from
the center of mass of the impurity molecule. Denoting
the equilibrium atom-impurity separation by X9, we
have X,=XJ+x,, where x, corresponds to the displace-
ment of the jth nearest neighbor from its equilibrium
position. Expanding the local coordinates x; in terms of
the (dimensionless) lattice normal modes

x.‘zzqvﬁvjt (H. Za)

where B,, are the appropriate expansion coefficients,
Eq. (IL 1) takes the form3!

HmL=QZalexp(—a,X?)exp (—Zq,ﬁ,,a,). (I1. 2b)
i v

Assuming that all the a, and the o, terms in Eq. (II.1)
are independent of j and defining the phonon coupling pa-
rameters A,=f8,,a,, We get a new model Hamiltonian
for VR,

H,p =CQexp (‘E 4, ‘Iv) ’ {IL. 3)
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where C = Zaexp(-aX9), with Z being the number of
nearest neighbors,

The following remarks are now in order:

(a) Equation (II. 3) is of the same functional form as
Eq. (I- 1)) with F({q}): C exP( "EvAqu)-

(b) A power expansion of the coupling term (II. 3) will
result in terms of the form given by Eq. (I.4). Thus,
our new model Hamiltonian provides a generalization of
the special product form (I.4), with the advantage that
the coupling terms in (I, 4) are now specified.

(¢) The normal modes expansion (II. 2) which led to
Eq. (IL.4) has to include all the modes of the lattice con-
taining the impurity, The perturbations exerted by the
impurity on the lattice spectrum may result in the ap-
pearance of resonances in the energy range of the pure
lattice phonon spectrum or of localized modes outside
it. %% The density of states of the pure crystal has to be
accordingly modified to include delta function contribu-
tions for the local modes. For local modes, the expan-
sion coefficients 8,; in Eq. (II. 2) are large, of the order
of the lattice constant d, so that®? A,~ ad for these
modes, On the other hand, for the lattice modes® a4,
= a(ﬁ/mw,,NL)l’z, where N is the number of the atoms
in the crystal.

Equation (II. 4) together with Eq. (II. 2) can now be
utilized to derive explicit expression for the VR rate.
The technical details are analogous to the treatment of
other multiphonon processes such as optical line shapes
in solids®"38 and transition probabilities for electronic
relaxation, 2% It is, however, important to emphasize
that (I1. 4) differs from the interstate coupling Hamilto-
nian for electronic relaxation. We shall dwell later on
this point.

i1l. GENERATING FUNCTIONS FOR VIBRATIONAL
RELAXATION

Following conventional procedures, we can readily
recast Eq. (L 2) together with Eq. (I.4) in terms of a
Fourier transform of a generating function,

y=D f ) dt exp( - iwt)va(t), (11, 1a)

D=(2r%B%)™[1 - exp( - griw)]C?, (1. 1b)
while the generating function for a single lattice mode is

fv(t) =Z Z (le)-1 exp( - Bh-vvwv)

’
Yy vy

(1. 2)

Equation (IIL, 2) can be expressed in a more compact
form,

Flt)={v,|exp( -4, q,) exp(iHyt)
Xexp( - Avqu) exP( - 'lHOt)l ’U,,» T

x [(v,|exp( - A, q,})| v)) | 2 explit(v, - v,)w, 2 ].

(II1. 3)

where H, is the zero order Hamiltonian for the phonon
bath, while (), again denotes thermal averaging. Utiliz-
ing standard operator techniques, Eq. (IIL 3) takes the
form

£lt)=explz a32w,) p+ Dl exp[ 1) +220)], (WL 4)
where

git) = (v,) r+1)(a%/2) expliw, 1), (1. 5)

gX(8)={v,) p(A%/2) exp( - iw, ). (L. 6)

(v,) ¢ denotes the mean thermal population of the vth
mode

(v,) r=lexp(Brw,) - 1], (UL 7)

while A, is the effective coupling term for the vth mode
defined by Egs. (II. 2b) and (II. 3).

The single mode generating function, Eq. (I, 4),
which determines the VR rate, exhibits the same ¢ de-
pendence as the generating functions for electronic re-
laxation between two vertically displaced potential sur-
faces. It is important to notice that while in the latter
case the Debye-Waller factor involves an exponential of
a negative number, in our case the argument of the ex-
ponential is positive, which will contribute to a positive
temperature dependence of ¥ at high temperatures.
This difference originates from different forms of the
single mode generating functions, which for vibrational
relaxation [see Eq. (I, 3)] are

FAt)=v,|exp(=5,q,) exp[ =8, v.) 7,

while for electronic relaxation the accepting mode gen-
erating functions take the form

FUER ()= (v, | exp(sB, P, ) exp| -8, P ()]0, 7,

where ¢, and P, correspond to the coordinates and to the
conjugated momenta, while ¢,(f) and P () denote these
operators in the Heisenberg representation. Thus the
coupling operator for electronic relaxation involves a
Franck-Condon type coordinate displacement operator,
while for the case of VR the coupling operator generates
a shift in the momentum space, We thus conclude that
the coupling responsible for VR cannot be represented
in terms of a Franck-Condon coordinate displacement
operator.

Equations (III. 1) and (III. 4) provide us with explicit
expressions for the VR rate,

y=Dexp(+G) f exp( ~iwt) exp[G.(8)+ G.($)]dt,  (IIL 8a)
G.t)=3_ (v,) p+ 1)(A3/2) expliw, 1), (T 8b)
G(D)=3 (v,) 7(a}/2) exp( ~iw,1), (IIL. 8c¢)

(L. 8d)

G=G0)+G.(0)=) ] (2(v.,) r+1)(a3/2).

G, Eq. (I, 8d), can be considered as the phononon cou-
pling strength for the VR process. The coupling coeffi-
cients can be expressed in terms of integrals over the
density of phonon states p(w,) of the lattice perturbed by
the impurity molecule; including, in principle, reso-
nance and local impurity modes. Thus, we have

G*(t)sjdw,p(w,)(A?,/Z)-e—x—ep—)zpﬁ—(gg%%—f expliw,t),
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G.(D =f dw,plw, )42 /2) exp(Biiw,) - 1]  exp( ~iw,f),

(m. 9)
G =fdw,p(wv)(Af,/2) coth{Bhw,/2}.

Equations (ITI. 8) and (III. 9) provide us with the final for-
mal result for the VR rate, At first sight it may ap-~
pear that we have transferred our ignorance concerning
the nature of the molecule~-medium coupling to the spec-
ification of the coupling terms, A,, which cannot be
evaluated at present. However, our final result, Eq.
(1. 8), will enable us to derive general relations and
correlations for the VR problem.

Some general results for the VR rate can be obtained
without referring to any further specific approximations.
This may be accomplished ifollowing a procedure ad-
vanced by Lin and Bersohn® and by Toyozawa® for the
case of electronic relaxation, which rests on a power
expansion of the integrand in Eq. (III. 8). Defining

a(t)= 66+ 6.], (Im. 10)
one can expand the exponential in the integral as a uni-
formly converging power series in G, and Eq. (IIL 8)
takes the form

y=Dexp(G) Z -;!—S,., (. 11)
=0

S,=f dt exp( —iwt)[a(?)]”. (M1, 12)
The 7th term in Eq. (II. 11) corresponds to a multi-
phonon process of the order 7, which in turn is charac-
terized by a (temperature dependent) Franck—Condon
factor G and a weight S,. For the limiting case of T=0,
Eq. (I@. 11) takes the transparent form

y=2nD exp [Z (Ai/z)]
IR | [(%Ai)vu/(v“)l]a(; VW — w)

91 1}2 13
(111, 13)
reducing to products of (unnormalized) single mode
Franck-Condon factors. Expansion in the T >0 case is
also possible, '

We now turn to the approximate evaluation of the in-
tegral (L 8) which can be handled by the saddle point
method, #7233 1y the study of molecular electronic re-
laxation, Englman and Jortner® have distinguished be-
tween two limiting situations, the weak coupling limit
G <1 and the strong coupling situation G> 1, The same
limiting cases are obviously applicable to the VR prob-
lem, The weak coupling limit was handled by saddle
point integration, while the strong coupling limit was
treated by a power expansion of the functions G,(f) and
G-(t) in a power series of f, which to low order results
in a Gaussian type generalized line shape for electronic
relaxation. It should be pointed out that the latter pro-
cedure is fraught with some mathematical difficulties,
as no quantitative criteria were established for the
validity of the truncated series expansion in the strong
coupling limit. In fact, the saddle point method is valid
both for the weak and for the strong coupling situation.

The Gaussian line shape always provides a good approxi-
mation for the high temperature case, while in the low
temperature limit it is obtained when the order of the
multiphonon process is low compared to the coupling
${(A2/2). These results will be systematically derived
in Sec. V.,

Saddle point integration of Eq. (III. 8) results in®’
y=Dexp(G)(2m 2 [~ F"' (£,)] V2 exp[F(t,)],  (IIL 14)
where

F(t)= —iwt +[G.(1) + G()) = ~iwt +fdw,,p(w, a2 /2)

x{[{v,) r+ 1] expliw, )+ (v,) rexp( —iw, )} = — jwt

1.
a2 /9y cosl(f ~3iBR)w, ] 1
+f douplo, 8L R = B /) (. 15)
and the saddle point is given by the relation
F'(t)=0, (1. 16)

The validity condition for the saddle point approximation
is

p=|F" ()| |F" ()| 2«1, (1. 17)

The solution of Eqs. (II. 14)~(II. 17) will now be pre-
sented for two cases of physical interest. First, we
shall consider the VR of a diatomic in a monoatomic
solid at moderately low temperatures, Second, we shall
consider the high temperature limit for VR.

IV. ENERGY GAP LAW FOR VIBRATIONAL
RELAXATION

We shall now proceed to derive some approximate re-
lations for the VR of a guest molecule in a monatomic
host lattice, where the molecular frequency w consider-
ably exceeds the lattice Debye frequency, so that the
multiphonon process is of high order, i.e,, N> 1. We
shall at present limit ourselves to moderately low tem-
peratures, i.e., %57 5 7iwp. In this temperature range,
an exact solution for Eq. (II. 16) cannot be obtained, and
we have to rely on approximate methods, which were
extensively discussed in the literature, The simplest
approximation, which is quite safely applicable to the
acoustic phonon spectrum of a monoatomic lattice, ne-
glects phonon dispersion in Eq. (II. 15), replacing the
phonon frequencies by an average value {w,). This
“Einstein type” approximation amounts to handling the
integral in Eq. (IIL 15) by the mean value theorem, set-
ting

cosf(t ~ipr/2)w,]
Jaewpto, at/m 222 LI

cos| (¢ —i8h/2Kw,)]

=L sinh(g{w,)/2) '’ (Iv. 1a)
where
Ly =fdva(wv)(A2v/2) (Iv. 1b)

is an average coupling strength, and the average fre-
quency {w,) is assumed to exhibit a weak temperature
dependence. Equations (III, 14)—(II. 16) together with
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Eq. (IV. 1) result in
y=D{2r¢/[ww,) (1 +¢?) 2 1}2 exp(G)

xexp{ - N[In(p +y1+¢%) - (1 + 9%/ ¢ - ;s w )]},

(1v.2)
where

@ = N sinh(87{(w,)/2)/ L, (1v. 3)

and N, Eq. (I.5), corresponds to the order of the multi-
phonon process. An expression analogous to Eq. (IV.3),
with the factor exp(- G) replacing exp(+G) in the latter
equation, was derived by Diestler for the case of elec-
tronic relaxation. A considerable simplification of Eq.
(IV. 3) is attained in the temperature range where

p>1, (Iv.4)

In the temperature range sT S # (w,) which is of interest
for the present discussion,
~ N L
¢ = 57— exp(zpilw,)), (1Iv.5)
{ vy

and as N~ 10-40 and L, =~ 1-10, condition (IV.4) defi-
nitely holds. We note in passing that in the high temper-
ature range where kT > 7 {w,), we have ¢ = fhw/2L,,,,
and even then condition (IV.4) may often be applicable,

Making use of relation (IV,4), Eq. (V.2) reduces to the
simple form

y=D(2n/[ww,) )2 exp| L, , (20 r+ 1)

[ N
X exp {—N[lnL(v)«v(v)}T"’ 1) - ]]},

where (v, r=[exp(Bii{w,)) - 1] is the thermally aver-
aged population of the frequency averaged mode. The
analogous equation to (IV, 6) for electronic relaxation
wasg derived by Englman and Jortner, 2 7o conclude
these simple mathematical manipulations we consider
the validity condition, Eq. (III. 7), for the applicability
of the saddle point integration method. The parameter
p, defined by Eq. (III. 17), is
p___N-!IZ(l +(p-2)-3/4 .

(Iv. 6)

v.m)

Thus, for high order multiphonon processes, which are
of interest to us, p <1 and the saddle point integration
method can be safely applied.

It would be useful to summarize the assumptions and
approximations involved in the derivation of Eq. (IV.6).
First, Eq. (1L 8) is valid under the conventional con-
ditions of weak coupling, rotating wave, and random
phase approximations. Second, the mean frequency ap-
proximation for the medium phonon spectrum is intro-
duced, Third, the validity of the saddle point approxi-
mation implies that p << 1. Fourth, for the sake of con-
venience we require that ¢ > 1, considering the moder-
ately low temperature range 7{w,)2 k7. Under these
conditions, the VR rate, Eq. (IV.6), is valid and can be
recast in the final compact form

y=7(0)F(T),
where y(0) corresponds to the relaxation rate at T=0

7(0)=A4 exp(~fN), (1v. 8b)

(Iv.8a)

where the preexponential factor is

A= 2ai?BH)C? [ 20/ (wlw,))] V2 exp(L(,,) (Iv.8c)
and the coefficient in the exponent is given by
S=In(N/L,) -1, (Iv.8d)
The temperature coefficient of the VR rate is
F(T)=[1- exp(- pfiw)|[1+(vy,) r]"
X exp| 2L, y(vqy) 1] - (IV. 8e)

These results provide us with the following gross fea-
tures of VR of a diatomic molecule in a monoatomic host
lattice in the moderately low temperature range:

a. The energy gap law. The VR rate exhibits an ex-
ponential, or rather super exponential, dependence on
the order N=w/{w,) of the multiphonon process. In view
of the weak logarithmic dependence of f on N, we expect
that for a class of molecules in a given solid {or even in
several monoatomic solids characterized by close values
of ({w,))], a relation of the general form (I 6) is obeyed,
which constitutes the EGL for VR,

We note in passing that the zero temperature VR rate
constant, Eq. (I 8b), can be derived from the exact
relation Eq. (II. 13), which together with the average
frequency approximation results in

y(0) exp(Li ) N L, 1" /TN +1),

where T is the I" function and I'(N+1)=N! for an integer
N. Applications of the stirling approximation to Eq.
(IV.9) will result in Eq. (IV.8b) for y(0). Equation

(Iv. 9) provides an alternative expression for the EGL.

(Iv.9)

b. Temperature effects. The temperature dependence
Eq. (IV. 8e) for the VR rate contains three factors. The
first term originates from the Bose-Einstein statistics
of the multilevel harmonic oscillator and, as in most
cases of interest gfiw > 1, this contribution can be dis-
regarded. The second contribution [1+{y,,) r]" accounts
for the spontaneous and stimulated phonon emission pro-
cess of order N, The temperature dependence of the
VR rate utilizing the model Hamiltonian (I. 4) just in-
cludes the product of these two terms. The model Ham-~
iltonian, Eq. (II. 3), results in an additional contribution
tothe temperature dependence of the form exp[2L¢,\{v( ) 7l-
This positive exponential Debye-Waller type factor re-
sults in an enhancement of the VR rate at higher tem-
perature, in contrast to the conventional negative ex-
ponential Debye-Waller factor which contributes to the
reduction of the electronic relaxation rate. The tem-
perature dependence predicted herein differs dramati-
cally from that expected for electronic relaxation pro-
cesses. At sufficiently low temperatures, when (v, )¢
<« 1, the temperature coefficient takes the simple form

F(T)=1+(N+2L,) exp( - gi{w,?}), (Iv. 10)

whereupon both the model Hamiltonians (I.4) and (II. 3)
exhibit the same functional temperature dependence in
that region.

c. Isolope effects. The energy gap law implies the
existence of a large intramolecular isotope effect on the
VR rate. The occurrence of an appreciable isotope ef-
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fect was noted by Diestler. ' When two diatomic mole-
cules which differ in their isotopic composition are
studied in the same host matrix, we can safely assume
that the repulsive molecule-medium coupling is invari-
ant. Denoting the relaxation rates by y,(T) for the
molecule characterized by frequency w,; and by a ex-
ponential coefficient [Eq. (IV.8d)] f, and v,(T) for the
molecule specified by the frequency w, and by the ex-
ponential coefficient f,, the isotope effect at T=0 is

7200) _ (ng/z exp[fzwg =/ ;wz] ]
72(0) Wy (w,?
Taking a mean value f for the f; and f, parameters, a

procedure which is valid for all cases excluding that of
the (large) deuterium isotope effect, we have

Gy~ oo 7 (252
~e N .

Yz(o) P/ wy

For the reasonable value (w; —w,;)/w;= 1/N, the isotope

effect is exp( f) and can assume a value in the range
2-10% At finite temperatures, the isotope effect is

(Iv. 11a)

(Iv.11b)

‘Y](T) -ex [fzwg ‘f],wl] 1 (wy=wy)/ &y

Yz(T) P <wv> ( +<v(v)>1‘) 1 2 v
(Iv. 11c)

decreasing somewhat at higher temperatures.

d. Relaxation of individual vibrational levels. The
cooling process of a harmonic oscillator initially excited
to the state n(t=0)=v at T =0 is determined by a Ber-
noulli type distribution. The decay rate of the initially
excited v state in the temperature range Biiw <1 is given
by

k(T)=vv(T). (v.12)

e. Relaxation of an anhavmonic oscillatoy. The en-
ergy gap law can be utilized to provide semiquantitative
expressions for the VR of an anharmonic diatomic mole-
cule in the low temperature range. Nitzan and Silbey15
have shown that the relaxation rate of an harmonic os-
cillator and a two-level system, both induced by the
same coupling Hamiltonian, converge to the same value
in the low temperature limit when gfiw <1, Thus, in the
temperature range ffiw << 1 which is relevant for us, we
can handle the relaxation in the multilevel system of the
anharmonic oscillator as a sequence of two-level relax-
ation processes, Adopting again the model Hamiltonian
Eq. (II. 3), the VR rate constant for the y~ v — 1 transi-
tion of the anharmonic oscillator can be expressed in
terms of the modified energy gap

va‘w

{w,) ’

where x,w is the anharmonicity constant. Multiphonon
relaxation theory now results in the following modified
approximate expression;

kv(T) =Av eXP( _vau)(l + <v(v) > T)N"exp(ZL(V)(v(l’) > T) ’

(Iv. 14)
where f, is given by Eq. (IV, 8d) with N, replacing N,
while the constant A is still reasonably well approxi-

mated by the harmonic oscillator expression Eq.
(IV.8c).

N,=N+ (Iv.13)

The energy gap law, the temperature dependence and
the isotope effects for VR processes, provide a specific
example of the general characteristics of multiphonon
relaxation phenomena. What is new in the present ap-
proach is the utilization of an explicit model Hamilto-
nian, which enabled us to elucidate the detailed features
of VR process.

The general relations and correlations for VR pro-
cesses have to be supplemented by numerical estimates
of the VR rate. However, at present, the latter are
very difficult to obtain in a reliable manner, Let us
first attempt to estimate the coupling energy parameter
Cin Eq. (IL 3), which is given by C=ZRya, where Rya
corresponds to the repulsive interaction at the nuclear
equilibrium configuration, Thus Eq. (IV.8c) is

A=ZRE (V21 2B (wlw, Ve .

The rms zero energy displacement B! is of the order of
0.01X, Taking typical values Rya=~ (4/X,)x10"! eV/cm,
which corresponds to the repulsion of two Ar atoms,
Z=6, hw=0.2 eV, and N=40, we estimate A=2x10¥%
sec”), and the zero temperature VR rate is y(c)~ 1012
xexp( -fN) sec™ ., The phonon coupling function L, can
presumably assume values in the range L,,=1-10 so
that the exponential factor, Eq. (IV, 8c), takes values in
the range =0, 5-3.

(Iv. 15)

The sparse experimental data available at present®~1%38
on the features of type B VR processes of diatomic
molecules in inert solid matrices are compatible with
our rough numerical estimates. The VR rates of CO in
solid Ar, 711%38 ,(0) < 102 sec™,, and of N, in solid N,, ¥
7(0)~ 1 sec™, together with the reasonable values {w,)
=50 cm™ and N~ 40 for both cases, imply that f~0.7
for these systems, Invoking the dangerous assumption
that the preexponential factor is a slowly varying func-
tion, we estimate ¥(0)=10% sec™ for the VR of the 970
em™ vibration of NH, in solid N, which is in fortuitous
good agreement with the experimental value ¥(0)=2x 108
sec™! for this system.

V. HIGH TEMPERATURES LIMIT AND STRONG
COUPLING

An obvious disadvantage of the treatment presented in
Sec. IV involves the mean frequency approximation for
the phonon spectrum of the host lattice. In view of our
ignorance of the energy dependence of the individual
mode coupling terms, Eq. (III.7), we were forced to in-
troduce that “coarse graining” procedure in the moder-
ately low temperature range gfi{w,) <1, where the
(thermal) phonon occupation numbers are small, i.e.,
(,)p<<1for all v, Inthe temperature range above the
characteristic phonon frequency, we may adopt an alter-
native approach which is applicable in the high tempera-
ture limit without involving the mean frequency approxi-
mation,

In the limit G> 1, where G is given by Eq. (IIL 8d),
we encounter the strong coupling situation, ® which can
be realized under two conditions3*:

(1) large phonon coupling strength at low tempera-
tures, i.e.,
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L<u>=f dw,p(w,)(83/2)> 1, (v.1)
(2) the high temperature limit, i.e.,
(v,)r>1 (v.2)
for all v.

Provided that condition (V. 2) is satisfied, we can seek
a good approximation for the solution of the saddle point
equation (III, 16), by a power series expansion of the ex-
ponentials exp(+iw,?) in Eq. (I, 15),

F'()= —~iw+i{lw,}

—{Lw? coth(4priw )} t+5i{Lu’}t? -0, (V.3)

where we have defined

{Lf, )= [ dw,p(w,)63/2)(0,) (v.4)
for any function of the phonon frequencies. In the high
temperature limit, when Eq. (V. 2) is satisfied, we may
neglect terms of the order 0(t%) in Eq. (V. 3) and obtain
the simple result

t,=ilw —{Lw,})/{Lw? coth(z8hw, )} (v.5)

for the saddle point. Equation (V.5) together with a
power expansion of Eq. (III. 14) up to 0(¢?) immediately
result in the Gaussian line shape function for the relax-
ation rate

s (w-{Lw,}}
{T)=Bexp [' 2[Lu? coth(%ﬁﬁw,,)}] exp(26),

E_D 47 1/2
= [zﬁ,u?v coth(%ﬁh'wv)}] .

(v.6)

Equation (V. 6) is expected to hold provided that
(w —{i‘wv})_LLwi}
{LoZ coth(GBAw, )

Adopting for the moment the mean frequency approxima-
tion, Eq. (V.7) reduces to

«1, (V.7a)

(V.70)

« coth?(z B {w,?).

L( v

Equation (V.'7b) provides us with the general validity
condition for the applicability of the “strong coupling”
situation. We note that this limit prevails provided that
either L;,,~ N> 1 or, alternatively, in the high temper-
ature case when 8i{w ,) > 1, The high temperature case
is pertinent for the present discussion, and Eq. (v.6)
then takes the form

y(T)= BexpuT)exp( - E,/kgT),
u=4{L(kw,) '} kp,

£ Blw-{Lw,})?
A7 ALlw, ’

We thus obtain an activated rate constant modified by a
temperature dependent factor exp(uT). For L;,,>1,
the contribution of the latter term may be appreciable,
At present, no experimental data are available for VR
processes of class B in the high temperature limit,

(v.8)

Such results may be obtained from the studies of VR of
impurity molecules in ionic and covalent crystals.
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