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ABSTRACT We study a deprotonation reaction by an
enzyme with activity dependent on pH. The rate and trans-
port equations are simplified with a number of assump-
tions, are analyzed according to the presence of different
time scales, and are solved numerically to show relaxation
oscillation and threshold excitation, for different choices
of parameters. The imposition of fluctuations (noise) on
the deterministic equations for threshold excitation condi-
tions leads to random occurrence of an excitation and
return to steady state at low noise level and to large, ran-
dom variations in concentrations at high noise level. At
intermediate noise levels (of the order of the threshold
excitation), however, we find quasi-periodic concentration
oscillations. Thus, critical values of external constraints
necessary for oscillations are altered by the presence of
noise.

I.

Introduction

Certain chemical reaction mechanisms (possibly coupled with
transport) in systems maintained far from equilibrium are
known to have nonlinear properties such as multiple steady-
states, limit cycles, relaxation oscillations, and steady-states
with threshold excitations (1-3). In this article we study one
such mechanism, chosen and simplified with some arbitrari-
ness. The mechanism has multiple time scales and we take
advantage of that fact. We obtain numerical solution of the
rate and transport equations and find the cited nonlinear
properties for suitable choices of the parameters. We use the
mechanism then, under conditions for threshold excitations,
to investigate numerically the effect of the imposition of
noise, that is fluctuations, on the deterministic equations. We
find the interesting possibility of quasi-periodic motion for a
system in a steady state subject to threshold excitation. This
occurs at noise levels comparable to the threshold. For lower
noise levels the threshold excitation occurs randomly, and for
higher noise levels concentration variations become again
more random.

We consider the following system: A substrate S is de-
protonated by an enzyme EH, (products P—, H*) within an
enclosure. The enzyme may dissociate to the inactive forms
EH~, E=, and hence the catalytic strength of the enzyme is
pH dependent; enzyme in any form is confined to the en-
closure which is surrounded by fixed concentrations of reac-
tants and products.

In a similar system (hydrolysis of benzoyl-L-arginine ethyl
ester catalyzed by the enzyme papain which is localized in a

Abbreviations: rms, root mean square; BVP model, Bonhoeffer—
van der Pol model.
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membrane), Naparstek, Thomas and Caplan (4) observed
periodic variations of pH and stressed the importance of dif-
fusion (or permeation) in enzyme reactions. This result was
reproduced qualitatively with a computer simulation by
Caplan, Naparstek and Zabusky (5). Homogeneous enzyme
catalysis with inhibition and reactivation were studied by
Karfunkel and Seelig (6) for the purpose of showing the possi-
bility of relaxation oscillations and threshold excitation for
such reactions. The complexity of the reaction mechanism
necessary for given types of nonlinear behavior is decreased if
the catalyst is localized, in a membrane for instance, and
permeation into and out of the membrane plays a role [see
Hahn, Ortoleva, and Ross (7)]. Bunow (8) investigated the
occurrence of multiple steady-states in model enzyme reac-
tions confined to an enclosure, and compared such systems to
“continuous flow stirred tank reactors” (9). In addition to the
nonlinear phenomena already mentioned, he discusses homeo-
static regulation, amplification, and irreversible differentiation.
For a discussion of a similar model system in relation to irre-
versible transitions, see (7) and for a asymmetric cell differen-
tiation see Ortoleva and Ross (10, 11).

An analysis of excitation and threshold phenomena in the
transmission of signals in nerves was made by FitzHugh (12).
He used as a mathematical model a modified two-variable van
der Pol equation, called BVP model (Bonhoeffer-van der Pol
equation), and correlated various nerve phenomena with
predictions of that model. There are close similarities in the
topology of the phase plane and qualitative predictions
between the BVP model and the present work.

Il1. System and dynamics
We consider the reactions

ki1

EH, =2 EH- + HT, [1.1]
k1
k2

EH- =2 E- 4+ HT, [1.2]
k-2
ks

S+ EH,— P~ + Ht + EH, [1.3]
ka

H,O0 &2 0H- + HT, [1.4]

k_a

to oceur homogeneously at constant temperature and pressure,
in a fixed volume V with a surface area A. The pH-dependence
of the enzyme activity comes from the first two reactions
(13). The deprotonation step is assumed to be irreversible.
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Since EH, is taken to be the active form of the enzyme, the
system has a nonlinear positive feedback character; the prog-
ress of the deprotonation reaction favors the formation of
IEH, which in turn catalyzes the deprotonation reaction.

The analysis of the reactions and permeations across the
boundary of the volume is facilitated by the following con-
siderations:

(a) The flux of water, Ju,0, although present, is neglected
and the concentration of water is assumed to be constant.

(b) Fluxes of neutral species, e.g., S, are taken to be propor-
tional to the concentration difference across the boundary
membrane, '

Js = hg (8° — 8), [2]

where hg is the permeability constant of S multiplied by the
ratio of surface to volume (A/V). The superscript ° denotes
an external quantity.

(¢) There exist two time scales in the system. For the
shorter time scales we introduce a smallness parameter e.
These time scales include that of the attainment of electro-
neutrality and the equilibrium of the reactions (enzyme — H)
and (OH — H). The slow processes then are the deprotonation
of the substrate S and the transport of materials across the
membrane.

(d) On the long-time scale we impose a condition (fre-
quently used in experiments) of zero current clamp. This im-
plies that the fluxes of ionic species are due to the transport of
neutral pairs (H, P), (H, OH), or by exchange of OH and P
across the boundary. This provision guarantees the electro-
neutrality of the system. Thus we have

Ju = Jp + Jom (3]
Next we assume the simplest form for Jp
Jp = hp (P — P). [4]

thus neglect ing cross-coupling and nonlinear effects.
These considerations yield the following equations of change:

d 1
c?t (EH,) = ; (—Wy), [5.1]
<y = ow, - w, 52]
dt €
d 1
(ﬁ (E) = ; (Wz), [5'3]

d 1
di H) = -(Wy 4+ Wy + Wy) + Wi + Ju, [5.4]
€

d
i S) = =W, + Js, (5.5]
4 P)=W; +J [5.6]
ags T TR '
d 1
i@ (OH) = ;(W4) + Jom, (5.7]
d 1
Z (H:0) = ;(W4). (5.8]

The symbols W, etc., denote the net chemical rates of reac-
tion [1.1], ete. Processes which occur on the fast time scale are
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noted by the factor 1/¢ in the rate laws. The fact that enzyme
species do not permeate and are conserved is seen by adding
the first three equations of [S].

We want to solve the set of equations [5] to lowest order in
the limit e — 0, which amounts to the steady state approxima-
tion in chemical kinetics (14). )

To this order we obtain

Z-f: —ks-EH,-8 + hs (S° — 8), [6.1]
dH p
" e BH,S + kP — P/ (S ) (6.2
7 [ks-EHs-S + hp( ”/(dH) [6.2]

For solutions to higher order it is necessary to use singular
perturbation theory (15).

III. Steady-states and nonlinear oscillations

A. Steady-States. For a range of parameters three steady-
states are possible and the system shows typical hysteresis
phenomena as, for example, SO is varied; at an upper and a
lower transition value of S, the system makes a discontinuous
jump from one branch of steady states to another (7, 16, 17).
Transitions induced by variations of external P° may be
irreversible for certain ranges of fixed S° (7).

B. Relazation Oscillations. In many observed cases of bio-
chemical and physicochemical oscillations (18-20), it is found
that during each period of an oscillation a relatively smooth
phase is followed by a rapid variation of concentration occur-
ring on a much shorter time scale. Such chemical relaxation
oscillations have been studied (6, 22) for model reacting
systems.

We expect that in the present system, relaxation oscillations
may occur under circumstances when initially the substrate
slowly permeates into the system and the internal H is suffi-
ciently low, such that the enzyme activity is essentially negligi-
ble. When subsequently a high substrate level is attained by
permeation, the H concentration rapidly increases due to the
nonlinear feedback until the enzyme activity becomes appre-
ciable. Then, the substrate is eliminated, and finally the sys-
tem is flushed of H by an assumed rapid (H, P) permeation.
The conditions favoring this sequence of events are large S°
and hp with all other rate constants of order unity. To achieve
these conditions we introduce into [6] the definitions:

§=1S/S°, 4 = hp/SY; [7]
on eliminating time from [6], we obtain

a1 —ks-EH,-S + hs(1 —8)
dH 80 [ks-EH,-8 + (P° — P)]/(dP/dH)’

which is to be solved in the limit of large S° and Ap (= 3S°).

At large S9, the trajectories (solutions to [8]) are at almost
constant 8 everywhere except on contours where the denomina-
tor of [8] vanishes (22). Contours of dS/dt = 0 and dH/dt = 0
are shown in Fig. 1a for a given set of parameters. The stability
of the steady-state is determined by the value of S° at fixed
values of the other parameters.

Beyond a critical value of S°, the systems develop a limit
cycle which as S° approaches infinity, becomes a relaxation
oscillation; see Fig. 1b. For this limiting case, during one
oscillation period, BC and DA correspond to the fast processes
and are traversed in a negligible time whereas AB and CD cor-
respond to the slower processes; see Fig. 1a.
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Fie. 1. (a) Phase plane diagram (substrate versus hydrogen
ion concentration) showing a trajectory (ABCDA) of the solution
to [8] in the limit S° — «. Solid lines denote d$/dt = 0 and
dH/dt = 0. Parameters chosen for illustration are: K; = 10,
Ko =3, ks = 1, Ky = 102 hg = 1/50, n = 1/300; P> = 0.2,
E° = 0.1. The time is in seconds and the concentration in umol/
liter. In the following figures, the parameters are the same unless
specified otherwise. Fig. 1(b). Relaxation oscillation of H
concentration versus time when S° = 10 The periods = for
various values of S are: (S = o) = 62.0; 7(S* = 10%) = 70.0;
7(S° = 103) = 92.0.

If SO is less than the critical value and the steady state is
stable, then the trajectories show damped oscillations and
eventually spiral into the steady-state. Thus, a perturbation
from the steady state leads in this case to trains of con-
secutively damped pulses.

One also can calculate the period 7 of the oscillation in the
limit S — . From [6] and [7] we see that

r = FdS/[—ks-EHy-8 + hs(1 — 8)]. [9]

However, the portions BC and DA do not contribute to = and
on portions AB and CD the following relation between 8 and
H holds:

8§ = —n(P° — P)/[ks- EH,]. (10]

Substituting [10] into [9], we can evaluate the relaxation
oscillation period and find that the period approaches a con-
stant in the limit S® — . The numerical calculation is com-
pared for various values of S° in the caption of Fig. 1b. The
temporal course of H is given in that figure and is seen to be a
periodic train of short pulses.

IV. Threshold conditions and effect of fluctuations

Many biological phenomena occur which require a minimum
non-zero excitatory perturbation to elicit a much larger stan-
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Fia. 2 (upper panel). Phase-plane diagram (substrate versus
hydrogen ion concentration) for two conditions, (hs)i = 1/20

and (hg): = 1/125. Each condition yields a stable steady state
(01, Os, respectively) with the possibility of threshold excitation.
Perturbation of the system in Oy to threshold excitation, point a
on separatrix (broken line AD) or beyond, causes an excitation
(trajectory aABCO;) and return to O;. Perturbations from O to
points b, ¢ (inset) do not cause excitations. A similar situation
holds if the system is in O,, except that the threshold excitation
follows an increase in substrate from O. past the separatrix
(broken line BC).

(lower panel). Responses of the system (hydrogen ion con-
centration versus time) when subject to perturbations from
stable steady state O: to points a, b, ¢, see Fig. 2 (upper panel).
The inset gives details near zero time.

dard response that follows a temporal development relatively
insensitive to any of a large class of excitatory perturbations
(23, 24). We find such a phenomenon may be attained in the
present system, and we study its behavior in the presence of
random fluctuations in the external environment S°.

A. Threshold and Excitation. In Fig. 2 (upper panel), we
see a phase plane diagram indicating the existence of a single
steady-state. If the system with stable steady state at O; is
perturbed to point a, below the threshold separatrix, then the
system evolves for a relatively long time on a standard trajec-
tory aABCO;, and ends up again at the stable steady state O..
If, however, the system is initially perturbed to points b, or ¢
above the separatrix, then the system evolves back to the
steady-state in a relatively short time. Recall that little time
is spent by the system in the horizontal trajectories. In Fig. 2
(lower panel), we sec the time evolution of the system for
supra- and subthreshold initial perturbations.

Similar phenomena may be expected when the steady-state
is located at O, the only difference being that the threshold is
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in the opposite direction. If the system is prepared, however,
in such a way that it has three steady states, O; and O, being
stable and O; unstable (not shown but located between the
maximum and minimum on the curve dH/dt = 0), then the
system when perturbed supra-threshold undergoes an excita-
tion to another steady-state and does not return to the original
steady-state.

B. Effect of Fluctuations. If a system under threshold condi-
tions is subject to noise (random perturbations), we expect the
behavior of the system to vary as the rms (root mean square)
effect of the noise becomes sufficient to perturb the system be-
yond the threshold. We have studied this phenomenon by
subjecting the system to random fluctuations in the external
substrate concentration. We do so by changing the substrate
concentration S° at random times; each change is of gaussian
form in time, with amplitude and half-width chosen randomly
(by generating random numbers on a computer), subject to a
chosen average amplitude and rms width.

The equation [6.2] then remains unchanged (for simplicity
we neglect variations in the external H, P, OH) and is taken
to obey an equation of the Langevin type,

ds/dt = —ks-EH, 8 + hs(1 — 8) + hsAS® (f), [11]

where the average value (A$°) over the ensemble is zero and
A8° ( = (A8°)/{S°)) must be limited to physically allowed
values

—1< A8 < o. [12]

Qualitatively the behavior of the system passes through
three regions as the rms noise is increased. If the noise is
sufficiently small, then the system is only occasionally brought
supra-threshold and the time course of the system (see Fig.
3a) is seen to be a sequence of uncorrelated randomly triggered
pulses (of which only one is shown). At intermediate values of
the noise level, the system does not reside in the vicinity of the
steady state very long and is, upon arrival at the steady state,
soon perturbed supra-threshold. The resulting behavior (Fig.
3b) is quasi-periodic. At large levels of noise the quasi-periodici-
ty is destroyed. As the threshold is decreased the rms noise
level needed to attain quasi-periodicity decreases proportion-
ally.

In Fig. 3a we see that for low noise Jevel, the system stays
around the steady state for most of the time except when a
pulse is generated at random times. The region of low H con-
centration corresponds to the branch AB in Fig. 2 (upper
panel). Because this branch is steeper than that of CD near
the steady state, the effect of the noise at low H concentra-
tion is suppressed as compared to that at high H concentra-
tion. It is also to be noted that the time required to span the,
branch AB for low and intermediate noise levels is quite
comparable to that of a single excitation in Fig. 2 (lower panel)
whereas for a high noise level the time duration on the branch
AB (low H concentration) is irregular, since the system is
frequently forced between the branches AB and CD.

If the system has two stable steady states quasi-periodic
behavior may also be attained.

Fluctuations in a nonlinear threshold system are seen to
have the effect of altering the critical values of parameters of
the system such as S° for which oscillatory behavior may
oceur. Thus, we found quasi-periodic behavior with imposed
noise in a regime where oscillations do not occur according to
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F1c. 3. Responses of the system when subject to various levels
of noise, Eq. [11]; hydrogen ion concentration vs. time. Quasi-
periodicity for the intermediate noise level is evident. Note the dif-
ferent scale for the high noise level. (a) Low noise level, (b) Inter-
mediate noise level, (¢) High noise level.

the deterministic equations, i.e., the equations with AS =
0 [11].

V. Concluding remarks

The phase plane (S, H) of the system analyzed here bears a
striking resemblance to the mathematical model introduced by
FitzHugh (12), a modified two-variable van der Pol equation
(Bonhoeffer—-van der Pol, BVP model). FitzHugh has dis-
cussed in length a variety of features of the model: the
division of the phase plane “into regions corresponding to the
physiological states of nerve fiber (resting, active, refractory,
enhanced, depressed, etc.)”’; threshold excitation and single
pulses; finite trains of successively damped pulses; and infinite
trains of pulses. He has compared the two-variable model
with projections of the four-variable Hodgkin-Huxley (25)
equations and finds the model representative. All the features
of BVP model are common to our model.

The variations in behavior found for a system with thresh-
old excitation, on imposition of varying levels of noise, may
be conjectured to have applications. If oscillatory behavior is
normal for a given biological system, then this state can be
achieved by a threshold system at intermediate noise levels.
This type of oscillatory behavior is attainable under less
stringent concentration conditions than a limit cycle. Fur-
thermore the system has a resting, non-oscillatory, state
available at low noise levels.
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